Download citation
Download citation
link to html
In the title compound, C8H8O4, the acetic acid side chain adopts a roughly perpendicular orientation with respect to the phenyl ring. Hydro­gen bonding between carboxyl groups results in the formation of a centrosymmetric dimer. An intramolecular hydrogen bond is formed in the catechol part of the mol­ecule. Molecules are linked together through hydrogen bonds between hydroxyl and carboxyl­ic acid O atoms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801011151/wn6027sup1.cif
Contains datablocks General, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801011151/wn6027Isup2.hkl
Contains datablock I

CCDC reference: 170901

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.008 Å
  • R factor = 0.051
  • wR factor = 0.220
  • Data-to-parameter ratio = 15.7

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

It is important to clarify the detailed structure of the catecholamine metabolites in order to study catecholamine action as well as the metabolic pathway. In this context, the structures of the dopamine metabolites 3-methoxytyramine (Okabe, Mori & Sasaki, 1991; Okabe & Mori, 1992) and homovanillic acid (Okabe, Hatanaka & Sasaki, 1991), the noradrenaline metabolite normetanephrine (Pattanayek et al., 1984) and the adrenaline metabolite 4-hydroxy-3-methoxymandelic acid (Okabe et al., 1995) have been reported. We report here the crystal structure of the title compound, (I).

This compound is the principal metabolite of dopamine, but its structure could not be determined for a long time because of the difficulty of crystallization. The acetic acid side chain is oriented roughly perpendicularly to the catechol ring of the molecule [torsion angle C2—C1—C7—C8 - 87.2 (6)°]. This conformational feature of the molecule resembles that observed for dopamine, adrenaline and the corresponding amines (Barlow et al., 1989), as well as the catecholamine metabolites homovanillic acid (Okabe, Hatanaka & Sasaki, 1991), 3-methoxytyramine (Okabe & Mori, 1992) and 4-hydroxy-3-methoxymandelic acid (Okabe, Suga & Kohyama, 1995). This seems to be one of the important structural requirements for enzymatic recognition through the metabolic pathway. There is an intramolecular hydrogen bond between the two hydroxyl groups of the catechol ring (Table 2). This had not been observed in the crystal structures of the main catechol amine metabolites, dopamine hydrochloride (Giesecke, 1980), (-)-adrenaline (Andersen, 1975a), (-)-noradrenaline (Andersen, 1975b) or noradrenaline hydrochloride (Carlstro¨m & Bergin, 1967). Two molecules of (I) form a centrosymmetric dimer by hydrogen bonding between the carboxyl groups.

Experimental top

The colorless thin plate crystal used for analysis was obtained by slow evaporation from a solution in a mixture of diethyl ether and n-hexane (6:1 volume ratio) at room temperature.

Refinement top

All H atoms were located from difference Fourier maps but were not refined.

Computing details top

Data collection: MSC/AFC(Molecular Structure Corporation, Rigaku Corporation, 1999); cell refinement: MSC/AFC(Molecular Structure Corporation, Rigaku Corporation, 1999); data reduction: TEXSAN Version 1.10 (Molecular Structure Corporation, Rigaku Corporation, 1999); program(s) used to solve structure: SIR88 (Burla et al., 1989) & DIRDIF94 (Beurskens et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN Version 1.10 (Molecular Structure Corporation, Rigaku Corporation, 1999).

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) drawing of the title compound with the atomic numbering scheme. Ellipsoids for non-H atoms are shown at the 50% probability level.
(I) top
Crystal data top
C8H8O4Dx = 1.496 Mg m3
Mr = 168.14Mo Kα radiation, λ = 0.7107 Å
Orthorhombic, PbcaCell parameters from 18 reflections
a = 16.181 (2) Åθ = 10.1–13.1°
b = 11.625 (2) ŵ = 0.12 mm1
c = 7.938 (3) ÅT = 296 K
V = 1493.2 (6) Å3Thin plate, colorless
Z = 80.35 × 0.20 × 0.02 mm
F(000) = 704.00
Data collection top
Rigaku AFC-5R
diffractometer
θmax = 27.5°, θmin = 4°
ω–2θ scansh = 021
1714 measured reflectionsk = 015
1714 independent reflectionsl = 100
493 reflections with I > 2σ(I)3 standard reflections every 150 reflections
Rint = 0.000 intensity decay: 0.2%
Refinement top
Refinement on F2H-atom parameters not refined
R[F2 > 2σ(F2)] = 0.051 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.220(Δ/σ)max < 0.001
S = 0.84Δρmax = 0.25 e Å3
1714 reflectionsΔρmin = 0.30 e Å3
109 parameters
Crystal data top
C8H8O4V = 1493.2 (6) Å3
Mr = 168.14Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 16.181 (2) ŵ = 0.12 mm1
b = 11.625 (2) ÅT = 296 K
c = 7.938 (3) Å0.35 × 0.20 × 0.02 mm
Data collection top
Rigaku AFC-5R
diffractometer
Rint = 0.000
1714 measured reflections3 standard reflections every 150 reflections
1714 independent reflections intensity decay: 0.2%
493 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.051109 parameters
wR(F2) = 0.220H-atom parameters not refined
S = 0.84Δρmax = 0.25 e Å3
1714 reflectionsΔρmin = 0.30 e Å3
Special details top

Refinement. Refinement using reflections with F2 > 0.0 σ(F2). The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9152 (2)0.0207 (3)0.3666 (6)0.055 (1)
O20.9798 (2)0.1389 (4)0.4402 (5)0.046 (1)
O30.5970 (2)0.0461 (3)0.3061 (5)0.047 (1)
O40.5340 (2)0.1330 (3)0.4918 (5)0.042 (1)
C10.7766 (3)0.1434 (5)0.3191 (7)0.029 (1)
C20.7254 (3)0.0496 (5)0.2849 (7)0.034 (1)
C30.6453 (3)0.0468 (4)0.3444 (7)0.033 (1)
C40.6155 (3)0.1381 (5)0.4406 (6)0.032 (1)
C50.6653 (3)0.2295 (5)0.4787 (8)0.038 (1)
C60.7463 (3)0.2324 (5)0.4162 (7)0.037 (1)
C70.8644 (3)0.1493 (5)0.2511 (7)0.038 (1)
C80.9250 (3)0.0904 (5)0.3625 (8)0.034 (1)
H20.74600.01330.22080.0406*
H30.54580.02980.34040.0464*
H40.49870.19160.53620.0464*
H50.64520.29040.54710.0453*
H60.78080.29630.44060.0445*
H70.87980.22780.24060.0450*
H80.86580.11370.14340.0450*
H90.95790.07770.41900.0464*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.046 (2)0.035 (2)0.083 (3)0.001 (2)0.023 (2)0.005 (2)
O20.031 (2)0.041 (2)0.066 (3)0.005 (2)0.012 (2)0.004 (2)
O30.034 (2)0.034 (2)0.075 (3)0.005 (2)0.010 (2)0.008 (2)
O40.026 (2)0.039 (2)0.060 (3)0.002 (2)0.005 (2)0.007 (2)
C10.022 (2)0.037 (3)0.030 (3)0.002 (2)0.002 (2)0.008 (3)
C20.029 (3)0.028 (3)0.046 (4)0.003 (2)0.006 (3)0.001 (3)
C30.032 (3)0.028 (3)0.039 (3)0.004 (2)0.008 (3)0.004 (3)
C40.026 (2)0.034 (3)0.036 (3)0.006 (3)0.005 (2)0.003 (3)
C50.039 (3)0.034 (3)0.042 (4)0.003 (3)0.003 (3)0.011 (3)
C60.027 (2)0.034 (3)0.052 (4)0.008 (3)0.006 (3)0.005 (3)
C70.031 (3)0.044 (3)0.041 (3)0.003 (3)0.001 (2)0.005 (3)
C80.025 (3)0.034 (3)0.043 (4)0.004 (3)0.003 (3)0.001 (3)
Geometric parameters (Å, º) top
O1—C81.301 (7)C2—C31.379 (7)
O1—H91.044C2—H20.951
O2—C81.219 (7)C3—C41.394 (8)
O3—C31.368 (6)C4—C51.367 (8)
O3—H30.891C5—C61.402 (7)
O4—C41.381 (6)C5—H50.950
O4—H40.957C6—H60.948
C1—C21.397 (7)C7—C81.489 (8)
C1—C61.381 (8)C7—H70.950
C1—C71.520 (7)C7—H80.950
O1···O2i2.670 (6)O2···O3ii3.470 (5)
O1···O3ii3.258 (5)O2···C4vi3.526 (7)
O1···C5iii3.305 (7)O2···O4ii3.540 (6)
O1···O4iv3.351 (6)O3···O4vii2.844 (5)
O1···C8i3.459 (7)O3···C8viii3.471 (6)
O1···O1i3.500 (8)O3···C8iv3.577 (7)
O1···O3v3.580 (6)O4···O4vii3.284 (7)
O2···O4vi2.845 (6)O4···C8viii3.357 (7)
O2···O3v3.339 (6)O4···C7viii3.361 (6)
O2···C5vi3.429 (6)C1···C6ix3.543 (8)
O2···O2i3.430 (8)C1···C5ix3.568 (8)
O2···C8i3.454 (7)C6···C7x3.550 (8)
C8—O1—H9124.0C4—C5—C6119.4 (5)
C3—O3—H3107.2C4—C5—H5120.3
C4—O4—H4130.4C6—C5—H5120.3
C2—C1—C6118.9 (4)C1—C6—C5120.8 (5)
C2—C1—C7121.4 (5)C1—C6—H6119.5
C6—C1—C7119.7 (5)C5—C6—H6119.8
C1—C2—C3120.6 (5)C1—C7—C8112.6 (5)
C1—C2—H2119.7C1—C7—H7108.7
C3—C2—H2119.7C1—C7—H8108.8
O3—C3—C2118.7 (5)C8—C7—H7108.7
O3—C3—C4121.6 (4)C8—C7—H8108.6
C2—C3—C4119.7 (5)H7—C7—H8109.5
O4—C4—C3117.3 (5)O1—C8—O2122.4 (5)
O4—C4—C5122.1 (5)O1—C8—C7113.0 (5)
C3—C4—C5120.6 (5)O2—C8—C7124.6 (5)
O1—C8—C7—C168.1 (6)C2—C1—C6—C50.4 (8)
O2—C8—C7—C1113.5 (6)C2—C1—C7—C886.2 (6)
O3—C3—C2—C1179.2 (5)C2—C3—C4—C51.1 (8)
O3—C3—C4—O41.9 (7)C3—C2—C1—C61.1 (8)
O3—C3—C4—C5179.3 (5)C3—C2—C1—C7178.5 (5)
O4—C4—C3—C2177.7 (5)C3—C4—C5—C61.8 (8)
O4—C4—C5—C6176.9 (5)C5—C6—C1—C7179.3 (5)
C1—C2—C3—C40.4 (8)C6—C1—C7—C894.1 (6)
C1—C6—C5—C41.0 (8)
Symmetry codes: (i) x+2, y, z+1; (ii) x+1/2, y, z+1/2; (iii) x+3/2, y1/2, z; (iv) x+3/2, y, z1/2; (v) x+3/2, y, z+1/2; (vi) x+1/2, y+1/2, z+1; (vii) x+1, y, z+1; (viii) x1/2, y, z+1/2; (ix) x, y+1/2, z1/2; (x) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H9···O2i1.0461.6672.674 (6)160.1
O3—H3···O40.8912.2482.745 (5)114.8
O4—H4···O2xi0.9572.0002.843 (6)145.8
Symmetry codes: (i) x+2, y, z+1; (xi) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC8H8O4
Mr168.14
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)16.181 (2), 11.625 (2), 7.938 (3)
V3)1493.2 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.35 × 0.20 × 0.02
Data collection
DiffractometerRigaku AFC-5R
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
1714, 1714, 493
Rint0.000
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.220, 0.84
No. of reflections1714
No. of parameters109
No. of restraints?
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.25, 0.30

Computer programs: MSC/AFC(Molecular Structure Corporation, Rigaku Corporation, 1999), TEXSAN Version 1.10 (Molecular Structure Corporation, Rigaku Corporation, 1999), SIR88 (Burla et al., 1989) & DIRDIF94 (Beurskens et al., 1994), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976).

Selected geometric parameters (Å, º) top
O1—C81.301 (7)C1—C71.520 (7)
O2—C81.219 (7)C2—C31.379 (7)
O3—C31.368 (6)C3—C41.394 (8)
O4—C41.381 (6)C4—C51.367 (8)
C1—C21.397 (7)C5—C61.402 (7)
C1—C61.381 (8)C7—C81.489 (8)
C2—C1—C6118.9 (4)O4—C4—C5122.1 (5)
C2—C1—C7121.4 (5)C3—C4—C5120.6 (5)
C6—C1—C7119.7 (5)C4—C5—C6119.4 (5)
C1—C2—C3120.6 (5)C1—C6—C5120.8 (5)
O3—C3—C2118.7 (5)C1—C7—C8112.6 (5)
O3—C3—C4121.6 (4)O1—C8—O2122.4 (5)
C2—C3—C4119.7 (5)O1—C8—C7113.0 (5)
O4—C4—C3117.3 (5)O2—C8—C7124.6 (5)
O1—C8—C7—C168.1 (6)C2—C1—C6—C50.4 (8)
O2—C8—C7—C1113.5 (6)C2—C1—C7—C886.2 (6)
O3—C3—C2—C1179.2 (5)C2—C3—C4—C51.1 (8)
O3—C3—C4—O41.9 (7)C3—C2—C1—C61.1 (8)
O3—C3—C4—C5179.3 (5)C3—C2—C1—C7178.5 (5)
O4—C4—C3—C2177.7 (5)C3—C4—C5—C61.8 (8)
O4—C4—C5—C6176.9 (5)C5—C6—C1—C7179.3 (5)
C1—C2—C3—C40.4 (8)C6—C1—C7—C894.1 (6)
C1—C6—C5—C41.0 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H9···O2i1.0461.6672.674 (6)160.1
O3—H3···O40.8912.2482.745 (5)114.8
O4—H4···O2ii0.9572.0002.843 (6)145.8
Symmetry codes: (i) x+2, y, z+1; (ii) x1/2, y+1/2, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds