Download citation
Download citation
link to html
In the title compound, C18H14FN, the quinoline and benzene rings are essentially planar, and the two aromatic ring planes make a dihedral angle of 46.3 (1)°. The cyclo­heptane ring adopts a half-chair conformation.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801013046/cv6051sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801013046/cv6051Isup2.hkl
Contains datablock I

CCDC reference: 172207

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.054
  • wR factor = 0.148
  • Data-to-parameter ratio = 18.2

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

Polycyclic aromatic hydrocarbons (PAHs) are well known enviromental pollutants (Dong et al., 1977; Harvey, 1991) and have been intensively investigated in carcinogenic studies (Harvey, 1991). Interestingly, the introduction of one F atom at a particular position has a significant effect on the carcinogenic activity of the PAHs (Harvey & Cortez, 1997; Zajc, 1999). Pan et al. (2001) focus on the synthesis, characterization and bioactivity of fluoro-polycyclic azaarenes (PAAs) in order to extend the carcinogenic studies, and have isolated the title compound, (I). An X-ray structure determination of (I) was undertaken to establish the conformation of the structure.

In compound (I), the bond lengths and angles show normal values and agree with those observed in a chloro-derivative of the same structure (Ray et al., 1998). The cycloheptane ring adopts a half-chair conformation with a twofold axis through the C10 atom and bisecting the C17—C18 bond.

This is confirmed by its puckering parameters (Cremer & Pople, 1975) Q2 = 1.032 (2) Å, ϕ2 = 65.4 (1)°, Q3 = 0.122 (2) Å, ϕ3 = 324.4 (9)° and QT = 1.039 (2) Å. In the quinoline ring, the C2—C3, C4—C5 and C7—C8 bond distances are slightly shorter due to their localized double-bond character, while the N1—C5 bond shows partial double-bond character (Allen et al., 1987). The quinoline and benzene rings are essentially planar to within ±0.007 (2) Å and to within ±0.005 (2) Å, respectively, while atom F1 deviates slightly from the quinoline plane by -0.018 (1) Å. The quinoline and benzene ring planes make a dihedral angle of 46.3 (1)°.

Experimental top

The treatment of Vilsmeir-Haack reagent (phosphoryl chloride/dimethylformamide) with benzosuberone produced the β-chlorovinylaldehyde as an oil. This product was treated with p-fluoroaniline (freshly distilled) to afford the corresponding anil derivative as red solids. After heating the anil derivative at 503–513 K for 5 min, the title compound, (I), was obtained. Single crystals suitable for X-ray structure determination were obtained by slow evaporation from a chloroform–petroleum ether solution.

Refinement top

After checking their presence in the difference map, all H atoms were geometrically fixed and allowed to ride on their attached atoms.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. The structure of title compound showing 50% probability displacement ellipsoids with the atom-numbering scheme.
10-fluoro-6,7-dihydro-5H-benzo[6,7]cyclohepta[1,2-b]quinoline top
Crystal data top
C18H14FNF(000) = 552
Mr = 263.30Dx = 1.288 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.4871 (2) ÅCell parameters from 4222 reflections
b = 10.0561 (2) Åθ = 2.4–28.3°
c = 16.0181 (1) ŵ = 0.08 mm1
β = 96.536 (1)°T = 293 K
V = 1358.21 (4) Å3Block, colourless
Z = 40.48 × 0.44 × 0.28 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
1784 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.071
Graphite monochromatorθmax = 28.3°, θmin = 2.4°
Detector resolution: 8.33 pixels mm-1h = 611
ω scansk = 1310
9310 measured reflectionsl = 1920
3305 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.148 w = 1/[σ2(Fo2) + (0.0688P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.90(Δ/σ)max < 0.001
3305 reflectionsΔρmax = 0.28 e Å3
182 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.046 (4)
Crystal data top
C18H14FNV = 1358.21 (4) Å3
Mr = 263.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.4871 (2) ŵ = 0.08 mm1
b = 10.0561 (2) ÅT = 293 K
c = 16.0181 (1) Å0.48 × 0.44 × 0.28 mm
β = 96.536 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
1784 reflections with I > 2σ(I)
9310 measured reflectionsRint = 0.071
3305 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 0.90Δρmax = 0.28 e Å3
3305 reflectionsΔρmin = 0.19 e Å3
182 parameters
Special details top

Experimental. The data collection covered over a hemisphere of reciprocal space by a combination of three sets of exposures; each set had a different ϕ angle (0, 88 and 180°) for the crystal and each exposure of 10 s covered 0.3° in ω. The crystal-to-detector distance was 4 cm and the detector swing angle was -35°. Crystal decay was monitored by repeating fifty initial frames at the end of data collection and analysing the intensity of duplicate reflections, and was found to be negligible.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wRand goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. andis not relevant to the choice of reflections for refinement. R-factorsbased on F2 are statistically about twice as large as those based on F, andR– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.43909 (15)0.30774 (14)0.08522 (8)0.0431 (4)
F10.05440 (16)0.64353 (14)0.12711 (9)0.1028 (5)
C10.31395 (18)0.38900 (17)0.09694 (10)0.0415 (4)
C20.2918 (2)0.50699 (19)0.04944 (11)0.0529 (5)
H2A0.36100.52760.01030.064*
C30.1703 (2)0.5908 (2)0.06039 (13)0.0623 (5)
H3A0.15630.66900.02940.075*
C40.0676 (2)0.5579 (2)0.11849 (13)0.0633 (6)
C50.0823 (2)0.4478 (2)0.16631 (12)0.0599 (5)
H5A0.01120.43030.20500.072*
C60.20792 (18)0.35916 (18)0.15651 (10)0.0434 (4)
C70.23437 (19)0.24116 (18)0.20343 (10)0.0488 (4)
H7A0.16690.21900.24310.059*
C80.35752 (18)0.15893 (18)0.19145 (10)0.0448 (4)
C90.3929 (2)0.0348 (2)0.24297 (11)0.0581 (5)
H9A0.33000.03590.28990.070*
H9B0.50370.03580.26580.070*
C100.3588 (2)0.0935 (2)0.19359 (12)0.0633 (6)
H10A0.24530.10910.18640.076*
H10B0.40840.16710.22580.076*
C110.4192 (2)0.09067 (19)0.10699 (11)0.0546 (5)
H11A0.42510.18120.08670.066*
H11B0.34290.04330.06820.066*
C120.5794 (2)0.02609 (18)0.10638 (10)0.0459 (4)
C130.7114 (2)0.1009 (2)0.09205 (11)0.0565 (5)
H13A0.70120.19240.08490.068*
C140.8571 (2)0.0420 (2)0.08821 (12)0.0637 (6)
H14A0.94430.09390.07930.076*
C150.8736 (2)0.0940 (2)0.09765 (12)0.0612 (6)
H15A0.97170.13390.09490.073*
C160.7436 (2)0.1707 (2)0.11124 (11)0.0524 (5)
H16A0.75460.26230.11730.063*
C170.59613 (18)0.11180 (18)0.11594 (10)0.0436 (4)
C180.45825 (17)0.19700 (17)0.12975 (9)0.0406 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0447 (8)0.0424 (9)0.0433 (8)0.0014 (6)0.0100 (6)0.0003 (6)
F10.1134 (11)0.0875 (11)0.1180 (11)0.0544 (8)0.0588 (9)0.0191 (8)
C10.0422 (9)0.0425 (10)0.0404 (9)0.0014 (7)0.0065 (7)0.0038 (7)
C20.0567 (11)0.0495 (12)0.0555 (11)0.0034 (8)0.0189 (8)0.0040 (9)
C30.0727 (13)0.0471 (12)0.0703 (13)0.0107 (9)0.0221 (10)0.0055 (9)
C40.0693 (13)0.0565 (14)0.0682 (13)0.0229 (10)0.0253 (10)0.0016 (10)
C50.0595 (12)0.0668 (15)0.0577 (12)0.0097 (9)0.0258 (9)0.0008 (10)
C60.0441 (9)0.0461 (11)0.0412 (9)0.0010 (7)0.0101 (7)0.0042 (7)
C70.0501 (10)0.0594 (12)0.0389 (9)0.0046 (8)0.0137 (7)0.0026 (8)
C80.0469 (10)0.0524 (11)0.0349 (8)0.0026 (8)0.0036 (7)0.0014 (7)
C90.0615 (12)0.0689 (14)0.0446 (10)0.0080 (10)0.0085 (8)0.0185 (9)
C100.0665 (12)0.0562 (13)0.0676 (13)0.0016 (9)0.0097 (10)0.0257 (10)
C110.0596 (11)0.0447 (11)0.0576 (11)0.0024 (8)0.0017 (9)0.0050 (8)
C120.0519 (11)0.0483 (11)0.0361 (9)0.0063 (8)0.0010 (7)0.0064 (7)
C130.0683 (12)0.0496 (12)0.0507 (11)0.0153 (9)0.0032 (9)0.0054 (8)
C140.0555 (12)0.0746 (16)0.0610 (13)0.0232 (10)0.0065 (9)0.0056 (11)
C150.0429 (10)0.0796 (16)0.0608 (12)0.0039 (9)0.0045 (9)0.0002 (10)
C160.0501 (11)0.0566 (12)0.0504 (11)0.0027 (8)0.0055 (8)0.0024 (8)
C170.0442 (9)0.0496 (11)0.0364 (9)0.0033 (7)0.0015 (7)0.0008 (7)
C180.0391 (9)0.0462 (11)0.0360 (8)0.0024 (7)0.0026 (7)0.0014 (7)
Geometric parameters (Å, º) top
N1—C181.323 (2)C9—H9B0.9700
N1—C11.370 (2)C10—C111.533 (3)
F1—C41.366 (2)C10—H10A0.9700
C1—C21.411 (2)C10—H10B0.9700
C1—C61.416 (2)C11—C121.508 (2)
C2—C31.358 (3)C11—H11A0.9700
C2—H2A0.9300C11—H11B0.9700
C3—C41.385 (3)C12—C131.389 (2)
C3—H3A0.9300C12—C171.400 (2)
C4—C51.344 (3)C13—C141.379 (3)
C5—C61.412 (2)C13—H13A0.9300
C5—H5A0.9300C14—C151.381 (3)
C6—C71.409 (2)C14—H14A0.9300
C7—C81.363 (2)C15—C161.384 (2)
C7—H7A0.9300C15—H15A0.9300
C8—C181.431 (2)C16—C171.394 (2)
C8—C91.507 (2)C16—H16A0.9300
C9—C101.524 (3)C17—C181.487 (2)
C9—H9A0.9700
C18—N1—C1118.55 (13)C9—C10—H10A109.0
N1—C1—C2119.06 (14)C11—C10—H10A109.0
N1—C1—C6121.87 (15)C9—C10—H10B109.0
C2—C1—C6119.06 (15)C11—C10—H10B109.0
C3—C2—C1120.58 (16)H10A—C10—H10B107.8
C3—C2—H2A119.7C12—C11—C10114.12 (15)
C1—C2—H2A119.7C12—C11—H11A108.7
C2—C3—C4118.89 (19)C10—C11—H11A108.7
C2—C3—H3A120.6C12—C11—H11B108.7
C4—C3—H3A120.6C10—C11—H11B108.7
C5—C4—F1118.93 (16)H11A—C11—H11B107.6
C5—C4—C3123.73 (17)C13—C12—C17118.71 (16)
F1—C4—C3117.34 (18)C13—C12—C11120.82 (18)
C4—C5—C6118.59 (16)C17—C12—C11120.39 (15)
C4—C5—H5A120.7C14—C13—C12121.26 (19)
C6—C5—H5A120.7C14—C13—H13A119.4
C7—C6—C5123.28 (15)C12—C13—H13A119.4
C7—C6—C1117.58 (15)C13—C14—C15120.03 (17)
C5—C6—C1119.14 (16)C13—C14—H14A120.0
C8—C7—C6120.92 (14)C15—C14—H14A120.0
C8—C7—H7A119.5C14—C15—C16119.75 (17)
C6—C7—H7A119.5C14—C15—H15A120.1
C7—C8—C18117.58 (16)C16—C15—H15A120.1
C7—C8—C9122.21 (15)C15—C16—C17120.58 (18)
C18—C8—C9120.16 (15)C15—C16—H16A119.7
C8—C9—C10113.76 (14)C17—C16—H16A119.7
C8—C9—H9A108.8C16—C17—C12119.66 (15)
C10—C9—H9A108.8C16—C17—C18119.32 (16)
C8—C9—H9B108.8C12—C17—C18121.01 (14)
C10—C9—H9B108.8N1—C18—C8123.47 (14)
H9A—C9—H9B107.7N1—C18—C17117.09 (13)
C9—C10—C11112.99 (15)C8—C18—C17119.40 (15)
C18—N1—C1—C2179.63 (15)C10—C11—C12—C13111.62 (18)
C18—N1—C1—C61.6 (2)C10—C11—C12—C1771.7 (2)
N1—C1—C2—C3179.02 (17)C17—C12—C13—C140.8 (2)
C6—C1—C2—C30.2 (3)C11—C12—C13—C14177.52 (16)
C1—C2—C3—C40.6 (3)C12—C13—C14—C150.8 (3)
C2—C3—C4—C51.1 (3)C13—C14—C15—C160.2 (3)
C2—C3—C4—F1179.18 (19)C14—C15—C16—C170.3 (3)
F1—C4—C5—C6179.46 (17)C15—C16—C17—C120.3 (2)
C3—C4—C5—C60.8 (3)C15—C16—C17—C18179.40 (16)
C4—C5—C6—C7179.89 (18)C13—C12—C17—C160.2 (2)
C4—C5—C6—C10.0 (3)C11—C12—C17—C16176.97 (14)
N1—C1—C6—C70.6 (2)C13—C12—C17—C18178.82 (14)
C2—C1—C6—C7179.42 (16)C11—C12—C17—C182.1 (2)
N1—C1—C6—C5179.26 (15)C1—N1—C18—C81.8 (2)
C2—C1—C6—C50.5 (2)C1—N1—C18—C17179.48 (13)
C5—C6—C7—C8179.95 (17)C7—C8—C18—N11.0 (2)
C1—C6—C7—C80.2 (2)C9—C8—C18—N1176.58 (15)
C6—C7—C8—C180.0 (2)C7—C8—C18—C17178.66 (15)
C6—C7—C8—C9177.53 (16)C9—C8—C18—C171.1 (2)
C7—C8—C9—C10110.31 (19)C16—C17—C18—N144.5 (2)
C18—C8—C9—C1072.2 (2)C12—C17—C18—N1134.56 (16)
C8—C9—C10—C1144.4 (2)C16—C17—C18—C8133.33 (17)
C9—C10—C11—C1240.5 (2)C12—C17—C18—C847.6 (2)

Experimental details

Crystal data
Chemical formulaC18H14FN
Mr263.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.4871 (2), 10.0561 (2), 16.0181 (1)
β (°) 96.536 (1)
V3)1358.21 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.48 × 0.44 × 0.28
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9310, 3305, 1784
Rint0.071
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.148, 0.90
No. of reflections3305
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.19

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXTL (Sheldrick, 1997), SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Selected geometric parameters (Å, º) top
N1—C181.323 (2)C5—C61.412 (2)
N1—C11.370 (2)C6—C71.409 (2)
F1—C41.366 (2)C7—C81.363 (2)
C1—C21.411 (2)C8—C181.431 (2)
C1—C61.416 (2)C8—C91.507 (2)
C2—C31.358 (3)C12—C171.400 (2)
C3—C41.385 (3)C17—C181.487 (2)
C4—C51.344 (3)
C18—N1—C1118.55 (13)C9—C10—C11112.99 (15)
C2—C1—C6119.06 (15)C16—C17—C12119.66 (15)
C5—C4—F1118.93 (16)C12—C17—C18121.01 (14)
C8—C7—C6120.92 (14)C8—C18—C17119.40 (15)
C18—C8—C9120.16 (15)
C11—C12—C13—C14177.52 (16)C16—C17—C18—N144.5 (2)
C9—C8—C18—N1176.58 (15)C12—C17—C18—N1134.56 (16)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds