Download citation
Download citation
link to html
In the title compound, 2C6H15N2O2+·H+·ClO4·2Cl, the two mono- and dicationic lysinium mol­ecules are held together by strong O—H...O hydrogen bonds. Both the perchlorate and chloride anions link mol­ecules 1 and 2 through the α-amino and [epsilon]-amino groups into infinite chains along the a axis. The aggregation of the hydro­philic groups is along the z = 0 plane and that of hydro­phobic is along the z = 1 \over 4 plane. Mol­ecule 1 is engaged in a zigzag (Z1) head-to-tail sequence.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801013484/ci6030sup1.cif
Contains datablocks global, lyphf

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801013484/ci6030Isup2.hkl
Contains datablock I

CCDC reference: 172218

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.009 Å
  • R factor = 0.069
  • wR factor = 0.196
  • Data-to-parameter ratio = 11.8

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry General Notes
REFLT_03 From the CIF: _diffrn_reflns_theta_max 24.96 From the CIF: _reflns_number_total 2905 Count of symmetry unique reflns 2252 Completeness (_total/calc) 129.00% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 653 Fraction of Friedel pairs measured 0.290 Are heavy atom types Z>Si present yes WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure

Comment top

Lysine is one of the four amino acids having basic side chains. The crystal structure of L-lysine monohydrochloride dihydrate (Wright & Marsh, 1962; Koetzle et al., 1972) and L-lysine semi maleate (Pratap et al., 2000) have been reported. In the present study, the analysis of lysine hydrochloride with perchloric acid, (I), was undertaken.

Both the lysinium molecules (1 and 2) in the asymmetric unit are cationic, with ε-amino groups accepting an H atom from hydrochloric acid. The H atom of the perchloric acid is liberated and bonded with the molecule 2 and as a result the perchloric acid exists as perchlorate anion. The lysinium molecules have two planar configurations, the carboxyl group and aliphatic chain terminating at the ε-amino group. The amino N atom deviates from the carboxyl plane by 0.164 (4) and 0.126 (4) Å in lysinium molecules 1 and 2, which corresponds to the twisting of the C—N bond out of the carboxyl group by -6.0 (6) and 5.7 (7)°, respectively in molecule 1 and 2. This tendency of twisting of the C—N bond is found in various amino acids (Lakshminarayanan et al., 1967). The average value of the four C—C—C angles is 112.6 and 117.1° in molecules 1 and 2, which is significantly greater than the tetrahedral value. However, the angle Cα—Cβ—Cγ of 114.0 (4) and 117.4 (8)° for both the molecules 1 and 2 are appreciably large. Similar results are found in other amino acids and peptides, and this widening might be due to the steric effect of an atom hydrogen bonded to the NH3+ group (Leung & Marsh, 1958). While molecule 1, as expected, has a fully extended conformation for the side chain [χ1 = -163.2 (6)°, χ2 = -178.2 (6)°, χ3 = 177.1 (7)° and χ4 = -177.5 (6)°], molecule 2 does not have a fully extended conformation [χ1 = 70.9 (10)°, χ2 = 179.2 (8)°, χ3 = -70.6 (14)° and χ4 = -169.8 (9)°; Pratap et al., 2000].

In the crystal, the molecules 1 and 2 are bonded through a strong O—H···O hydrogen bond between the carboxyl O atoms. Lysinium molecule 1 is engaged in a zigzag (Z1) head-to-tail sequence since N11—H11i···O1i [symmetry code: (i) x - 1/2, -y + 3/2, -z] connects two 21-related amino acids (Vijayan, 1988). The perchlorate anion links through the ε-amino group of four lysinium molecules extending in an infinite chain along the a axis. Both the chloride anions link the lysinium molecules 1 and 2 through the α-amino and ε-amino groups into infinite chains along the a axis. The Cl2 atom, as acceptor, links (i) two lysinium molecules 1, through their α-amino groups and (ii) the two lysinium molecules 2, through the ε-amino groups. Similarly the Cl3 atom links (i) the two lysinium molecules 1 through the ε-amino groups and (ii) the two lysinium molecules 2 through the α-amino groups. The hydrophobic groups aggregate along z = 1/4 plane and the hydrophilic groups along z = 0 plane.

Experimental top

The title compound was crystallized in an aqueous solution from a 2:1 stoichiometric ratio of L-lysine hydrochloride and perchloric acid. Colorless transparent and plate-like crystals were grown.

Refinement top

All H atoms were fixed by geometric constraints and were allowed to ride on the preceding atom. Intensities for 225 Friedel pairs were measured, resulting in a Flack parameter of 0.04 (15). Atoms C23, C24, C25 and C26 showed large displacement amplitudes with unusual C—C distances, indicating disorder. Since a satisfactory disorder model was not found, these atoms were refined by constraining the bond distances involving them.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CAD-4 Softwar; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1999); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The structure of (I) showing the atomic numbering scheme and 50% probability displacement ellipsoids (Johnson, 1976).
[Figure 2] Fig. 2. Packing of the molecules viewed down the a axis.
Hydrogen bis[L-lysinium(2+)] dichloride perchlorate top
Crystal data top
C6H15N2O2+·C6H16N2O22+·ClO4·2ClDx = 1.415 Mg m3
Dm = 1.413 Mg m3
Dm measured by flotation in a mixture of carbon tetrachloride and xylene
Mr = 465.76Mo Kα radiation, λ = 0.7107 Å
Orthorhombic, P212121Cell parameters from 25 reflections
a = 5.0264 (6) Åθ = 11.3–13.2°
b = 20.822 (2) ŵ = 0.46 mm1
c = 20.897 (2) ÅT = 293 K
V = 2187.1 (4) Å3Plates, colorless
Z = 40.5 × 0.4 × 0.25 mm
F(000) = 984
Data collection top
Enraf-Nonius sealed tube
diffractometer
2427 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.069
Graphite monochromatorθmax = 25.0°, θmin = 2.0°
ω–2θ scansh = 15
Absorption correction: ψ scan
(North et al., 1968)
k = 124
Tmin = 0.859, Tmax = 0.891l = 224
3207 measured reflections3 standard reflections every 60 min
2905 independent reflections intensity decay: none
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.069 w = 1/[σ2(Fo2) + (0.1519P)2 + 0.4185P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.196(Δ/σ)max = 0.003
S = 1.06Δρmax = 0.66 e Å3
2905 reflectionsΔρmin = 0.63 e Å3
246 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
3 restraintsExtinction coefficient: 0.007 (2)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.04 (15)
Crystal data top
C6H15N2O2+·C6H16N2O22+·ClO4·2ClV = 2187.1 (4) Å3
Mr = 465.76Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.0264 (6) ŵ = 0.46 mm1
b = 20.822 (2) ÅT = 293 K
c = 20.897 (2) Å0.5 × 0.4 × 0.25 mm
Data collection top
Enraf-Nonius sealed tube
diffractometer
2427 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.069
Tmin = 0.859, Tmax = 0.8913 standard reflections every 60 min
3207 measured reflections intensity decay: none
2905 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.069H-atom parameters constrained
wR(F2) = 0.196Δρmax = 0.66 e Å3
S = 1.06Δρmin = 0.63 e Å3
2905 reflectionsAbsolute structure: Flack (1983)
246 parametersAbsolute structure parameter: 0.04 (15)
3 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.0066 (3)0.33860 (6)0.06838 (6)0.0421 (4)
O10.2886 (10)0.3365 (2)0.0633 (2)0.0645 (13)
O20.0674 (14)0.3478 (3)0.1339 (2)0.0854 (18)
O30.0871 (12)0.3909 (2)0.0316 (3)0.0768 (16)
O40.0980 (12)0.2793 (2)0.0460 (2)0.0676 (14)
Cl20.0394 (3)0.56229 (6)0.07556 (6)0.0423 (4)
Cl30.9666 (3)0.59640 (7)0.39898 (8)0.0517 (4)
O1A0.9527 (8)0.74050 (17)0.04852 (17)0.0439 (9)
O1B0.8200 (10)0.7997 (2)0.1309 (2)0.0629 (14)
C110.7972 (11)0.7542 (2)0.0923 (3)0.0351 (12)
C120.5500 (11)0.7139 (2)0.1012 (2)0.0328 (11)
H120.39470.74230.09940.039*
N110.5304 (10)0.66688 (18)0.04750 (19)0.0380 (10)
H11A0.53260.68780.01040.057*
H11B0.37930.64490.05100.057*
H11C0.66770.63990.04920.057*
C130.5451 (14)0.6777 (2)0.1654 (2)0.0382 (12)
H13A0.41260.64400.16300.046*
H13B0.71680.65750.17190.046*
C140.4845 (18)0.7196 (3)0.2220 (2)0.0540 (16)
H14A0.31010.73870.21630.065*
H14B0.61370.75410.22380.065*
C150.4894 (16)0.6829 (3)0.2855 (2)0.0474 (14)
H15A0.35300.65000.28520.057*
H15B0.66060.66220.29080.057*
C160.4418 (17)0.7279 (3)0.3394 (2)0.0524 (17)
H16A0.57330.76200.33770.063*
H16B0.26780.74740.33420.063*
N120.4549 (11)0.6967 (2)0.40304 (19)0.0417 (11)
H12A0.42540.72580.43340.063*
H12B0.61530.67940.40860.063*
H12C0.33180.66600.40540.063*
O2A0.8894 (9)0.4279 (2)0.4440 (2)0.0543 (11)
O2B0.7688 (11)0.3629 (2)0.3642 (3)0.0720 (15)
H2B0.91360.34590.37050.108*
C210.7396 (12)0.4105 (3)0.4026 (3)0.0434 (14)
C220.4759 (13)0.4451 (3)0.3905 (3)0.0466 (13)
H220.33710.41620.40650.056*
N210.4670 (10)0.50247 (19)0.43230 (19)0.0393 (10)
H21A0.31470.52330.42600.059*
H21B0.60290.52820.42290.059*
H21C0.47810.49030.47310.059*
C230.4111 (18)0.4566 (5)0.3217 (3)0.081 (3)
H23A0.38250.41520.30150.097*
H23B0.24390.47980.31980.097*
C240.605 (2)0.4917 (6)0.2837 (4)0.110 (4)
H24A0.77260.46880.28610.132*
H24B0.63160.53330.30360.132*
C250.542 (2)0.5027 (4)0.2138 (3)0.088 (3)
H25A0.36540.52150.21130.105*
H25B0.66580.53450.19770.105*
C260.548 (2)0.4481 (4)0.1706 (4)0.090 (3)
H26A0.40170.41970.18090.108*
H26B0.71240.42460.17760.108*
N220.5305 (11)0.4663 (2)0.1010 (3)0.0574 (13)
H22A0.53440.43100.07710.086*
H22B0.66740.49140.09080.086*
H22C0.37910.48740.09400.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0409 (8)0.0416 (6)0.0438 (7)0.0021 (7)0.0018 (7)0.0010 (5)
O10.043 (3)0.068 (3)0.082 (3)0.004 (2)0.001 (3)0.007 (3)
O20.081 (4)0.120 (4)0.055 (3)0.020 (4)0.011 (3)0.026 (3)
O30.074 (4)0.063 (3)0.093 (4)0.019 (3)0.002 (3)0.025 (3)
O40.076 (4)0.057 (2)0.070 (3)0.016 (3)0.007 (3)0.016 (2)
Cl20.0366 (7)0.0418 (6)0.0486 (7)0.0002 (6)0.0027 (6)0.0024 (5)
Cl30.0318 (7)0.0417 (6)0.0818 (10)0.0003 (6)0.0041 (8)0.0018 (6)
O1A0.034 (2)0.054 (2)0.0436 (18)0.009 (2)0.0037 (19)0.0024 (17)
O1B0.059 (3)0.049 (2)0.081 (3)0.027 (2)0.021 (3)0.024 (2)
C110.032 (3)0.035 (3)0.038 (2)0.001 (2)0.002 (2)0.008 (2)
C120.030 (3)0.033 (2)0.035 (2)0.000 (2)0.001 (3)0.0008 (19)
N110.039 (3)0.041 (2)0.0341 (19)0.007 (2)0.000 (2)0.0036 (17)
C130.043 (3)0.034 (2)0.038 (2)0.002 (3)0.003 (3)0.0038 (19)
C140.070 (5)0.052 (3)0.040 (2)0.001 (4)0.011 (4)0.001 (2)
C150.058 (4)0.044 (3)0.040 (3)0.003 (3)0.000 (3)0.000 (2)
C160.073 (5)0.044 (3)0.041 (3)0.001 (3)0.002 (3)0.004 (2)
N120.045 (3)0.044 (2)0.0361 (19)0.001 (2)0.002 (2)0.0031 (18)
O2A0.037 (2)0.072 (3)0.054 (2)0.011 (2)0.005 (2)0.012 (2)
O2B0.046 (3)0.056 (3)0.114 (4)0.019 (2)0.008 (3)0.023 (3)
C210.032 (3)0.043 (3)0.055 (3)0.002 (3)0.010 (3)0.016 (3)
C220.037 (3)0.047 (3)0.056 (3)0.008 (3)0.000 (3)0.001 (2)
N210.031 (2)0.043 (2)0.043 (2)0.009 (2)0.003 (2)0.0058 (18)
C230.074 (6)0.112 (6)0.055 (4)0.043 (6)0.009 (4)0.003 (4)
C240.082 (7)0.123 (8)0.125 (8)0.006 (7)0.018 (7)0.037 (7)
C250.097 (7)0.086 (5)0.081 (5)0.016 (6)0.001 (6)0.026 (4)
C260.066 (5)0.070 (5)0.134 (8)0.003 (5)0.011 (6)0.042 (5)
N220.039 (3)0.053 (3)0.080 (3)0.005 (3)0.010 (3)0.012 (3)
Geometric parameters (Å, º) top
Cl1—O31.413 (5)N12—H12C0.89
Cl1—O11.422 (5)O2A—C211.203 (7)
Cl1—O41.421 (4)O2B—C211.284 (8)
Cl1—O21.431 (5)O2B—H2B0.82
O1A—C111.236 (7)C21—C221.529 (8)
O1B—C111.250 (7)C22—N211.481 (7)
C11—C121.511 (8)C22—C231.493 (9)
C12—N111.492 (6)C22—H220.98
C12—C131.539 (6)N21—H21A0.89
C12—H120.98N21—H21B0.89
N11—H11A0.89N21—H21C0.89
N11—H11B0.89C23—C241.454 (9)
N11—H11C0.89C23—H23A0.97
C13—C141.501 (7)C23—H23B0.97
C13—H13A0.97C24—C251.513 (9)
C13—H13B0.97C24—H24A0.97
C14—C151.530 (7)C24—H24B0.97
C14—H14A0.97C25—C261.452 (9)
C14—H14B0.97C25—H25A0.97
C15—C161.485 (7)C25—H25B0.97
C15—H15A0.97C26—N221.506 (10)
C15—H15B0.97C26—H26A0.97
C16—N121.482 (6)C26—H26B0.97
C16—H16A0.97N22—H22A0.89
C16—H16B0.97N22—H22B0.89
N12—H12A0.89N22—H22C0.89
N12—H12B0.89
O3—Cl1—O1108.4 (3)H12A—N12—H12C109.5
O3—Cl1—O4111.5 (3)H12B—N12—H12C109.5
O1—Cl1—O4108.5 (3)C21—O2B—H2B109.5
O3—Cl1—O2109.2 (4)O2A—C21—O2B127.7 (6)
O1—Cl1—O2109.6 (4)O2A—C21—C22121.3 (5)
O4—Cl1—O2109.5 (3)O2B—C21—C22111.0 (6)
O1A—C11—O1B126.5 (5)N21—C22—C23115.6 (5)
O1A—C11—C12118.9 (5)N21—C22—C21108.0 (5)
O1B—C11—C12114.6 (5)C23—C22—C21115.1 (5)
N11—C12—C11109.0 (4)N21—C22—H22105.8
N11—C12—C13109.5 (4)C23—C22—H22105.8
C11—C12—C13113.1 (4)C21—C22—H22105.8
N11—C12—H12108.4C22—N21—H21A109.5
C11—C12—H12108.4C22—N21—H21B109.5
C13—C12—H12108.4H21A—N21—H21B109.5
C12—N11—H11A109.5C22—N21—H21C109.5
C12—N11—H11B109.5H21A—N21—H21C109.5
H11A—N11—H11B109.5H21B—N21—H21C109.5
C12—N11—H11C109.5C24—C23—C22117.4 (8)
H11A—N11—H11C109.5C24—C23—H23A107.9
H11B—N11—H11C109.5C22—C23—H23A107.9
C14—C13—C12114.0 (4)C24—C23—H23B107.9
C14—C13—H13A108.7C22—C23—H23B107.9
C12—C13—H13A108.7H23A—C23—H23B107.2
C14—C13—H13B108.7C23—C24—C25117.6 (9)
C12—C13—H13B108.7C23—C24—H24A107.9
H13A—C13—H13B107.6C25—C24—H24A107.9
C13—C14—C15113.0 (5)C23—C24—H24B107.9
C13—C14—H14A109.0C25—C24—H24B107.9
C15—C14—H14A109.0H24A—C24—H24B107.2
C13—C14—H14B109.0C26—C25—C24118.4 (8)
C15—C14—H14B109.0C26—C25—H25A107.7
H14A—C14—H14B107.8C24—C25—H25A107.7
C16—C15—C14110.0 (5)C26—C25—H25B107.7
C16—C15—H15A109.7C24—C25—H25B107.7
C14—C15—H15A109.7H25A—C25—H25B107.1
C16—C15—H15B109.7C25—C26—N22113.7 (6)
C14—C15—H15B109.7C25—C26—H26A108.8
H15A—C15—H15B108.2N22—C26—H26A108.8
N12—C16—C15113.4 (4)C25—C26—H26B108.8
N12—C16—H16A108.9N22—C26—H26B108.8
C15—C16—H16A108.9H26A—C26—H26B107.7
N12—C16—H16B108.9C26—N22—H22A109.5
C15—C16—H16B108.9C26—N22—H22B109.5
H16A—C16—H16B107.7H22A—N22—H22B109.5
C16—N12—H12A109.5C26—N22—H22C109.5
C16—N12—H12B109.5H22A—N22—H22C109.5
H12A—N12—H12B109.5H22B—N22—H22C109.5
C16—N12—H12C109.5
O1A—C11—C12—N116.0 (6)O2A—C21—C22—N215.7 (7)
O1B—C11—C12—N11173.1 (5)O2B—C21—C22—N21175.0 (5)
O1A—C11—C12—C13116.0 (5)O2A—C21—C22—C23136.5 (7)
O1B—C11—C12—C1364.9 (6)O2B—C21—C22—C2344.3 (8)
N11—C12—C13—C14163.2 (6)N21—C22—C23—C2470.9 (10)
C11—C12—C13—C1475.0 (7)C21—C22—C23—C2456.0 (10)
C12—C13—C14—C15178.2 (6)C22—C23—C24—C25179.2 (8)
C13—C14—C15—C16177.1 (7)C23—C24—C25—C2670.6 (14)
C14—C15—C16—N12177.5 (6)C24—C25—C26—N22169.8 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2B—H2B···O1Bi0.821.652.453 (7)166
N11—H11A···O1Aii0.891.982.810 (5)156
N11—H11B···Cl20.892.483.343 (5)164
N11—H11C···Cl2iii0.892.533.410 (5)170
N12—H12A···O4iv0.892.363.041 (6)134
N12—H12A···O1v0.892.413.109 (7)136
N12—H12B···Cl30.892.483.314 (5)156
N12—H12C···Cl3vi0.892.343.223 (5)170
N21—H21A···Cl3vi0.892.393.261 (4)168
N21—H21B···Cl30.892.373.258 (5)179
N21—H21C···Cl2iv0.892.413.284 (4)168
N22—H22A···O1iii0.892.182.958 (6)146
N22—H22A···O30.892.583.088 (8)117
N22—H22B···Cl2iii0.892.403.289 (6)174
N22—H22C···Cl20.892.343.220 (5)168
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x1/2, y+3/2, z; (iii) x+1, y, z; (iv) x+1/2, y+1, z+1/2; (v) x, y+1/2, z+1/2; (vi) x1, y, z.

Experimental details

Crystal data
Chemical formulaC6H15N2O2+·C6H16N2O22+·ClO4·2Cl
Mr465.76
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)5.0264 (6), 20.822 (2), 20.897 (2)
V3)2187.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.5 × 0.4 × 0.25
Data collection
DiffractometerEnraf-Nonius sealed tube
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.859, 0.891
No. of measured, independent and
observed [I > 2σ(I)] reflections
3207, 2905, 2427
Rint0.069
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.196, 1.06
No. of reflections2905
No. of parameters246
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.66, 0.63
Absolute structureFlack (1983)
Absolute structure parameter0.04 (15)

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, CAD-4 Softwar, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1999), SHELXL97.

Selected geometric parameters (Å, º) top
O1A—C111.236 (7)O2A—C211.203 (7)
O1B—C111.250 (7)O2B—C211.284 (8)
O1A—C11—C12—N116.0 (6)O2A—C21—C22—N215.7 (7)
N11—C12—C13—C14163.2 (6)N21—C22—C23—C2470.9 (10)
C12—C13—C14—C15178.2 (6)C22—C23—C24—C25179.2 (8)
C13—C14—C15—C16177.1 (7)C23—C24—C25—C2670.6 (14)
C14—C15—C16—N12177.5 (6)C24—C25—C26—N22169.8 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2B—H2B···O1Bi0.821.652.453 (7)165.8
N11—H11A···O1Aii0.891.982.810 (5)155.6
N11—H11B···Cl20.892.483.343 (5)164.3
N11—H11C···Cl2iii0.892.533.410 (5)169.5
N12—H12A···O4iv0.892.363.041 (6)133.5
N12—H12A···O1v0.892.413.109 (7)136.1
N12—H12B···Cl30.892.483.314 (5)156.3
N12—H12C···Cl3vi0.892.343.223 (5)170.1
N21—H21A···Cl3vi0.892.393.261 (4)167.6
N21—H21B···Cl30.892.373.258 (5)179.4
N21—H21C···Cl2iv0.892.413.284 (4)168.0
N22—H22A···O1iii0.892.182.958 (6)146.1
N22—H22A···O30.892.583.088 (8)117.1
N22—H22B···Cl2iii0.892.403.289 (6)173.6
N22—H22C···Cl20.892.343.220 (5)167.7
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x1/2, y+3/2, z; (iii) x+1, y, z; (iv) x+1/2, y+1, z+1/2; (v) x, y+1/2, z+1/2; (vi) x1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds