Download citation
Download citation
link to html
[3aS-(3aα,6α,7β)]-7-Bromo-4,5,6,7-tetra­hydro-8,8-di­methyl-3H-3a,6-methano-2,1-benziso­thia­zole 2,2-dioxide, C10H14BrNO2S, has the (−)-camphorsulfon­imine structure, with the Br atom β-oriented. The C—Br distance is 1.941 (5) Å, the S—N distance is 1.687 (3) Å, and the C=N distance is 1.271 (6) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801013824/ob6062sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801013824/ob6062Isup2.hkl
Contains datablock I

CCDC reference: 172222

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.057
  • wR factor = 0.162
  • Data-to-parameter ratio = 18.0

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

REFLT_03 From the CIF: _diffrn_reflns_theta_max 74.90 From the CIF: _reflns_number_total 2484 Count of symmetry unique reflns 1451 Completeness (_total/calc) 171.19% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1033 Fraction of Friedel pairs measured 0.712 Are heavy atom types Z>Si present yes Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.

Comment top

The title compound, (I), was described approximately 100 years ago by Armstrong & Lowry (1902). They correctly determined that its crystals are orthorhombic and obtained axial ratios within less than 0.1% of our values well before the discovery of X-ray diffraction. Their paper contains a beautiful drawing of a crystal and an extensive table of interfacial angles.

The structure of (I) is found to be identical to that of 3-ethylthiocamphorylsulfonimine (Barkley et al., 1995), except for the endo-Br substituent instead of SCH2CH3 at the same position. These two compounds have the same space group and very similar cell dimensions. The crystal structure of (+)-camphorylsulfonylimine, which is unsubstituted and has the opposite absolute configuration, has also been reported (Chakraborty et al., 1997). The title compound is one of three for which ab initio crystal structure predictions were recently carried out in blind tests (Motherwell et al., 2001).

Experimental top

The synthesis of (I) has been described by Armstrong & Lowry (1902) and more recently by Davis et al. (1992). Crystals of (I) were grown by slow cooling of a toluene/2,2,5-trimethylpentane solution.

Refinement top

H atoms were placed in calculated positions with C—H bond distances in the range 0.96—0.98 Å and thereafter treated as riding. A torsional parameter was refined for methyl groups. Uiso = 1.2Ueq of the attached atom (1.5 for methyl groups).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: maXus (Mackay et al., 1999); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. View of the title compound showing the numbering scheme and ellipsoids at the 30% probability level.
[3aS-(3aα,6α,7β)]-7-bromo-4,5,6,7-tetrahydro-8,8-dimethyl- 3H-3a,6-methano-2,1-benzisothiazole-2,2-dioxide top
Crystal data top
C10H14BrNO2SF(000) = 592
Mr = 292.19Dx = 1.606 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54180 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 7.2643 (4) Åθ = 11.3–34.0°
b = 10.6393 (6) ŵ = 6.11 mm1
c = 15.6331 (13) ÅT = 296 K
V = 1208.24 (14) Å3Fragment, colorless
Z = 40.23 × 0.22 × 0.15 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
2348 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.057
Graphite monochromatorθmax = 74.9°, θmin = 5.0°
θ/2θ scansh = 09
Absorption correction: ψ scan
(North et al., 1968)
k = 1313
Tmin = 0.267, Tmax = 0.399l = 1919
5380 measured reflections3 standard reflections every 120 min
2484 independent reflections intensity decay: 9.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.162 w = 1/[σ2(Fo2) + (0.0977P)2 + 0.6776P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max < 0.001
2484 reflectionsΔρmax = 0.89 e Å3
138 parametersΔρmin = 0.81 e Å3
0 restraintsAbsolute structure: Flack (1983), 1033 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (4)
Crystal data top
C10H14BrNO2SV = 1208.24 (14) Å3
Mr = 292.19Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 7.2643 (4) ŵ = 6.11 mm1
b = 10.6393 (6) ÅT = 296 K
c = 15.6331 (13) Å0.23 × 0.22 × 0.15 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
2348 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.057
Tmin = 0.267, Tmax = 0.3993 standard reflections every 120 min
5380 measured reflections intensity decay: 9.0%
2484 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.162Δρmax = 0.89 e Å3
S = 1.15Δρmin = 0.81 e Å3
2484 reflectionsAbsolute structure: Flack (1983), 1033 Friedel pairs
138 parametersAbsolute structure parameter: 0.02 (4)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.59132 (12)0.63333 (8)0.01579 (5)0.1019 (3)
S0.53225 (19)0.45051 (10)0.30589 (7)0.0622 (3)
O10.6825 (7)0.3659 (4)0.2999 (3)0.0865 (12)
O20.5099 (10)0.5173 (5)0.3830 (3)0.1043 (17)
N0.5533 (5)0.5566 (3)0.2262 (2)0.0523 (8)
C10.3829 (7)0.5989 (4)0.0899 (3)0.0557 (10)
H10.32700.67920.10640.067*
C20.4345 (5)0.5295 (3)0.1694 (2)0.0462 (8)
C30.3080 (6)0.4175 (4)0.1775 (3)0.0559 (10)
C40.3776 (9)0.3256 (4)0.1077 (4)0.0745 (15)
H4A0.51010.31510.11080.089*
H4B0.31930.24390.11310.089*
C50.3207 (12)0.3906 (5)0.0238 (4)0.0860 (18)
H5A0.42720.40620.01210.103*
H5B0.23320.33970.00770.103*
C60.2327 (8)0.5144 (4)0.0527 (3)0.0667 (13)
H60.15400.55480.00980.080*
C70.3199 (8)0.3770 (5)0.2696 (4)0.0685 (12)
H7A0.32660.28620.27440.082*
H7B0.21500.40710.30210.082*
C80.1301 (6)0.4733 (4)0.1372 (4)0.0654 (12)
C90.0480 (7)0.5805 (5)0.1894 (5)0.0823 (17)
H9A0.04940.61950.15750.123*
H9B0.14190.64150.20150.123*
H9C0.00010.54800.24220.123*
C100.0240 (10)0.3749 (6)0.1239 (6)0.105 (3)
H10A0.02930.29690.10560.157*
H10B0.10840.40450.08120.157*
H10C0.08860.36230.17680.157*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.1102 (6)0.1140 (6)0.0815 (5)0.0030 (4)0.0237 (4)0.0414 (4)
S0.0850 (7)0.0506 (5)0.0511 (5)0.0087 (5)0.0022 (5)0.0113 (4)
O10.086 (2)0.072 (2)0.101 (3)0.006 (2)0.017 (2)0.030 (2)
O20.169 (5)0.092 (3)0.0521 (19)0.031 (3)0.011 (3)0.0027 (19)
N0.0623 (19)0.0404 (14)0.0540 (18)0.0051 (15)0.0009 (15)0.0081 (13)
C10.066 (2)0.0450 (18)0.057 (2)0.0077 (17)0.0018 (19)0.0058 (17)
C20.0517 (18)0.0362 (14)0.0507 (19)0.0042 (15)0.0037 (16)0.0020 (14)
C30.060 (2)0.0390 (18)0.069 (3)0.0045 (17)0.001 (2)0.0031 (17)
C40.088 (3)0.043 (2)0.093 (4)0.014 (2)0.006 (3)0.015 (2)
C50.126 (5)0.055 (3)0.077 (3)0.014 (3)0.009 (3)0.027 (3)
C60.085 (3)0.050 (2)0.065 (3)0.015 (2)0.022 (2)0.014 (2)
C70.078 (3)0.049 (2)0.078 (3)0.011 (2)0.012 (3)0.014 (2)
C80.055 (2)0.0415 (18)0.100 (4)0.0058 (17)0.009 (2)0.014 (2)
C90.055 (2)0.063 (3)0.129 (5)0.006 (2)0.004 (3)0.024 (3)
C100.076 (3)0.079 (4)0.159 (7)0.020 (3)0.029 (4)0.022 (4)
Geometric parameters (Å, º) top
Br—C11.941 (5)C5—C61.532 (7)
S—O21.408 (5)C5—H5A0.9700
S—O11.418 (5)C5—H5B0.9700
S—N1.687 (3)C6—C81.578 (9)
S—C71.820 (6)C6—H60.9800
N—C21.271 (6)C7—H7A0.9700
C1—C21.494 (6)C7—H7B0.9700
C1—C61.529 (7)C8—C91.524 (7)
C1—H10.9800C8—C101.547 (7)
C2—C31.510 (5)C9—H9A0.9600
C3—C71.505 (7)C9—H9B0.9600
C3—C41.550 (7)C9—H9C0.9600
C3—C81.556 (7)C10—H10A0.9600
C4—C51.539 (9)C10—H10B0.9600
C4—H4A0.9700C10—H10C0.9600
C4—H4B0.9700
O2—S—O1117.7 (4)C4—C5—H5B110.9
O2—S—N107.7 (2)H5A—C5—H5B108.9
O1—S—N107.8 (2)C1—C6—C5108.6 (5)
O2—S—C7112.7 (4)C1—C6—C8100.5 (4)
O1—S—C7111.1 (2)C5—C6—C8101.8 (4)
N—S—C797.7 (2)C1—C6—H6114.8
C2—N—S107.6 (3)C5—C6—H6114.8
C2—C1—C6101.8 (4)C8—C6—H6114.8
C2—C1—Br113.2 (3)C3—C7—S102.9 (3)
C6—C1—Br116.1 (3)C3—C7—H7A111.2
C2—C1—H1108.4S—C7—H7A111.2
C6—C1—H1108.4C3—C7—H7B111.2
Br—C1—H1108.4S—C7—H7B111.2
N—C2—C1129.7 (4)H7A—C7—H7B109.1
N—C2—C3122.2 (4)C9—C8—C10107.2 (5)
C1—C2—C3107.9 (4)C9—C8—C3113.2 (5)
C7—C3—C2105.7 (4)C10—C8—C3113.4 (4)
C7—C3—C4118.4 (4)C9—C8—C6115.2 (4)
C2—C3—C4103.9 (4)C10—C8—C6114.7 (6)
C7—C3—C8123.0 (5)C3—C8—C693.0 (4)
C2—C3—C899.8 (3)C8—C9—H9A109.5
C4—C3—C8103.1 (4)C8—C9—H9B109.5
C5—C4—C3103.2 (4)H9A—C9—H9B109.5
C5—C4—H4A111.1C8—C9—H9C109.5
C3—C4—H4A111.1H9A—C9—H9C109.5
C5—C4—H4B111.1H9B—C9—H9C109.5
C3—C4—H4B111.1C8—C10—H10A109.5
H4A—C4—H4B109.1C8—C10—H10B109.5
C6—C5—C4104.4 (4)H10A—C10—H10B109.5
C6—C5—H5A110.9C8—C10—H10C109.5
C4—C5—H5A110.9H10A—C10—H10C109.5
C6—C5—H5B110.9H10B—C10—H10C109.5
O2—S—N—C2126.6 (4)C4—C5—C6—C168.9 (6)
O1—S—N—C2105.3 (3)C4—C5—C6—C836.5 (6)
C7—S—N—C29.8 (3)C2—C3—C7—S18.6 (4)
S—N—C2—C1173.9 (3)C4—C3—C7—S97.2 (4)
S—N—C2—C31.6 (5)C8—C3—C7—S131.8 (4)
C6—C1—C2—N179.8 (4)O2—S—C7—C3130.3 (4)
Br—C1—C2—N54.8 (5)O1—S—C7—C395.2 (4)
C6—C1—C2—C33.7 (4)N—S—C7—C317.4 (3)
Br—C1—C2—C3129.1 (3)C7—C3—C8—C950.5 (6)
N—C2—C3—C714.9 (5)C2—C3—C8—C965.6 (5)
C1—C2—C3—C7161.5 (4)C4—C3—C8—C9172.5 (5)
N—C2—C3—C4110.4 (5)C7—C3—C8—C1071.8 (7)
C1—C2—C3—C473.2 (4)C2—C3—C8—C10172.1 (5)
N—C2—C3—C8143.4 (4)C4—C3—C8—C1065.2 (7)
C1—C2—C3—C833.0 (5)C7—C3—C8—C6169.6 (4)
C7—C3—C4—C5172.9 (5)C2—C3—C8—C653.5 (4)
C2—C3—C4—C570.3 (5)C4—C3—C8—C653.4 (4)
C8—C3—C4—C533.4 (5)C1—C6—C8—C960.2 (5)
C3—C4—C5—C62.3 (7)C5—C6—C8—C9172.0 (5)
C2—C1—C6—C567.8 (5)C1—C6—C8—C10174.7 (4)
Br—C1—C6—C555.6 (5)C5—C6—C8—C1062.9 (6)
C2—C1—C6—C838.6 (4)C1—C6—C8—C357.2 (4)
Br—C1—C6—C8162.0 (3)C5—C6—C8—C354.6 (5)

Experimental details

Crystal data
Chemical formulaC10H14BrNO2S
Mr292.19
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)7.2643 (4), 10.6393 (6), 15.6331 (13)
V3)1208.24 (14)
Z4
Radiation typeCu Kα
µ (mm1)6.11
Crystal size (mm)0.23 × 0.22 × 0.15
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.267, 0.399
No. of measured, independent and
observed [I > 2σ(I)] reflections
5380, 2484, 2348
Rint0.057
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.162, 1.15
No. of reflections2484
No. of parameters138
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.89, 0.81
Absolute structureFlack (1983), 1033 Friedel pairs
Absolute structure parameter0.02 (4)

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1994), CAD-4 EXPRESS, maXus (Mackay et al., 1999), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
Br—C11.941 (5)S—N1.687 (3)
S—O21.408 (5)S—C71.820 (6)
S—O11.418 (5)N—C21.271 (6)
O2—S—O1117.7 (4)O1—S—C7111.1 (2)
O2—S—N107.7 (2)N—S—C797.7 (2)
O1—S—N107.8 (2)C2—N—S107.6 (3)
O2—S—C7112.7 (4)C3—C8—C693.0 (4)
C7—S—N—C29.8 (3)N—C2—C3—C714.9 (5)
S—N—C2—C31.6 (5)C2—C3—C7—S18.6 (4)
Br—C1—C2—N54.8 (5)N—S—C7—C317.4 (3)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds