Download citation
Download citation
link to html
The crystal structure of the title compound, C6H7N3O, exhibits packing typical of amides, with N—H...O hydrogen-bond dimers forming a corrugated tape and N—H...N bonds connecting the tapes.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801011424/wn6033sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801011424/wn6033Isup2.hkl
Contains datablock I

CCDC reference: 170903

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.045
  • wR factor = 0.134
  • Data-to-parameter ratio = 15.4

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

In a recent monograph on the role of amides in non-covalent syntheses (Palmore & MacDonald, 2000), the urea functional group is considered as part of the amide family. In connection with an ongoing crystallographic study of aromatic ureas (George et al., 2001), we have determined the crystal structure of N-(3-pyridyl) urea, (I).

The pyridyl ring in (I) is tilted to the urea plane by 163.94 (14)° (C8/N7/C6/C5, Fig.1). The crystal structure of (I) contains a corrugated tape of (syn) N10—H8···O9 and (anti) N10—H9···O9 hydrogen-bond dimers along the a axis, with an (anti) N7—H7···N4 bond connecting screw-axis-related molecules in the b direction (syn and anti refer to ureido H atoms) (Fig. 2). The a axis of 4.8558 (10) Å in (I) is smaller than the characteristic 5.1 Å packing in carboxylic amides because of the zigzag corrugated pattern. A crystal structure assembled by N—H···N hydrogen bonding interaction was published recently in this journal (Lynch & McClenaghan, 2001). In contrast to the structure of (I), the molecular conformation and crystal packing in N-(2-pyridyl)urea (Velikova et al., 1997) are quite different. This latter structure contains parallel zigzag ribbons of molecules hydrogen bonded through (syn) N—H···O dimers along the ab diagonal. The molecule adopts a planar conformation because of an intramolecular (anti) N—H···N interaction. Thus, isomeric 2- and 3-pyridylurea have very different crystal structures.

Experimental top

Compound (I) was synthesized by slowly adding NaOCN (130 mg, 2 mmol) dissolved in hot water (1 ml) to a solution of 3-aminopyridine (188 mg, 2 mmol) in glacial AcOH (0.2 ml) with stirring. The aqueous solution was neutralized and extracted with chloroform to remove the unreacted 3-aminopyridine. Column chromatography and recrystallization from EtOAc afforded crystals of (I) (m.p. 472–474 K).

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: Xtal3.5 (Hall et al., 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLUTON-(C) (Spek, 1979-1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) plot of (I) with 50% probability ellipsoids.
[Figure 2] Fig. 2. The corrugated tape of N—H.·O hydrogen bonds along [100]. For clarity, the N—H···N bond is not shown. Notice the van der Waals packing of pyridyl rings between the hydrogen-bond tapes.
N-(3-Pyridyl)urea top
Crystal data top
C6H7N3ODx = 1.445 Mg m3
Mr = 137.15Melting point = 472–474 K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 4.8558 (10) ÅCell parameters from 25 reflections
b = 8.1621 (16) Åθ = 9.0–10.6°
c = 15.919 (3) ŵ = 0.10 mm1
β = 92.16 (3)°T = 293 K
V = 630.5 (2) Å3Cube, colourless
Z = 40.12 × 0.11 × 0.10 mm
F(000) = 288
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.010
Radiation source: fine-focus sealed tubeθmax = 30.0°, θmin = 2.6°
Graphite monochromatorh = 06
ω scansk = 011
2021 measured reflectionsl = 2222
1835 independent reflections3 standard reflections every 150 reflections
1362 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134All H-atom parameters refined
S = 1.08 w = 1/[σ2(Fo2) + (0.0665P)2 + 0.1436P]
where P = (Fo2 + 2Fc2)/3
1835 reflections(Δ/σ)max = 0.019
119 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C6H7N3OV = 630.5 (2) Å3
Mr = 137.15Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.8558 (10) ŵ = 0.10 mm1
b = 8.1621 (16) ÅT = 293 K
c = 15.919 (3) Å0.12 × 0.11 × 0.10 mm
β = 92.16 (3)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.010
2021 measured reflections3 standard reflections every 150 reflections
1835 independent reflections intensity decay: none
1362 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.134All H-atom parameters refined
S = 1.08Δρmax = 0.25 e Å3
1835 reflectionsΔρmin = 0.25 e Å3
119 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O90.1643 (2)0.68331 (14)0.95030 (7)0.0415 (3)
N70.1512 (3)0.82764 (15)0.86940 (8)0.0349 (3)
N100.2605 (3)0.57747 (17)0.92223 (9)0.0378 (3)
C60.0056 (3)0.97288 (16)0.85816 (8)0.0287 (3)
N40.0190 (3)1.21723 (17)0.77396 (8)0.0418 (3)
C80.0680 (3)0.69528 (16)0.91682 (8)0.0302 (3)
C50.0936 (3)1.07302 (18)0.79136 (9)0.0351 (3)
C10.2116 (3)1.02820 (19)0.90977 (9)0.0358 (3)
C30.2266 (4)1.2688 (2)0.82488 (10)0.0441 (4)
C20.3274 (3)1.1782 (2)0.89246 (10)0.0404 (4)
H50.245 (4)1.037 (2)0.7548 (12)0.044 (5)*
H10.282 (4)0.962 (2)0.9579 (12)0.050 (5)*
H70.298 (4)0.813 (2)0.8353 (11)0.042 (5)*
H20.478 (4)1.222 (3)0.9276 (12)0.054 (5)*
H30.299 (4)1.374 (2)0.8116 (12)0.047 (5)*
H80.218 (4)0.494 (3)0.9593 (13)0.057 (6)*
H90.426 (4)0.605 (2)0.9130 (12)0.045 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O90.0292 (5)0.0409 (6)0.0535 (7)0.0003 (4)0.0105 (5)0.0149 (5)
N70.0337 (6)0.0307 (6)0.0390 (6)0.0028 (5)0.0149 (5)0.0050 (5)
N100.0314 (6)0.0349 (7)0.0464 (7)0.0024 (5)0.0083 (5)0.0091 (5)
C60.0295 (6)0.0274 (6)0.0289 (6)0.0025 (5)0.0034 (5)0.0005 (5)
N40.0480 (8)0.0362 (7)0.0405 (7)0.0017 (6)0.0066 (6)0.0089 (5)
C80.0301 (6)0.0289 (6)0.0311 (6)0.0026 (5)0.0035 (5)0.0009 (5)
C50.0382 (7)0.0334 (7)0.0329 (6)0.0015 (6)0.0087 (5)0.0024 (5)
C10.0361 (7)0.0372 (7)0.0334 (7)0.0026 (6)0.0090 (5)0.0028 (6)
C30.0506 (9)0.0359 (8)0.0454 (8)0.0099 (7)0.0039 (7)0.0060 (7)
C20.0398 (8)0.0398 (8)0.0409 (8)0.0080 (6)0.0073 (6)0.0021 (6)
Geometric parameters (Å, º) top
O9—C81.2331 (17)N4—C51.331 (2)
N7—C81.3702 (17)N4—C31.337 (2)
N7—C61.3953 (18)C5—H50.97 (2)
N7—H70.886 (19)C1—C21.379 (2)
N10—C81.3459 (19)C1—H10.986 (19)
N10—H80.92 (2)C3—C21.380 (2)
N10—H90.84 (2)C3—H30.95 (2)
C6—C11.3879 (19)C2—H20.97 (2)
C6—C51.3954 (19)
C8—N7—C6126.89 (12)N4—C5—C6124.05 (14)
C8—N7—H7116.3 (12)N4—C5—H5117.0 (12)
C6—N7—H7115.9 (12)C6—C5—H5119.0 (12)
C8—N10—H8115.6 (14)C2—C1—C6118.48 (13)
C8—N10—H9117.4 (14)C2—C1—H1120.3 (12)
H8—N10—H9120 (2)C6—C1—H1121.2 (12)
C1—C6—N7125.31 (12)N4—C3—C2122.77 (15)
C1—C6—C5117.69 (13)N4—C3—H3115.1 (12)
N7—C6—C5116.95 (12)C2—C3—H3122.1 (12)
C5—N4—C3117.27 (13)C1—C2—C3119.74 (14)
O9—C8—N10122.81 (13)C1—C2—H2121.1 (12)
O9—C8—N7123.13 (13)C3—C2—H2119.2 (12)
N10—C8—N7114.05 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···N4i0.888 (19)2.156 (18)2.984 (2)155.0 (16)
N10—H8···O9ii0.92 (2)2.05 (2)2.9657 (19)173.0 (18)
N10—H9···O9iii0.842 (19)2.193 (19)2.9734 (19)154.2 (18)
C2—H2···O9iv0.97 (2)2.67 (2)3.629 (2)168.4 (16)
Symmetry codes: (i) x1/2, y1/2, z+3/2; (ii) x, y+1, z+2; (iii) x1, y, z; (iv) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC6H7N3O
Mr137.15
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)4.8558 (10), 8.1621 (16), 15.919 (3)
β (°) 92.16 (3)
V3)630.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.12 × 0.11 × 0.10
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2021, 1835, 1362
Rint0.010
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.134, 1.08
No. of reflections1835
No. of parameters119
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.25, 0.25

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, Xtal3.5 (Hall et al., 1995), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), PLUTON-(C) (Spek, 1979-1997), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···N4i0.888 (19)2.156 (18)2.984 (2)155.0 (16)
N10—H8···O9ii0.92 (2)2.05 (2)2.9657 (19)173.0 (18)
N10—H9···O9iii0.842 (19)2.193 (19)2.9734 (19)154.2 (18)
C2—H2···O9iv0.97 (2)2.67 (2)3.629 (2)168.4 (16)
Symmetry codes: (i) x1/2, y1/2, z+3/2; (ii) x, y+1, z+2; (iii) x1, y, z; (iv) x+1, y+2, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds