Download citation
Download citation
link to html
The title compound, [N3P3(C5H7N2)4(C6H5)2]CoCl2 or [CoCl2(C32H38N11P3)], possesses a five-coordinated CoII atom in an approximately trigonal-bipyramidal geometry. The N3Cl2 donor set of the metal environment comprises two non-geminal pyrazolyl N atoms, one cyclo­triphosphazene N atom, and two Cl- ions. The coordination environment and bonding features of the compound are critically compared with related metal complexes of cyclo­triphosphazene ligands.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801013253/cf6098sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801013253/cf6098Isup2.hkl
Contains datablock I

CCDC reference: 117501

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.048
  • wR factor = 0.074
  • Data-to-parameter ratio = 20.8

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry
Yellow Alert Alert Level C:
GOODF_01 Alert C The least squares goodness of fit parameter lies outside the range 0.80 <> 2.00 Goodness of fit given = 0.735
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

Pyrazolyl derivatives containing main group elements, such as boron (pyrazolylborates) and phosphorus, have received much attention in recent years due to their varying modes of interaction with transition metals (Trofimenko, 1993; Parkin, 1995; Reger, 1996; Kitajima & Tolman, 1995). The pyrazole (pz) moiety also occurs in some drug molecules such as antipyrine and celecoxib. We have been studying the coordination behaviour of pyrazolylcyclotriphosphazenes towards transition metals. Previously, we reported the synthesis and characterization of a series of transition metal complexes derived from the cyclotriphosphazene (ctp) ligands, hexakis(3,5-dimethylpyrazole-1-yl)cyclotriphosphazene (hdpctp) (Thomas, Chandrasekhar, Pal et al., 1993; Thomas, Chandrasekhar, Scott et al., 1993), 2,2-diphenyl-4,4,6,6-tetrakis(3,5-dimethylpyrazol-1-yl)cyclotriphosphazene (tdpctp) (Thomas et al., 1994; Thomas, Tharmaraj et al., 1995), and 2,2-diphenyl-4,4,6,6-tetrakis(1-pyrazolyl)cyclotriphosphazene (tpctp) (Thomas, Chandrasekhar et al., 1995). The cyclotriphosphazene interaction varies with the nature of the transition metal in the tdpctp complexes. While the Cu—Nctp distance is longer, the Ni—Nctp distance is appreciably shorter and comparable to the Ni—Npz bond length. This discrepancy has prompted us to examine the crystal structure of the present cobalt complex, [tdpctp·CoCl2], (I).

The N3 donor set afforded by the potentially multidentate ligand, tdpctp, comprises of two non-geminal pyrazolyl N atoms and one cyclotriphosphazene skeletal N atom. The coordination geometry of the Co atom is best described as a trigonal bipyramid with slight distortion. The trigonal plane of the coordination polyhedron is derived from the two Cl- ions and a cyclotriphosphazene ring N atom. The two non-geminal pyrazole N atoms fill the axial postions. For the title cobalt complex, (I), and the nickel complex [tdpctp·NiCl2], (II) (Thomas et al., 1994), the M—Nctp and M—Npz bond distances are comparable [2.106 (3) and 2.170 (3) Å for (I), and 2.079 (3) and 2.085 (4) Å for (II), respectively] and the small differences may arise from the difference in the basicity of the cyclophosphazene and pyrazole N atoms. On the other hand, for the related copper and cobalt complexes, [tdpctp·CuCl2], (III) (Thomas, Chandrasekhar, Pal et al., 1993), and [tpctp·CoCl2], (IV) (Thomas et al., 1994), these M—Nctp and M—Npz bond distances exhibit anomalous differences [2.320 (5) and 1.979 (5) Å for (III), and 2.419 (3) and 2.050 (4) Å for (IV), respectively], which may be due to the axial elongation induced by a Jahn–Teller effect in the copper complex and the resultant reduced basicity from the absence of methyl substituents on the pyrazole nucleus in the cobalt complex. Another striking difference between cobalt complexes (I) and (IV) is the Npz—Co—Npz bond angle [158.67 (13) and 114.03 (14)° for (I) and (IV), respectively]. Although both the complexes have trigonal-bipyramidal geometry, the trigonal plane in (I) is composed of the Nctp atom and two Cl- ions, where as in (IV) it consists of two Npz atoms and a Cl- ion. This difference in the spatial arrangement is mainly attributed to the enhanced steric effect exerted by the methyl substituents in the tdpctp ligand. The Cl—M—Cl angles are within the normal trigonal range for the cobalt and nickel complexes, (I) and (II) [117.15 (5) and 114.77 (6)°, respectively], and the corresponding Cl—M—Cl angle in copper complex (III) is widened [132.21 (8) Å]; probably the structure is approaching a square-based pyramidal one. This conclusion is also arrived at by comparing the trigonal distortion parameters (τ; Addison et al., 1984), for which the values are 0.56, 0.53 and 0.45 for the complexes (I), (II) and (III), respectively. In the cyclophosphazene skeleton of (I), the P—N bond associated with the coordinating N atom is elongated [1.614(3 Å] and the adjacent P—N bond is shortened [1.564 (2) Å]. Even though a similar trend has been observed for the geminal N3P3X2Y4-type compounds (where X is an electron-withdrawing group; Chandrasekhar & Thomas, 1993), as well as in the related metal complexes (II), (III) and (IV), it is found that the metal interaction reinforces the effect. The P—N—P angles are normally around 120° and that for the N atom interacting with the metal is close to the value of the tetrahedral angle [113.67 (18) Å]. This indicates that the N atom undergoes a hydridization change from sp2 to sp3 due to the metal coordination. The cyclotriphosphazene ring significantly deviates from planarity, while pyrazole groups do not show any noteworthy distortions.

Experimental top

The title compound, (I), was prepared according to the reported procedure (Thomas et al., 1994). Layering dry hexane over a dichloromethane solution of the compound yielded single crystals suitable for X-ray diffraction.

Computing details top

Data collection: MolEN (Fair, 1990); cell refinement: MolEN; data reduction: MolEN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2000); software used to prepare material for publication: PLATON.

Figures top
[Figure 1] Fig. 1. The title compound, (I), with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram of the complex viewed down the b axis.
(I) top
Crystal data top
[CoCl2(C32H38N11P3)]Dx = 1.395 Mg m3
Mr = 799.47Melting point: 221 dec K
Monoclinic, C2/cMo Kα radiation, λ = 0.71069 Å
a = 38.755 (3) ÅCell parameters from 41 reflections
b = 9.378 (3) Åθ = 5.1–18.8°
c = 22.043 (2) ŵ = 0.76 mm1
β = 108.19 (3)°T = 293 K
V = 7611 (3) Å3Prism, blue
Z = 80.46 × 0.37 × 0.29 mm
F(000) = 3304
Data collection top
Philips PW11100
diffractometer
2983 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.062
Graphite monochromatorθmax = 28.0°, θmin = 3.0°
θ–2θ scansh = 5148
Absorption correction: ψ scan
(North et al., 1968)
k = 012
Tmin = 0.673, Tmax = 0.803l = 029
9394 measured reflections1 standard reflections every 100 reflections
9174 independent reflections intensity decay: none
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.048
wR(F2) = 0.074(Δ/σ)max = 0.001
S = 0.74Δρmax = 0.33 e Å3
9174 reflectionsΔρmin = 0.36 e Å3
442 parameters
Crystal data top
[CoCl2(C32H38N11P3)]V = 7611 (3) Å3
Mr = 799.47Z = 8
Monoclinic, C2/cMo Kα radiation
a = 38.755 (3) ŵ = 0.76 mm1
b = 9.378 (3) ÅT = 293 K
c = 22.043 (2) Å0.46 × 0.37 × 0.29 mm
β = 108.19 (3)°
Data collection top
Philips PW11100
diffractometer
2983 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.062
Tmin = 0.673, Tmax = 0.8031 standard reflections every 100 reflections
9394 measured reflections intensity decay: none
9174 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 0.74Δρmax = 0.33 e Å3
9174 reflectionsΔρmin = 0.36 e Å3
442 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co0.107332 (15)0.08260 (6)0.64398 (2)0.03451 (16)
Cl10.14970 (3)0.15821 (13)0.73627 (5)0.0531 (3)
Cl20.06071 (3)0.05287 (13)0.65412 (6)0.0611 (4)
N50.14187 (8)0.0842 (4)0.62750 (14)0.0353 (9)
N40.15796 (8)0.0591 (3)0.58043 (14)0.0320 (9)
C130.18335 (11)0.1631 (5)0.5821 (2)0.0425 (12)
C140.18313 (11)0.2520 (5)0.6304 (2)0.0447 (12)
H140.19760.33250.64350.050*
C150.15756 (11)0.2015 (5)0.6568 (2)0.0379 (12)
C160.20494 (12)0.1613 (5)0.5363 (2)0.0620 (15)
H16A0.19760.08160.50790.050*
H16B0.20080.24810.51210.050*
H16C0.23030.15290.55970.050*
C170.14715 (12)0.2648 (5)0.7112 (2)0.0621 (15)
H17A0.12850.20780.71920.050*
H17B0.16800.26700.74870.050*
H17C0.13830.36010.70030.050*
P20.14202 (3)0.07504 (13)0.52784 (5)0.0301 (3)
N60.12074 (8)0.0100 (3)0.45962 (15)0.0359 (9)
N70.09186 (10)0.0971 (4)0.46213 (16)0.0538 (11)
C180.07513 (13)0.1289 (5)0.4023 (2)0.0599 (16)
C190.09191 (13)0.0699 (6)0.36077 (19)0.0630 (15)
H190.08510.08150.31670.050*
C200.12039 (12)0.0083 (5)0.3976 (2)0.0471 (13)
C210.04142 (14)0.2185 (6)0.3855 (2)0.105 (2)
H21A0.03630.24550.42380.050*
H21B0.04500.30260.36330.050*
H21C0.02140.16480.35850.050*
C220.14643 (13)0.0969 (6)0.37685 (19)0.0749 (17)
H22A0.16370.13930.41350.050*
H22B0.13350.17070.34870.050*
H22C0.15900.03810.35490.050*
N10.17303 (8)0.1696 (3)0.51749 (14)0.0321 (9)
P10.17412 (3)0.34171 (13)0.52595 (5)0.0332 (3)
N30.13776 (7)0.4112 (3)0.53470 (13)0.0317 (8)
P30.10493 (3)0.31585 (12)0.53502 (5)0.0306 (3)
N20.11321 (7)0.1508 (3)0.55672 (12)0.0269 (8)
N80.08363 (8)0.3769 (4)0.58572 (15)0.0368 (10)
N90.07925 (9)0.2867 (4)0.63302 (15)0.0379 (10)
C230.06250 (12)0.3661 (5)0.6638 (2)0.0477 (14)
C240.05621 (13)0.5042 (5)0.6393 (2)0.0606 (16)
H240.04490.57790.65410.050*
C250.06984 (12)0.5098 (5)0.5898 (2)0.0452 (13)
C260.05355 (12)0.3046 (5)0.7204 (2)0.0687 (16)
H26A0.06130.20690.72630.050*
H26B0.02780.30950.71290.050*
H26C0.06590.35830.75800.050*
C270.07229 (13)0.6285 (5)0.5467 (2)0.0753 (17)
H27A0.08430.59560.51720.050*
H27B0.08590.70570.57150.050*
H27C0.04830.66090.52340.050*
N100.07212 (8)0.3221 (3)0.46325 (14)0.0325 (9)
N110.08347 (9)0.3548 (4)0.41048 (16)0.0435 (10)
C280.05688 (13)0.3084 (5)0.3613 (2)0.0520 (14)
C290.02938 (12)0.2420 (5)0.3792 (2)0.0557 (14)
H290.00840.19990.35240.050*
C300.03948 (11)0.2512 (5)0.4435 (2)0.0448 (12)
C310.05900 (13)0.3244 (6)0.2954 (2)0.093 (2)
H31A0.08100.37350.29690.050*
H31B0.03850.37810.27000.050*
H31C0.05890.23180.27670.050*
C320.02140 (11)0.1944 (6)0.4894 (2)0.096 (2)
H32A0.03590.21680.53230.050*
H32B0.01890.09280.48470.050*
H32C0.00220.23710.48080.050*
C10.18243 (10)0.4223 (5)0.45740 (18)0.0364 (11)
C20.16117 (12)0.5368 (5)0.4268 (2)0.0543 (14)
H20.14300.57300.44180.050*
C30.16748 (13)0.5948 (6)0.3749 (2)0.0693 (16)
H30.15370.67260.35500.050*
C40.19313 (15)0.5432 (7)0.3512 (2)0.0757 (19)
H40.19650.58430.31500.050*
C50.21421 (13)0.4304 (6)0.3803 (2)0.0664 (16)
H50.23220.39520.36460.050*
C60.20845 (12)0.3699 (5)0.4329 (2)0.0518 (14)
H60.22240.29210.45240.050*
C70.21172 (10)0.3846 (4)0.59637 (19)0.0311 (11)
C80.24038 (11)0.4716 (5)0.59429 (19)0.0425 (12)
H80.24180.50570.55550.050*
C90.26703 (11)0.5068 (5)0.6514 (3)0.0593 (15)
H90.28590.56710.65060.050*
C100.26580 (12)0.4545 (6)0.7079 (2)0.0598 (16)
H100.28370.47920.74560.050*
C110.23810 (13)0.3652 (5)0.7097 (2)0.0578 (15)
H110.23760.32750.74850.050*
C120.21079 (11)0.3311 (5)0.6540 (2)0.0464 (13)
H120.19180.27190.65550.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.0360 (3)0.0357 (4)0.0297 (3)0.0022 (4)0.0071 (3)0.0041 (3)
Cl10.0518 (8)0.0597 (9)0.0373 (7)0.0056 (7)0.0010 (6)0.0052 (7)
Cl20.0524 (8)0.0583 (10)0.0779 (9)0.0117 (7)0.0278 (7)0.0034 (8)
N50.042 (2)0.036 (2)0.027 (2)0.008 (2)0.0108 (17)0.010 (2)
N40.039 (2)0.026 (2)0.033 (2)0.0096 (19)0.0127 (17)0.0018 (18)
C130.044 (3)0.029 (3)0.053 (3)0.009 (3)0.012 (3)0.005 (3)
C140.057 (3)0.027 (3)0.045 (3)0.012 (3)0.008 (3)0.010 (3)
C150.048 (3)0.028 (3)0.033 (3)0.003 (2)0.006 (2)0.001 (2)
C160.071 (4)0.041 (3)0.081 (4)0.020 (3)0.034 (3)0.005 (3)
C170.078 (4)0.055 (4)0.051 (3)0.015 (3)0.016 (3)0.012 (3)
P20.0349 (7)0.0254 (7)0.0292 (6)0.0027 (7)0.0089 (5)0.0001 (6)
N60.043 (2)0.034 (2)0.027 (2)0.010 (2)0.0057 (18)0.0031 (19)
N70.068 (3)0.050 (3)0.040 (2)0.027 (2)0.012 (2)0.006 (2)
C180.066 (4)0.066 (4)0.041 (3)0.036 (3)0.007 (3)0.010 (3)
C190.084 (4)0.068 (4)0.033 (3)0.034 (4)0.013 (3)0.015 (3)
C200.068 (4)0.045 (3)0.038 (3)0.010 (3)0.030 (3)0.007 (3)
C210.114 (5)0.136 (6)0.053 (4)0.067 (5)0.007 (4)0.000 (4)
C220.101 (4)0.098 (5)0.037 (3)0.020 (4)0.039 (3)0.015 (3)
N10.030 (2)0.029 (2)0.039 (2)0.0011 (18)0.0124 (17)0.0049 (19)
P10.0333 (7)0.0277 (7)0.0376 (7)0.0000 (6)0.0096 (6)0.0011 (6)
N30.0275 (19)0.0236 (19)0.040 (2)0.0023 (19)0.0052 (16)0.0012 (19)
P30.0298 (7)0.0298 (7)0.0312 (7)0.0061 (6)0.0079 (6)0.0025 (6)
N20.0285 (19)0.028 (2)0.0255 (18)0.0002 (17)0.0097 (15)0.0013 (17)
N80.049 (2)0.032 (2)0.033 (2)0.0124 (19)0.0172 (19)0.0042 (18)
N90.044 (2)0.043 (3)0.027 (2)0.004 (2)0.0118 (18)0.006 (2)
C230.054 (3)0.060 (4)0.035 (3)0.012 (3)0.021 (3)0.004 (3)
C240.092 (4)0.044 (3)0.061 (4)0.037 (3)0.044 (3)0.007 (3)
C250.057 (3)0.034 (3)0.049 (3)0.023 (3)0.021 (3)0.006 (3)
C260.089 (4)0.074 (4)0.052 (3)0.020 (3)0.035 (3)0.003 (3)
C270.118 (5)0.038 (4)0.077 (4)0.037 (3)0.043 (3)0.014 (3)
N100.025 (2)0.041 (2)0.026 (2)0.0004 (19)0.0002 (17)0.0069 (19)
N110.050 (2)0.051 (3)0.028 (2)0.002 (2)0.0102 (19)0.006 (2)
C280.063 (4)0.063 (4)0.026 (3)0.005 (3)0.008 (3)0.006 (3)
C290.044 (3)0.068 (4)0.042 (3)0.007 (3)0.005 (3)0.004 (3)
C300.037 (3)0.063 (3)0.035 (3)0.003 (3)0.012 (2)0.008 (3)
C310.107 (5)0.120 (5)0.043 (3)0.020 (4)0.011 (3)0.002 (4)
C320.037 (3)0.166 (6)0.075 (4)0.035 (4)0.003 (3)0.020 (4)
C10.035 (3)0.037 (3)0.037 (3)0.010 (3)0.012 (2)0.000 (3)
C20.055 (3)0.051 (4)0.063 (4)0.002 (3)0.027 (3)0.017 (3)
C30.072 (4)0.063 (4)0.068 (4)0.004 (3)0.015 (3)0.034 (4)
C40.080 (4)0.094 (6)0.059 (4)0.020 (4)0.032 (3)0.028 (4)
C50.075 (4)0.074 (4)0.064 (4)0.007 (4)0.043 (3)0.000 (4)
C60.059 (3)0.048 (4)0.053 (3)0.005 (3)0.026 (3)0.007 (3)
C70.024 (2)0.028 (3)0.039 (3)0.004 (2)0.007 (2)0.006 (2)
C80.037 (3)0.046 (3)0.043 (3)0.005 (3)0.010 (2)0.005 (3)
C90.026 (3)0.061 (4)0.085 (4)0.006 (3)0.009 (3)0.009 (3)
C100.045 (3)0.073 (5)0.050 (3)0.006 (3)0.002 (3)0.018 (3)
C110.060 (4)0.070 (4)0.038 (3)0.002 (3)0.008 (3)0.005 (3)
C120.041 (3)0.055 (3)0.043 (3)0.007 (3)0.012 (2)0.002 (3)
Geometric parameters (Å, º) top
Co—N22.106 (3)C23—C241.395 (6)
Co—N52.162 (3)C23—C261.512 (6)
Co—N92.177 (3)C24—C251.353 (5)
Co—Cl22.2760 (13)C24—H240.930
Co—Cl12.2917 (14)C25—C271.487 (6)
N5—C151.324 (5)C26—H26A0.960
N5—N41.387 (4)C26—H26B0.960
N4—C131.378 (4)C26—H26C0.960
N4—P21.692 (3)C27—H27A0.960
C13—C141.356 (5)C27—H27B0.960
C13—C161.498 (5)C27—H27C0.960
C14—C151.380 (5)N10—C301.374 (4)
C14—H140.930N10—N111.400 (4)
C15—C171.501 (5)N11—C281.315 (5)
C16—H16A0.960C28—C291.394 (5)
C16—H16B0.960C28—C311.488 (5)
C16—H16C0.960C29—C301.350 (5)
C17—H17A0.960C29—H290.930
C17—H17B0.960C30—C321.498 (5)
C17—H17C0.960C31—H31A0.960
P2—N11.567 (3)C31—H31B0.960
P2—N21.612 (3)C31—H31C0.960
P2—N61.674 (3)C32—H32A0.960
N6—C201.373 (5)C32—H32B0.960
N6—N71.400 (4)C32—H32C0.960
N7—C181.310 (5)C1—C61.375 (5)
C18—C191.392 (6)C1—C21.393 (5)
C18—C211.500 (6)C2—C31.357 (6)
C19—C201.363 (5)C2—H20.930
C19—H190.930C3—C41.349 (6)
C20—C221.485 (5)C3—H30.930
C21—H21A0.960C4—C51.368 (6)
C21—H21B0.960C4—H40.930
C21—H21C0.960C5—C61.370 (6)
C22—H22A0.960C5—H50.930
C22—H22B0.960C6—H60.930
C22—H22C0.960C7—C121.376 (5)
N1—P11.624 (3)C7—C81.390 (5)
P1—N31.618 (3)C8—C91.396 (5)
P1—C11.806 (4)C8—H80.930
P1—C71.812 (4)C9—C101.353 (6)
N3—P31.557 (3)C9—H90.930
P3—N21.622 (3)C10—C111.372 (6)
P3—N81.683 (3)C10—H100.930
P3—N101.693 (3)C11—C121.386 (5)
N8—C251.370 (5)C11—H110.930
N8—N91.394 (4)C12—H120.930
N9—C231.308 (5)
N2—Co—N579.45 (12)N9—N8—P3119.3 (3)
N2—Co—N979.90 (12)C23—N9—N8103.8 (4)
N5—Co—N9158.67 (13)C23—N9—Co139.0 (3)
N2—Co—Cl2125.08 (9)N8—N9—Co116.3 (2)
N5—Co—Cl299.48 (10)N9—C23—C24112.6 (4)
N9—Co—Cl296.72 (10)N9—C23—C26119.3 (5)
N2—Co—Cl1117.71 (8)C24—C23—C26128.1 (5)
N5—Co—Cl193.63 (9)C25—C24—C23106.4 (4)
N9—Co—Cl191.23 (9)C25—C24—H24126.8
Cl2—Co—Cl1117.15 (5)C23—C24—H24126.8
C15—N5—N4105.1 (3)C24—C25—N8106.1 (4)
C15—N5—Co137.2 (3)C24—C25—C27131.6 (4)
N4—N5—Co116.7 (3)N8—C25—C27122.3 (4)
C13—N4—N5110.2 (3)C23—C26—H26A109.5
C13—N4—P2130.5 (3)C23—C26—H26B109.5
N5—N4—P2119.0 (3)H26A—C26—H26B109.5
C14—C13—N4106.0 (4)C23—C26—H26C109.5
C14—C13—C16132.7 (4)H26A—C26—H26C109.5
N4—C13—C16121.2 (4)H26B—C26—H26C109.5
C13—C14—C15107.5 (4)C25—C27—H27A109.5
C13—C14—H14126.2C25—C27—H27B109.5
C15—C14—H14126.2H27A—C27—H27B109.5
N5—C15—C14111.2 (4)C25—C27—H27C109.5
N5—C15—C17121.4 (4)H27A—C27—H27C109.5
C14—C15—C17127.4 (4)H27B—C27—H27C109.5
C13—C16—H16A109.5C30—N10—N11109.8 (3)
C13—C16—H16B109.5C30—N10—P3128.9 (3)
H16A—C16—H16B109.5N11—N10—P3116.4 (3)
C13—C16—H16C109.5C28—N11—N10104.2 (3)
H16A—C16—H16C109.5N11—C28—C29112.7 (4)
H16B—C16—H16C109.5N11—C28—C31120.3 (4)
C15—C17—H17A109.5C29—C28—C31127.0 (5)
C15—C17—H17B109.5C30—C29—C28105.8 (4)
H17A—C17—H17B109.5C30—C29—H29127.1
C15—C17—H17C109.5C28—C29—H29127.1
H17A—C17—H17C109.5C29—C30—N10107.5 (4)
H17B—C17—H17C109.5C29—C30—C32130.1 (5)
N1—P2—N2117.74 (17)N10—C30—C32122.4 (4)
N1—P2—N6108.91 (17)C28—C31—H31A109.5
N2—P2—N6110.91 (16)C28—C31—H31B109.5
N1—P2—N4112.83 (16)H31A—C31—H31B109.5
N2—P2—N4101.93 (16)C28—C31—H31C109.5
N6—P2—N4103.50 (16)H31A—C31—H31C109.5
C20—N6—N7110.7 (3)H31B—C31—H31C109.5
C20—N6—P2133.1 (3)C30—C32—H32A109.5
N7—N6—P2114.7 (3)C30—C32—H32B109.5
C18—N7—N6104.1 (4)H32A—C32—H32B109.5
N7—C18—C19112.7 (4)C30—C32—H32C109.5
N7—C18—C21119.7 (5)H32A—C32—H32C109.5
C19—C18—C21127.6 (5)H32B—C32—H32C109.5
C20—C19—C18106.2 (4)C6—C1—C2118.7 (4)
C20—C19—H19126.9C6—C1—P1121.6 (4)
C18—C19—H19126.9C2—C1—P1119.6 (3)
C19—C20—N6106.3 (4)C3—C2—C1118.8 (4)
C19—C20—C22128.2 (4)C3—C2—H2120.6
N6—C20—C22125.5 (4)C1—C2—H2120.6
C18—C21—H21A109.5C4—C3—C2122.2 (5)
C18—C21—H21B109.5C4—C3—H3118.9
H21A—C21—H21B109.5C2—C3—H3118.9
C18—C21—H21C109.5C3—C4—C5120.0 (5)
H21A—C21—H21C109.5C3—C4—H4120.0
H21B—C21—H21C109.5C5—C4—H4120.0
C20—C22—H22A109.5C4—C5—C6119.1 (5)
C20—C22—H22B109.5C4—C5—H5120.5
H22A—C22—H22B109.5C6—C5—H5120.5
C20—C22—H22C109.5C5—C6—C1121.2 (4)
H22A—C22—H22C109.5C5—C6—H6119.4
H22B—C22—H22C109.5C1—C6—H6119.4
P2—N1—P1122.6 (2)C12—C7—C8119.7 (4)
N3—P1—N1114.96 (17)C12—C7—P1117.6 (3)
N3—P1—C1108.69 (19)C8—C7—P1122.6 (3)
N1—P1—C1108.95 (19)C7—C8—C9118.9 (4)
N3—P1—C7107.80 (17)C7—C8—H8120.6
N1—P1—C7107.72 (18)C9—C8—H8120.6
C1—P1—C7108.55 (19)C10—C9—C8121.0 (4)
P3—N3—P1120.8 (2)C10—C9—H9119.5
N3—P3—N2117.56 (17)C8—C9—H9119.5
N3—P3—N8112.24 (17)C9—C10—C11120.0 (4)
N2—P3—N8102.80 (17)C9—C10—H10120.0
N3—P3—N10110.61 (17)C11—C10—H10120.0
N2—P3—N10109.28 (16)C10—C11—C12120.2 (4)
N8—P3—N10103.16 (16)C10—C11—H11119.9
P2—N2—P3113.67 (18)C12—C11—H11119.9
P2—N2—Co120.84 (16)C7—C12—C11120.1 (4)
P3—N2—Co119.41 (16)C7—C12—H12120.0
C25—N8—N9111.2 (3)C11—C12—H12120.0
C25—N8—P3129.4 (3)

Experimental details

Crystal data
Chemical formula[CoCl2(C32H38N11P3)]
Mr799.47
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)38.755 (3), 9.378 (3), 22.043 (2)
β (°) 108.19 (3)
V3)7611 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.76
Crystal size (mm)0.46 × 0.37 × 0.29
Data collection
DiffractometerPhilips PW11100
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.673, 0.803
No. of measured, independent and
observed [I > 2σ(I)] reflections
9394, 9174, 2983
Rint0.062
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.074, 0.74
No. of reflections9174
No. of parameters442
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.36

Computer programs: MolEN (Fair, 1990), MolEN, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2000), PLATON.

Selected geometric parameters (Å, º) top
Co—N22.106 (3)P2—N21.612 (3)
Co—N52.162 (3)N1—P11.624 (3)
Co—N92.177 (3)P1—N31.618 (3)
Co—Cl22.2760 (13)N3—P31.557 (3)
Co—Cl12.2917 (14)P3—N21.622 (3)
P2—N11.567 (3)
N2—Co—N579.45 (12)N9—Co—Cl191.23 (9)
N2—Co—N979.90 (12)Cl2—Co—Cl1117.15 (5)
N5—Co—N9158.67 (13)N1—P2—N2117.74 (17)
N2—Co—Cl2125.08 (9)P2—N1—P1122.6 (2)
N5—Co—Cl299.48 (10)N3—P1—N1114.96 (17)
N9—Co—Cl296.72 (10)P3—N3—P1120.8 (2)
N2—Co—Cl1117.71 (8)N3—P3—N2117.56 (17)
N5—Co—Cl193.63 (9)P2—N2—P3113.67 (18)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds