Download citation
Download citation
link to html
In the title compound, 2C6H15N2O2+·H+·NO3·2Cl, both the monoprotonated lysinium mol­ecules are bonded through a strong, nearly symmetric, O—H...O hydrogen bond forming a dimer. The O...O distance is 2.425 (8) Å. Molecule I is engaged in a zigzag (Z1) head-to-tail sequence. Both chloride anions link mol­ecules I and II through the α- and [epsilon]-amino groups in an infinite chain along the a axis. The nitrate ion shows orientational disorder.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801014040/ob6065sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801014040/ob6065Isup2.hkl
Contains datablock I

CCDC reference: 172223

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.012 Å
  • Disorder in solvent or counterion
  • R factor = 0.062
  • wR factor = 0.190
  • Data-to-parameter ratio = 10.8

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Amber Alert Alert Level B:
PLAT_214 Alert B Atom >O2 (Anion/Solvent) ADP max/min Ratio 5.40
Yellow Alert Alert Level C:
PLAT_213 Alert C Atom C23 has ADP max/min Ratio ........... 3.40 PLAT_302 Alert C Anion/Solvent Disorder ....................... 33.00 Perc. PLAT_360 Alert C Short C(sp3)-C(sp3) Bond C(23) - C(24) = 1.37 Ang. PLAT_360 Alert C Short C(sp3)-C(sp3) Bond C(25) - C(26) = 1.39 Ang. General Notes
REFLT_03 From the CIF: _diffrn_reflns_theta_max 24.97 From the CIF: _reflns_number_total 2910 Count of symmetry unique reflns 2196 Completeness (_total/calc) 132.51% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 714 Fraction of Friedel pairs measured 0.325 Are heavy atom types Z>Si present yes WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure
0 Alert Level A = Potentially serious problem
1 Alert Level B = Potential problem
4 Alert Level C = Please check

Comment top

Lysine is the one of the four amino acids having basic side chains. The crystal structure of L-lysine monohydrochloride dihydrate (Wright & Marsh, 1962; Koetzle et al., 1972), L-lysine sulfate (Capasso et al., 1983), L-lysine semimaleate (Pratap et al., 2000) and hydrogen bis[L-lysinium(+)] dichloride perchlorate (Srinivasan et al., 2001) have been reported. The crystal structure of lysine hydrochloride with nitric acid, (I), was undertaken to study the effects of hydrogen bonding due to the presence of inorganic acids.

A pseudo-non-crystallographic twofold axis is observed near (1/4, y, 0.41) for both the chloride anions and lysinium cations. The N atom of the nitrate group lies on this pseudo-twofold axis. The existence of pseudosymmetry is responsible for two possible orientation of the nitrate O atom and hence the large deviation from the nearly trigonal symmetry.

The asymmetric part contains two crystallographically independent lysinium residues (I and II). The lysinium cations are characterized by two planar configurations, viz. the carboxylate group and the aliphatic side chain terminating at the ε-amino group. The straight chain conformation angle ψ1 is -6.1 (8) and -0.1 (9)° for lysinium residues I and II, respectively. This tendency of twisting of the C—N bond is found in various amino acids (Lakshminarayanan et al., 1967). The average value of the four C—C—C angles for both molecules I and II are 112.4 (6) and 113.3 (11)°, significantly greater than the tetrahedral value. However, the angle Cα—Cβ—Cγ, 113.1 (6) and 120.5 (11)° for the molecules I and II, are appreciably larger than the other three. The widening of this angle might be due to the steric effect of an atom hydrogen bonded to the NH3+ group also found in other amino acids and peptides (Leung & Marsh, 1958). Molecules I and II have a fully extended side-chain conformation [χ1 = -167.3 (9) and -168.7 (15)°, χ2 = -178.2 (9) and -174.5 (12)°, χ3 = 174.9 (11) and 174.2 (17)°, and χ4 = -178.0 (9) and 174.2 (14)°, respectively].

Both the lysinium molecules (I and II) are cationic, with ε-amino groups accepting an H atom. The two lysinium molecules are bonded with a strong O—H···O hydrogen bond [O22···O12 2.425 (8) Å]. The equality of the C—O distances of molecules I and II within significant limits [1.223 (7) and 1.217 (9) Å, and 1.267 (8) and 1.274 (9) Å] suggests that hydrogen linking I and II are equally shared by I and II. Hence, this hydrogen bond may be termed as a symmetric hydrogen bond, since the two cations are related by non-crystallographic pseudo-twofold symmetry and the H atom is on the pseudo-axis. The O12—H2 and O22—H2 distances [1.06 (11) and 1.38 (11) Å] are nearly equal within significant limits. Hence, the symmetric hydrogen-bonded lysinium dimer thus formed carries a net positive charge, as found in L-phenylalanine L-phenylalaninium perchlorate (Srinivasan & Rajaram, 1997).

A zigzag (Z1) head-to-tail sequence is engaged in molecule I, since the N11—H11A···O11(1/2 + x, 3/2 - y, 1 - z) bond connects two 21-related amino acids (Vijayan, 1988). But in the case of lysinium molecule II, the α-amino group have hydrogen bonds with chloride anions only. The chloride anion (Cl1) links the α-amino nitrogen of lysinium molecule I through a hydrogen bond in an infinite chain running along the a axis and chloride anion Cl2 links the ε-amino nitrogen in an infinite chain along the a axis. Similarly, in lysinium molecule II, the α-N atom is linked by chloride anion Cl2 through a hydrogen bond in an infinite chain along the a axis and the ε-amino nitrogen is linked by chloride anion Cl1 in an infinite chain along the a axis. Besides this, the nitrate anion links the ε-amino N atoms of both molecules I and II.

As shown in Fig. 2, the two hydrophilic layers about the y = 1/4 plane are connected by hydrogen bonds involving nitrate and chloride anions. The aggregation of the hydrophilic double layers are interspersed by the hydrophobic side chain across the y = 1/2 plane.

Experimental top

The title compound was crystallized from an aqueous solution of a 2:1 stoichiometric ratio of L-lysine hydrochloride and nitric acid by slow evaporation.

Refinement top

The nitrate O atoms are disordered due to the presence of pseudo-twofold symmetry. The site-occupation factors for O1/O2/O3 and O1'/O2'/O3'are 0.54 (1) and 0.46 (1). Since the geometry of these disordered atoms differ significantly from expected values, the DFIX constraint were used to fix the geometry of the nitrate anion as free variable. In the case of lysinium molecule II, atoms C23, C24, C25 and C26 showed large displacement amplitudes with unusual C—C distances, indicating disorder. Since this disorder cannot be explained satisfactorily, these atoms were refined using DFIX constraints. The H2 atom involved in the symmetric hydrogen bond was located and refined while all the other H atoms were fixed by geometric constraints using HFIX and were allowed to ride on the preceding atom.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1999); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atom-numbering scheme and 50% probability displacement ellipsoids (Johnson, 1976).
[Figure 2] Fig. 2. Packing diagram of (I) viewed down the a axis.
Bis (L-Lysinium(+)) hydrogen dichloride nitrate top
Crystal data top
2C6H15N2O2+·H+·NO3·2ClDx = 1.341 Mg m3
Dm = 1.333 Mg m3
Dm measured by flotation
Mr = 428.32Mo Kα radiation, λ = 0.71070 Å
Orthorhombic, P212121Cell parameters from 20 reflections
a = 4.9846 (2) Åθ = 10.2–14.3°
b = 20.604 (2) ŵ = 0.35 mm1
c = 20.663 (2) ÅT = 293 K
V = 2122.1 (3) Å3Needles, colorless
Z = 40.5 × 0.3 × 0.3 mm
F(000) = 912
Data collection top
Enraf-Nonius sealed tube
diffractometer
1805 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.046
Graphite monochromatorθmax = 25.0°, θmin = 2.0°
ω–2θ scansh = 15
Absorption correction: ψ scan
(North et al., 1968)
k = 224
Tmin = 0.883, Tmax = 0.901l = 224
3313 measured reflections3 standard reflections every 60 min
2910 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.190 w = 1/[σ2(Fo2) + (0.0869P)2 + 3.2345P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.002
2910 reflectionsΔρmax = 0.53 e Å3
270 parametersΔρmin = 0.42 e Å3
16 restraintsAbsolute structure: Flack (1983), 714 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.2 (2)
Crystal data top
2C6H15N2O2+·H+·NO3·2ClV = 2122.1 (3) Å3
Mr = 428.32Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.9846 (2) ŵ = 0.35 mm1
b = 20.604 (2) ÅT = 293 K
c = 20.663 (2) Å0.5 × 0.3 × 0.3 mm
Data collection top
Enraf-Nonius sealed tube
diffractometer
1805 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.046
Tmin = 0.883, Tmax = 0.9013 standard reflections every 60 min
3313 measured reflections intensity decay: none
2910 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.062H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.190Δρmax = 0.53 e Å3
S = 1.03Δρmin = 0.42 e Å3
2910 reflectionsAbsolute structure: Flack (1983), 714 Friedel pairs
270 parametersAbsolute structure parameter: 0.2 (2)
16 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.262 (3)0.3115 (5)0.4110 (4)0.105 (4)
O10.307 (5)0.2948 (14)0.3554 (9)0.132 (12)0.536 (14)
O20.426 (7)0.3066 (16)0.4505 (13)0.39 (4)0.536 (14)
O30.020 (5)0.2971 (10)0.4253 (10)0.28 (3)0.536 (14)
O1'0.241 (5)0.2826 (8)0.3629 (6)0.047 (4)0.464 (14)
O2'0.268 (3)0.2999 (6)0.4668 (5)0.044 (4)0.464 (14)
O3'0.294 (5)0.3749 (6)0.4049 (8)0.132 (9)0.464 (14)
Cl10.2235 (4)0.67394 (7)0.68813 (7)0.0394 (4)
Cl20.2349 (4)0.65481 (10)0.15174 (8)0.0596 (6)
O110.3233 (9)0.7006 (2)0.5069 (2)0.0424 (12)
O120.4692 (13)0.6191 (3)0.4466 (3)0.0716 (19)
C110.4836 (13)0.6575 (3)0.4945 (3)0.0343 (15)
C120.7287 (15)0.6471 (3)0.5372 (3)0.0325 (14)
H120.89070.64930.51040.039*
N110.7347 (13)0.7003 (2)0.5849 (2)0.0360 (12)
H11A0.74200.73820.56430.054*
H11B0.87840.69610.61010.054*
H11C0.58710.69880.60910.054*
C130.7230 (19)0.5813 (3)0.5729 (3)0.0482 (18)
H13A0.85610.58190.60720.058*
H13B0.54840.57560.59290.058*
C140.777 (3)0.5250 (3)0.5296 (4)0.068 (2)
H14A0.95380.52990.51070.081*
H14B0.64720.52510.49460.081*
C150.763 (2)0.4599 (3)0.5644 (3)0.061 (2)
H15A0.90350.45770.59690.073*
H15B0.59160.45590.58630.073*
C160.795 (2)0.4064 (3)0.5188 (4)0.066 (2)
H16A0.96830.41010.49800.079*
H16B0.65820.41010.48550.079*
N120.7732 (15)0.3421 (2)0.5495 (3)0.0499 (15)
H12A0.88430.34010.58320.075*
H12B0.81670.31150.52100.075*
H12C0.60560.33580.56300.075*
O211.1690 (10)0.6936 (2)0.3192 (3)0.0530 (14)
O221.0639 (13)0.6106 (3)0.3822 (3)0.0726 (19)
H21.23 (2)0.618 (4)0.414 (4)0.09 (3)*
C211.0223 (15)0.6493 (4)0.3352 (3)0.0441 (18)
C220.7638 (17)0.6343 (3)0.2998 (3)0.0428 (16)
H220.61220.63870.32970.051*
N210.7356 (14)0.6821 (2)0.2464 (2)0.0404 (13)
H21A0.74930.72220.26230.061*
H21B0.57620.67730.22760.061*
H21C0.86460.67570.21730.061*
C230.764 (3)0.5646 (4)0.2701 (5)0.103 (4)
H23A0.61810.56280.23910.123*
H23B0.92920.55990.24590.123*
C240.741 (5)0.5114 (5)0.3091 (6)0.131 (5)
H24A0.56660.51220.33010.157*
H24B0.87670.51350.34260.157*
C250.771 (3)0.4458 (4)0.2714 (6)0.101 (4)
H25A0.62380.44020.24130.121*
H25B0.93800.44550.24720.121*
C260.771 (3)0.3959 (7)0.3170 (5)0.138 (6)
H26A0.92780.40080.34440.166*
H26B0.61390.40070.34420.166*
N220.7720 (17)0.3334 (3)0.2914 (3)0.0698 (19)
H22A0.62220.32700.26880.105*
H22B0.78070.30460.32350.105*
H22C0.91340.32860.26560.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.165 (12)0.075 (7)0.074 (8)0.000 (10)0.017 (10)0.027 (6)
O10.069 (15)0.18 (2)0.15 (2)0.042 (13)0.050 (12)0.007 (16)
O20.68 (9)0.18 (3)0.31 (4)0.11 (4)0.42 (6)0.05 (3)
O30.71 (8)0.073 (12)0.073 (12)0.06 (3)0.13 (3)0.013 (10)
O1'0.044 (10)0.058 (8)0.038 (7)0.001 (9)0.010 (8)0.023 (6)
O2'0.039 (7)0.058 (7)0.034 (6)0.003 (8)0.007 (7)0.022 (6)
O3'0.17 (2)0.078 (12)0.145 (15)0.019 (15)0.014 (19)0.009 (10)
Cl10.0347 (9)0.0437 (8)0.0398 (8)0.0026 (9)0.0009 (9)0.0006 (7)
Cl20.0344 (10)0.0997 (15)0.0449 (9)0.0028 (14)0.0008 (10)0.0061 (9)
O110.031 (3)0.043 (3)0.053 (3)0.002 (2)0.008 (2)0.006 (2)
O120.060 (4)0.098 (5)0.057 (3)0.028 (4)0.029 (3)0.028 (3)
C110.024 (3)0.039 (4)0.039 (4)0.000 (3)0.000 (3)0.002 (3)
C120.031 (4)0.034 (3)0.032 (3)0.009 (4)0.001 (3)0.003 (2)
N110.038 (3)0.032 (2)0.038 (3)0.002 (4)0.007 (4)0.003 (2)
C130.058 (5)0.041 (4)0.046 (4)0.003 (5)0.012 (5)0.002 (3)
C140.103 (8)0.044 (4)0.056 (4)0.007 (7)0.004 (7)0.003 (3)
C150.079 (6)0.049 (4)0.054 (4)0.001 (6)0.002 (6)0.003 (3)
C160.088 (7)0.052 (4)0.056 (4)0.004 (6)0.012 (6)0.007 (3)
N120.056 (4)0.042 (3)0.052 (3)0.001 (4)0.000 (4)0.001 (2)
O210.036 (3)0.051 (3)0.071 (3)0.007 (3)0.015 (3)0.009 (3)
O220.061 (4)0.093 (5)0.065 (4)0.017 (4)0.030 (3)0.019 (4)
C210.040 (4)0.050 (4)0.042 (4)0.011 (4)0.011 (3)0.013 (4)
C220.035 (4)0.046 (3)0.048 (4)0.008 (4)0.009 (4)0.002 (3)
N210.034 (3)0.044 (3)0.043 (3)0.006 (4)0.003 (3)0.008 (2)
C230.130 (10)0.055 (5)0.123 (8)0.059 (8)0.080 (9)0.031 (5)
C240.171 (14)0.103 (8)0.120 (8)0.033 (12)0.009 (14)0.005 (7)
C250.074 (7)0.069 (6)0.161 (11)0.005 (7)0.044 (9)0.050 (7)
C260.127 (12)0.183 (13)0.104 (9)0.067 (14)0.049 (11)0.064 (10)
N220.052 (4)0.102 (5)0.056 (4)0.013 (6)0.002 (4)0.006 (4)
Geometric parameters (Å, º) top
N1—O1'1.162 (12)N12—H12B0.8900
N1—O21.163 (16)N12—H12C0.8900
N1—O2'1.178 (13)O21—C211.217 (9)
N1—O11.221 (15)O22—C211.274 (9)
N1—O31.276 (19)O22—H21.06 (11)
N1—O3'1.323 (14)C21—C221.514 (11)
O11—C111.223 (7)C22—N211.486 (7)
O12—C111.267 (8)C22—C231.561 (10)
C11—C121.522 (9)C22—H220.9800
C12—N111.476 (7)N21—H21A0.8900
C12—C131.544 (8)N21—H21B0.8900
C12—H120.9800N21—H21C0.8900
N11—H11A0.8900C23—C241.366 (11)
N11—H11B0.8900C23—H23A0.9700
N11—H11C0.8900C23—H23B0.9700
C13—C141.490 (9)C24—C251.566 (13)
C13—H13A0.9700C24—H24A0.9700
C13—H13B0.9700C24—H24B0.9700
C14—C151.524 (9)C25—C261.394 (14)
C14—H14A0.9700C25—H25A0.9700
C14—H14B0.9700C25—H25B0.9700
C15—C161.458 (10)C26—N221.392 (13)
C15—H15A0.9700C26—H26A0.9700
C15—H15B0.9700C26—H26B0.9700
C16—N121.474 (8)N22—H22A0.8900
C16—H16A0.9700N22—H22B0.8900
C16—H16B0.9700N22—H22C0.8900
N12—H12A0.8900
O1'—N1—O2128 (2)H16A—C16—H16B107.8
O1'—N1—O2'137.3 (13)C16—N12—H12A109.5
O2—N1—O2'44 (2)C16—N12—H12B109.5
O1'—N1—O121.3 (18)H12A—N12—H12B109.5
O2—N1—O1120 (2)C16—N12—H12C109.5
O2'—N1—O1149 (2)H12A—N12—H12C109.5
O1'—N1—O389.7 (18)H12B—N12—H12C109.5
O2—N1—O3119.0 (17)C21—O22—H2120 (5)
O2'—N1—O375.6 (14)O21—C21—O22125.4 (7)
O1—N1—O3109.1 (15)O21—C21—C22122.2 (7)
O1'—N1—O3'115.8 (12)O22—C21—C22112.3 (7)
O2—N1—O3'94 (2)N21—C22—C21107.7 (6)
O2'—N1—O3'106.8 (11)N21—C22—C23108.6 (5)
O1—N1—O3'99.6 (18)C21—C22—C23112.2 (7)
O3—N1—O3'111.6 (19)N21—C22—H22109.5
O11—C11—O12125.4 (6)C21—C22—H22109.5
O11—C11—C12120.3 (6)C23—C22—H22109.5
O12—C11—C12114.2 (6)C22—N21—H21A109.5
N11—C12—C11107.4 (6)C22—N21—H21B109.5
N11—C12—C13109.5 (4)H21A—N21—H21B109.5
C11—C12—C13112.7 (6)C22—N21—H21C109.5
N11—C12—H12109.1H21A—N21—H21C109.5
C11—C12—H12109.1H21B—N21—H21C109.5
C13—C12—H12109.1C24—C23—C22120.5 (9)
C12—N11—H11A109.5C24—C23—H23A107.2
C12—N11—H11B109.5C22—C23—H23A107.2
H11A—N11—H11B109.5C24—C23—H23B107.2
C12—N11—H11C109.5C22—C23—H23B107.2
H11A—N11—H11C109.5H23A—C23—H23B106.8
H11B—N11—H11C109.5C23—C24—C25113.1 (11)
C14—C13—C12113.1 (6)C23—C24—H24A109.0
C14—C13—H13A109.0C25—C24—H24A109.0
C12—C13—H13A109.0C23—C24—H24B109.0
C14—C13—H13B109.0C25—C24—H24B109.0
C12—C13—H13B109.0H24A—C24—H24B107.8
H13A—C13—H13B107.8C26—C25—C24107.5 (11)
C13—C14—C15113.1 (6)C26—C25—H25A110.2
C13—C14—H14A108.9C24—C25—H25A110.2
C15—C14—H14A108.9C26—C25—H25B110.2
C13—C14—H14B109.0C24—C25—H25B110.2
C15—C14—H14B109.0H25A—C25—H25B108.5
H14A—C14—H14B107.8N22—C26—C25115.2 (9)
C16—C15—C14110.7 (6)N22—C26—H26A108.5
C16—C15—H15A109.5C25—C26—H26A108.5
C14—C15—H15A109.5N22—C26—H26B108.5
C16—C15—H15B109.5C25—C26—H26B108.5
C14—C15—H15B109.5H26A—C26—H26B107.5
H15A—C15—H15B108.1C26—N22—H22A109.5
C15—C16—N12113.1 (6)C26—N22—H22B109.5
C15—C16—H16A109.0H22A—N22—H22B109.5
N12—C16—H16A109.0C26—N22—H22C109.5
C15—C16—H16B109.0H22A—N22—H22C109.5
N12—C16—H16B109.0H22B—N22—H22C109.5
O11—C11—C12—N116.1 (8)O21—C21—C22—N210.1 (9)
O12—C11—C12—N11172.7 (6)O22—C21—C22—N21179.9 (6)
O11—C11—C12—C13114.6 (7)O21—C21—C22—C23119.3 (8)
O12—C11—C12—C1366.7 (8)O22—C21—C22—C2360.7 (9)
N11—C12—C13—C14167.4 (9)N21—C22—C23—C24168.7 (15)
C11—C12—C13—C1473.2 (10)C21—C22—C23—C2472.5 (18)
C12—C13—C14—C15178.3 (9)C22—C23—C24—C25174.6 (12)
C13—C14—C15—C16175.1 (11)C23—C24—C25—C26174.1 (17)
C14—C15—C16—N12178.0 (9)C24—C25—C26—N22174.3 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O22—H2···O12i1.06 (11)1.38 (11)2.425 (8)169 (9)
N11—H11A···O11ii0.891.982.821 (7)157
N11—H11B···Cl1i0.892.403.283 (6)171
N11—H11C···Cl10.892.493.367 (6)168
N12—H12A···Cl2iii0.892.373.237 (7)164
N12—H12B···O3i0.892.242.994 (18)142
N12—H12B···O2iv0.892.322.945 (14)127
N12—H12B···O2i0.892.523.124 (14)125
N12—H12B···O2iv0.892.563.16 (3)125
N12—H12C···Cl2v0.892.513.298 (7)149
N21—H21A···Cl1ii0.892.383.260 (5)172
N21—H21B···Cl20.892.363.221 (6)163
N21—H21C···Cl2i0.892.333.215 (6)173
N22—H22A···Cl1vi0.892.403.268 (8)166
N22—H22B···O3i0.892.423.12 (3)136
N22—H22B···O1i0.892.713.08 (3)106
N22—H22C···Cl1vii0.892.423.302 (8)173
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+3/2, z+1; (iii) x+3/2, y+1, z+1/2; (iv) x+1/2, y+1/2, z+1; (v) x+1/2, y+1, z+1/2; (vi) x+1/2, y+1, z1/2; (vii) x+3/2, y+1, z1/2.

Experimental details

Crystal data
Chemical formula2C6H15N2O2+·H+·NO3·2Cl
Mr428.32
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)4.9846 (2), 20.604 (2), 20.663 (2)
V3)2122.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.5 × 0.3 × 0.3
Data collection
DiffractometerEnraf-Nonius sealed tube
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.883, 0.901
No. of measured, independent and
observed [I > 2σ(I)] reflections
3313, 2910, 1805
Rint0.046
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.190, 1.03
No. of reflections2910
No. of parameters270
No. of restraints16
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.53, 0.42
Absolute structureFlack (1983), 714 Friedel pairs
Absolute structure parameter0.2 (2)

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1999), SHELXL97.

Selected geometric parameters (Å, º) top
O11—C111.223 (7)O21—C211.217 (9)
O12—C111.267 (8)O22—C211.274 (9)
O11—C11—C12—N116.1 (8)O21—C21—C22—N210.1 (9)
N11—C12—C13—C14167.4 (9)N21—C22—C23—C24168.7 (15)
C12—C13—C14—C15178.3 (9)C22—C23—C24—C25174.6 (12)
C13—C14—C15—C16175.1 (11)C23—C24—C25—C26174.1 (17)
C14—C15—C16—N12178.0 (9)C24—C25—C26—N22174.3 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O22—H2···O12i1.06 (11)1.38 (11)2.425 (8)169 (9)
N11—H11A···O11ii0.891.982.821 (7)157.3
N11—H11B···Cl1i0.892.403.283 (6)171.2
N11—H11C···Cl10.892.493.367 (6)167.5
N12—H12A···Cl2iii0.892.373.237 (7)164.4
N12—H12B···O3i0.892.242.994 (18)142.1
N12—H12B···O2'iv0.892.322.945 (14)127.0
N12—H12B···O2'i0.892.523.124 (14)125.3
N12—H12B···O2iv0.892.563.16 (3)124.9
N12—H12C···Cl2v0.892.513.298 (7)148.6
N21—H21A···Cl1ii0.892.383.260 (5)171.6
N21—H21B···Cl20.892.363.221 (6)162.9
N21—H21C···Cl2i0.892.333.215 (6)173.0
N22—H22A···Cl1vi0.892.403.268 (8)165.6
N22—H22B···O3i0.892.423.12 (3)135.5
N22—H22B···O1i0.892.713.08 (3)106.1
N22—H22C···Cl1vii0.892.423.302 (8)173.2
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+3/2, z+1; (iii) x+3/2, y+1, z+1/2; (iv) x+1/2, y+1/2, z+1; (v) x+1/2, y+1, z+1/2; (vi) x+1/2, y+1, z1/2; (vii) x+3/2, y+1, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds