Download citation
Download citation
link to html
The reaction of (2-hydroxy­ethyl)­diiso­propyl­ammonium chloride with CoCl2·6H2O has resulted in the unusual formation of a quaternary piperazinium salt with the formula (tippipz)[CoCl4], where tippipz is tetraiso­propyl­piperazinium (C16H36N22+). The structure of this compound consists of sheets of organic ammonium dications and inorganic dianions formed by C—H...Cl hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801012843/wn6042sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801012843/wn6042Isup2.hkl
Contains datablock I

CCDC reference: 172190

Key indicators

  • Single-crystal X-ray study
  • T = 183 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.048
  • wR factor = 0.129
  • Data-to-parameter ratio = 29.3

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
REFLT_03 From the CIF: _diffrn_reflns_theta_max 32.81 From the CIF: _reflns_number_total 7391 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 7848 Completeness (_total/calc) 94.18% Alert C: < 95% complete
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

The existence of C—H···Cl hydrogen bonds has been recently reviewed by Aakeröy et al. (1999) through a systematic data mining and statistical analysis of the Cambridge Structural Database (Allen & Kennard, 1993). It has been shown that chloride anions are better hydrogen-bond acceptors than neutral chlorine-containing molecules, however, no attention has been given to Cl(—M) groups as potential hydrogen-bond acceptors. The MX42- anions in organic–inorganic hybrid solids with the general formula A2MX4, in which A (or A2) is an organic ammonium cation (or ammonium dication), M is a divalent metal ion and X is Cl or Br, are capable of participating in C—H···Cl, as well as N—H···Cl, hydrogen bonding with organic cations. This behaviour has been reported by several groups (Barbour et al., 1996; Feist et al., 1995; Hitchcock et al., 1993; Mahmoudkhani & Langer, 1999a,b; Waśkowska, 1994). Indeed, the hydrogen bonding is of importance in assigning and describing some of the microscopic and macroscopic properties in this class of compounds (Mahmoudkhani, 1999). Gillon et al. (2000) have recently demonstrated the use of N—H···Cl—M hydrogen-bond synthons in controlling the solid-state structure of some halometallates and in the design of supramolecular aggregates. They have concluded that M—Cl moieties are much better hydrogen-bond acceptors than their organic analogues, C—Cl.

The title compound, (I), crystallizes in the monoclinic system with space group P21/n (No. 14). The asymmetric unit contains an organic dication and an inorganic dianion, as shown in Fig. 1. The coordination geometry of the CoII ion is distorted tetrahedral, with a mean Co—Cl bond distance of 2.282 (9) Å. Only three Cl atoms are involved in hydrogen bonds of the C—H···Cl type with C atoms of neighbouring organic dications, while the Cl4 atom does not act as a hydrogen-bond acceptor. However, atoms Cl3 and Cl2 are acceptors of two hydrogen bonds each from atoms C13 and C24, and atoms C25 and C1, respectively (see Table 2 for the geometry). The C—H···Cl hydrogen bonds link organic dications and inorganic dianions together to form sheets parallel to the ab plane (see Fig. 2). In each sheet, CoCl4 tetrahedra adopt alternating up and down orientations parallel to the b axis while having the same arrangement parallel to the a axis. There is no significant interaction between the sheets though the solid material exhibits a layered structure. In comparison with the crystal structure of bis[(2-chloroethyl)diisopropylammonium] tetrachlorocobaltate (Mahmoudkhani & Langer, 1999b), the title compound shows no disorder even at room temperature. This may be attributed to the relative strengths arising from the C—H···Cl hydrogen bonds.

Experimental top

The synthesis and structure of (2-hydroxyethyl)diisopropylammonium chloride, (II), is described elsewhere (Mahmoudkhani & Langer, 1999c); 1HNMR (400 MHz, D2O): δ 1.33 (d, 6.4, CH3), 1.34 (d, 6.4, CH3), 3.27 (t, 5.6, CH2–N), 3.76 (m, 6.4, CH), 3.86 (t, 5.6, CH2–O). In a small round-bottomed flask with a capacity of 25 ml, 110 mmol of (II) was added to a solution of 50 mmol of CoCl2·6H2O in ethanol (15 ml). The mixture was refluxed for about 1 h. Solvents were removed by azeotropic distillation with toluene. After gently removing toluene under vacuum, a blue highly viscous oily material was obtained which was kept in a desiccator over silica gel; 1H NMR (400 MHz, CDCl3): δH 1.40 (d, 6.4), 1.52 (d, 6.4), 3.05 (s, br), 3.60 (s, br), 4.20 (s, br). Blue plate crystals of the title compound suitable for diffraction analysis were obtained after 8 months growth from the oily product (yield 20–30%).

Refinement top

The H atoms were constrained to idealized geometries using the appropriate riding model.

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT and SADABS (Sheldrick, 2001); program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2000).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. Representation of a hydrogen-bonded sheet in the structure of (I). Notice that only three Cl atoms are involved in the C—H···Cl hydrogen bonding.
[Figure 3] Fig. 3. A view along the b axis showing parallel sheets, each comprising alternating orientations of CoCl4 tetrahedra.
1,1,4,4-tetra(isopropyl)piperazinium tetrachlorocobaltate(II) top
Crystal data top
(C16H36N2)[CoCl4]F(000) = 964
Mr = 457.20Dx = 1.436 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.1245 (3) ÅCell parameters from 5489 reflections
b = 17.1830 (7) Åθ = 1–32°
c = 17.3367 (7) ŵ = 1.32 mm1
β = 94.640 (1)°T = 183 K
V = 2115.41 (15) Å3Plate, blue
Z = 40.60 × 0.50 × 0.04 mm
Data collection top
Siemens SMART CCD
diffractometer
7391 independent reflections
Radiation source: fine-focus sealed tube4998 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ω scansθmax = 32.8°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1010
Tmin = 0.505, Tmax = 0.949k = 2624
24763 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0728P)2P]
where P = (Fo2 + 2Fc2)/3
7391 reflections(Δ/σ)max = 0.001
252 parametersΔρmax = 0.92 e Å3
0 restraintsΔρmin = 1.08 e Å3
Crystal data top
(C16H36N2)[CoCl4]V = 2115.41 (15) Å3
Mr = 457.20Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.1245 (3) ŵ = 1.32 mm1
b = 17.1830 (7) ÅT = 183 K
c = 17.3367 (7) Å0.60 × 0.50 × 0.04 mm
β = 94.640 (1)°
Data collection top
Siemens SMART CCD
diffractometer
7391 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
4998 reflections with I > 2σ(I)
Tmin = 0.505, Tmax = 0.949Rint = 0.052
24763 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 0.99Δρmax = 0.92 e Å3
7391 reflectionsΔρmin = 1.08 e Å3
252 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ (F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.34051 (4)0.867580 (16)0.221751 (16)0.01777 (8)
Cl10.19347 (8)0.98156 (3)0.18424 (3)0.02645 (13)
Cl20.60844 (8)0.86655 (3)0.15938 (4)0.02959 (14)
Cl30.18439 (8)0.75342 (3)0.19574 (3)0.02979 (14)
Cl40.41649 (8)0.86937 (3)0.35253 (3)0.02717 (13)
N10.7340 (2)1.13133 (9)0.14845 (10)0.0154 (3)
N20.7753 (2)1.10352 (9)0.32423 (10)0.0150 (3)
C30.8255 (3)1.17883 (11)0.28536 (11)0.0167 (4)
H3A0.92981.20410.31720.020 (6)*
H3B0.71541.21410.28390.016 (6)*
C10.6866 (3)1.05525 (11)0.18729 (11)0.0172 (4)
H1A0.79811.02070.18880.013 (5)*
H1B0.58341.02930.15530.019 (6)*
C240.6724 (3)1.12646 (12)0.39734 (12)0.0193 (4)
H240.54951.14960.37690.041 (8)*
C130.5549 (3)1.18336 (12)0.13826 (12)0.0195 (4)
H130.49481.17910.18830.019 (6)*
C20.6277 (3)1.06464 (12)0.26899 (11)0.0162 (4)
H2A0.51061.09580.26710.020 (6)*
H2B0.59901.01260.28960.019 (6)*
C260.6219 (3)1.05716 (13)0.44540 (13)0.0239 (5)
H26A0.73631.03600.47280.021 (6)*
H26B0.56241.01710.41150.029 (7)*
H26C0.53421.07350.48300.044 (8)*
C210.9530 (3)1.05105 (12)0.33717 (12)0.0194 (4)
H211.01721.05440.28810.024 (6)*
C110.4082 (3)1.15292 (14)0.07670 (14)0.0273 (5)
H11A0.28901.18050.08070.050 (9)*
H11B0.38931.09710.08450.037 (8)*
H11C0.45221.16160.02530.038 (8)*
C140.8736 (3)1.17987 (14)0.02430 (13)0.0277 (5)
H14A0.96111.16490.01390.030 (7)*
H14B0.93011.22130.05740.034 (7)*
H14C0.75581.19870.00240.024 (7)*
C160.8329 (3)1.10958 (13)0.07380 (12)0.0208 (4)
H160.95911.08850.09280.021 (6)*
C231.0962 (3)1.08064 (15)0.40022 (15)0.0321 (5)
H23A1.04911.07140.45100.038 (8)*
H23B1.11601.13660.39320.050 (10)*
H23C1.21571.05300.39710.051 (9)*
C40.8837 (3)1.16894 (11)0.20386 (11)0.0166 (4)
H4A0.91501.22070.18330.019 (6)*
H4B0.99921.13670.20570.024 (7)*
C120.5921 (3)1.26985 (12)0.12786 (14)0.0270 (5)
H12A0.64731.27830.07850.019 (6)*
H12B0.67981.28830.17040.043 (8)*
H12C0.47341.29860.12790.045 (8)*
C150.7382 (4)1.04495 (14)0.02480 (13)0.0295 (5)
H15A0.61631.06330.00150.049 (9)*
H15B0.71890.99960.05750.042 (8)*
H15C0.81851.03030.01620.047 (9)*
C220.9133 (3)0.96463 (13)0.34826 (14)0.0267 (5)
H22A1.03260.93600.35380.041 (8)*
H22B0.83580.94500.30320.043 (9)*
H22C0.84610.95750.39490.034 (7)*
C250.7697 (4)1.18917 (14)0.44820 (14)0.0309 (5)
H25A0.68761.20480.48820.060 (10)*
H25B0.79601.23440.41630.077 (12)*
H25C0.88821.16870.47280.045 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02212 (15)0.01060 (13)0.02071 (15)0.00007 (10)0.00251 (10)0.00061 (10)
Cl10.0319 (3)0.0205 (3)0.0278 (3)0.0100 (2)0.0072 (2)0.0048 (2)
Cl20.0330 (3)0.0123 (2)0.0460 (3)0.0011 (2)0.0187 (3)0.0005 (2)
Cl30.0310 (3)0.0211 (3)0.0377 (3)0.0098 (2)0.0053 (2)0.0066 (2)
Cl40.0338 (3)0.0254 (3)0.0218 (3)0.0008 (2)0.0011 (2)0.0015 (2)
N10.0200 (8)0.0099 (7)0.0161 (8)0.0000 (6)0.0008 (6)0.0017 (6)
N20.0198 (8)0.0084 (7)0.0168 (8)0.0013 (6)0.0007 (6)0.0001 (6)
C30.0245 (10)0.0076 (8)0.0174 (9)0.0022 (7)0.0009 (7)0.0010 (7)
C10.0243 (10)0.0091 (8)0.0178 (9)0.0020 (7)0.0004 (8)0.0010 (7)
C240.0258 (10)0.0148 (9)0.0177 (9)0.0031 (8)0.0045 (8)0.0008 (7)
C130.0209 (10)0.0145 (9)0.0229 (10)0.0013 (8)0.0001 (8)0.0024 (8)
C20.0198 (9)0.0121 (9)0.0164 (9)0.0032 (7)0.0013 (7)0.0004 (7)
C260.0317 (12)0.0187 (10)0.0225 (11)0.0040 (9)0.0089 (9)0.0009 (8)
C210.0202 (10)0.0145 (9)0.0234 (10)0.0048 (7)0.0011 (8)0.0040 (8)
C110.0274 (11)0.0222 (11)0.0308 (12)0.0010 (9)0.0071 (9)0.0058 (9)
C140.0341 (13)0.0286 (12)0.0211 (11)0.0044 (10)0.0060 (9)0.0052 (9)
C160.0265 (11)0.0194 (10)0.0170 (10)0.0021 (8)0.0051 (8)0.0002 (8)
C230.0276 (12)0.0280 (13)0.0386 (14)0.0020 (10)0.0097 (10)0.0094 (11)
C40.0193 (9)0.0124 (9)0.0177 (9)0.0026 (7)0.0007 (7)0.0014 (7)
C120.0309 (12)0.0137 (10)0.0354 (13)0.0028 (9)0.0036 (10)0.0037 (9)
C150.0438 (14)0.0236 (12)0.0216 (11)0.0023 (10)0.0055 (10)0.0047 (9)
C220.0321 (12)0.0132 (10)0.0352 (13)0.0054 (9)0.0048 (10)0.0059 (9)
C250.0502 (15)0.0189 (11)0.0246 (11)0.0088 (10)0.0088 (11)0.0063 (9)
Geometric parameters (Å, º) top
Co1—Cl12.2904 (6)C21—C231.521 (3)
Co1—Cl22.2688 (6)C21—C221.527 (3)
Co1—Cl32.2819 (6)C21—H211.0000
Co1—Cl42.2883 (6)C11—H11A0.9800
N1—C41.520 (3)C11—H11B0.9800
N1—C11.521 (2)C11—H11C0.9800
N1—C131.557 (3)C14—C161.523 (3)
N1—C161.568 (3)C14—H14A0.9800
N2—C31.515 (2)C14—H14B0.9800
N2—C21.519 (3)C14—H14C0.9800
N2—C241.565 (3)C16—C151.522 (3)
N2—C211.556 (3)C16—H161.0000
C3—C41.514 (3)C23—H23A0.9800
C3—H3A0.9900C23—H23B0.9800
C3—H3B0.9900C23—H23C0.9800
C1—C21.518 (3)C4—H4A0.9900
C1—H1A0.9900C4—H4B0.9900
C1—H1B0.9900C12—H12A0.9800
C24—C261.513 (3)C12—H12B0.9800
C24—C251.523 (3)C12—H12C0.9800
C24—H241.0000C15—H15A0.9800
C13—C121.523 (3)C15—H15B0.9800
C13—C111.525 (3)C15—H15C0.9800
C13—H131.0000C22—H22A0.9800
C2—H2A0.9900C22—H22B0.9800
C2—H2B0.9900C22—H22C0.9800
C26—H26A0.9800C25—H25A0.9800
C26—H26B0.9800C25—H25B0.9800
C26—H26C0.9800C25—H25C0.9800
Cl2—Co1—Cl1104.74 (2)C23—C21—H21105.4
Cl2—Co1—Cl3108.33 (2)C22—C21—H21105.4
Cl2—Co1—Cl4109.37 (3)N2—C21—H21105.4
Cl3—Co1—Cl1118.33 (3)C13—C11—H11A109.5
Cl3—Co1—Cl4106.25 (2)C13—C11—H11B109.5
Cl4—Co1—Cl1109.63 (2)H11A—C11—H11B109.5
C4—N1—C1104.79 (15)C13—C11—H11C109.5
C4—N1—C13110.74 (15)H11A—C11—H11C109.5
C1—N1—C13109.55 (15)H11B—C11—H11C109.5
C4—N1—C16106.49 (15)C16—C14—H14A109.5
C1—N1—C16106.93 (15)C16—C14—H14B109.5
C13—N1—C16117.53 (15)H14A—C14—H14B109.5
C3—N2—C2105.76 (15)C16—C14—H14C109.5
C3—N2—C24106.73 (14)H14A—C14—H14C109.5
C2—N2—C24106.01 (15)H14B—C14—H14C109.5
C3—N2—C21109.90 (15)C14—C16—C15111.10 (19)
C2—N2—C21110.48 (15)C14—C16—N1113.25 (17)
C24—N2—C21117.27 (16)C15—C16—N1115.22 (18)
N2—C3—C4114.30 (16)C14—C16—H16105.4
N2—C3—H3A108.7C15—C16—H16105.4
C4—C3—H3A108.7N1—C16—H16105.4
N2—C3—H3B108.7C21—C23—H23A109.5
C4—C3—H3B108.7C21—C23—H23B109.5
H3A—C3—H3B107.6H23A—C23—H23B109.5
N1—C1—C2114.19 (16)C21—C23—H23C109.5
N1—C1—H1A108.7H23A—C23—H23C109.5
C2—C1—H1A108.7H23B—C23—H23C109.5
N1—C1—H1B108.7N1—C4—C3113.97 (16)
C2—C1—H1B108.7N1—C4—H4A108.8
H1A—C1—H1B107.6C3—C4—H4A108.8
C26—C24—C25110.81 (19)N1—C4—H4B108.8
C26—C24—N2113.30 (16)C3—C4—H4B108.8
C25—C24—N2115.20 (17)H4A—C4—H4B107.7
C26—C24—H24105.5C13—C12—H12A109.5
C25—C24—H24105.5C13—C12—H12B109.5
N2—C24—H24105.5H12A—C12—H12B109.5
C12—C13—C11111.60 (18)C13—C12—H12C109.5
C12—C13—N1115.14 (17)H12A—C12—H12C109.5
C11—C13—N1113.05 (17)H12B—C12—H12C109.5
C12—C13—H13105.3C16—C15—H15A109.5
C11—C13—H13105.3C16—C15—H15B109.5
N1—C13—H13105.3H15A—C15—H15B109.5
N2—C2—C1113.92 (15)C16—C15—H15C109.5
N2—C2—H2A108.8H15A—C15—H15C109.5
C1—C2—H2A108.8H15B—C15—H15C109.5
N2—C2—H2B108.8C21—C22—H22A109.5
C1—C2—H2B108.8C21—C22—H22B109.5
H2A—C2—H2B107.7H22A—C22—H22B109.5
C24—C26—H26A109.5C21—C22—H22C109.5
C24—C26—H26B109.5H22A—C22—H22C109.5
H26A—C26—H26B109.5H22B—C22—H22C109.5
C24—C26—H26C109.5C24—C25—H25A109.5
H26A—C26—H26C109.5C24—C25—H25B109.5
H26B—C26—H26C109.5H25A—C25—H25B109.5
C23—C21—C22110.79 (18)C24—C25—H25C109.5
C23—C21—N2113.61 (18)H25A—C25—H25C109.5
C22—C21—N2115.14 (17)H25B—C25—H25C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···Cl20.992.803.319 (2)113
C13—H13···Cl3i1.002.783.665 (2)148
C21—H21···Cl1ii1.002.603.482 (2)147
C24—H24···Cl3i1.002.683.628 (2)157
C25—H25B···Cl2iii0.982.743.713 (2)174
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula(C16H36N2)[CoCl4]
Mr457.20
Crystal system, space groupMonoclinic, P21/n
Temperature (K)183
a, b, c (Å)7.1245 (3), 17.1830 (7), 17.3367 (7)
β (°) 94.640 (1)
V3)2115.41 (15)
Z4
Radiation typeMo Kα
µ (mm1)1.32
Crystal size (mm)0.60 × 0.50 × 0.04
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.505, 0.949
No. of measured, independent and
observed [I > 2σ(I)] reflections
24763, 7391, 4998
Rint0.052
(sin θ/λ)max1)0.762
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.129, 0.99
No. of reflections7391
No. of parameters252
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.92, 1.08

Computer programs: SMART (Siemens, 1995), SAINT (Siemens, 1995), SAINT and SADABS (Sheldrick, 2001), SHELXTL (Bruker, 2001), SHELXTL, DIAMOND (Brandenburg, 2000).

Selected geometric parameters (Å, º) top
Co1—Cl12.2904 (6)Co1—Cl32.2819 (6)
Co1—Cl22.2688 (6)Co1—Cl42.2883 (6)
Cl2—Co1—Cl1104.74 (2)Cl3—Co1—Cl1118.33 (3)
Cl2—Co1—Cl3108.33 (2)Cl3—Co1—Cl4106.25 (2)
Cl2—Co1—Cl4109.37 (3)Cl4—Co1—Cl1109.63 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···Cl20.992.803.319 (2)113.1
C13—H13···Cl3i1.002.783.665 (2)148.0
C21—H21···Cl1ii1.002.603.482 (2)147.3
C24—H24···Cl3i1.002.683.628 (2)157.4
C25—H25B···Cl2iii0.982.743.713 (2)174.0
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x+3/2, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds