Download citation
Download citation
link to html
The title compound [(CuDmp)2(CuI)(CuOtBu)] (Dmp = 2,6-Mes2C6H3 with Mes = 2,4,6–Me3C6H2), [Cu4I(C4H9O)(C24H25)2], was obtained as by-product of the synthesis of the copper aryl (CuDmp)2. It contains an almost planar central Cu4C2IO ring with two-coordinate Cu atoms and two different sets of Cu—C distances (average Cu—C = 1.952 and 2.032 Å; average Cu—O = 1.859 Å; average Cu—I = 2.4478 Å).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801013551/ya6052sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801013551/ya6052Isup2.hkl
Contains datablock I

CCDC reference: 172197

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.035
  • wR factor = 0.059
  • Data-to-parameter ratio = 15.8

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
GOODF_01 Alert C The least squares goodness of fit parameter lies outside the range 0.80 <> 2.00 Goodness of fit given = 0.720 PLAT_213 Alert C Atom C38 has ADP max/min Ratio ........... 3.50
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
2 Alert Level C = Please check

Comment top

The preparation of organocopper compounds of the type RCu usually involves the reaction of a copper(I) halide with an organolithium or -magnesium reagent in donor solvents like Et2O, THF or DMS (van Koten et al., 1995). A commonly encountered problem of this method is the contamination of the desired copper compounds with lithium or magnesium halides and the formation of stable mixed organocopper copper halide aggregates (Jansson et al., 1996, and references cited within). The use of copper tert-butoxide as an alternative halide-free starting material has recently permitted the preparation of the copper aryls CuC6H3Ph2-2,6 and CuC6H3Mes2-2,6 which are trimeric and dimeric, respectively, in the solid state (Niemeyer, 1998). As by-product of the synthesis of the latter compound the title complex, (I), has now been isolated in small yield.

The molecular structure of (I) shows a tetranuclear copper aggregate (Fig. 1) which consists of two trans-arylcopper moieties and one copper iodide and copper tert-butoxide unit, respectively. The almost planar central Cu4C2IO ring (Fig. 2) [the largest deviations from planarity are 0.075 (2) Å for Cu4 and 0.059 (3) Å for C25] features two-coordinate Cu atoms with an approximately linear environment [O—Cu1—C1 176.84 (14), C1—Cu2—I 160.42 (11), C25—Cu3—I 160.20 (11) and O—Cu4—C25 172.67 (16)°]. There are two different sets of Cu—C bond lengths. Shorter Cu1—C1 and Cu4—C25 distances [1.946 (4) and 1.957 (4) Å] and larger Cu1—C1···C4 and Cu4—C25···C28 angles [161.7 (2) and 161.2 (2)°] alternate with larger and smaller values for Cu2—C1 and Cu3–C25 [2.031 (4) and 2.033 (4) Å], and Cu2—C1···C4 and Cu3—C25···C28 [124.8 (2) and 125.1 (2)°], respectively. Therefore, the bonding to the aryl Cipso atoms can be described as an alternating 2 e-2c Cipso—Cu and π-type Cipso—Cu interaction. This view is in agreement with the alternative formulation of (I) as contact ion pair [Cu2I]+[Cu2(Dmp)2(OtBu)]-. In contrast, a rather symmetric bridging interaction is observed to the iodo [Cu2—I 2.4457 (6) Å and Cu3—I 2.4499 (6) Å] and tert-butoxide [Cu1—O 1.856 (3) Å and Cu4—O 1.861 (3) Å] ligands. With values of 2.3761 (7) (Cu1···Cu2), 2.3765 (7) (Cu3···Cu4), 2.7226 (8) (Cu2···Cu3) and 2.8578 (8) Å (Cu1···Cu4), the non-bonding copper–copper separations are of the same magnitude as previously observed for other copper organyls. A unique feature in (I) is the presence of a Cu—I—Cu bridge in which all three atoms possess coordination number 2.

Experimental top

A solution of n-BuLi (3.00 mmol) in 1.2 ml of hexane was added at ambient temperature to DmpI (1.07 g, 3.00 mmol) in 20 ml of toluene. After 2 h, CuOtBu (0.41 g, 3.00 mmol) was added via a solid-addition tube and stirring was continued for 14 h. The resulting amber solution was concentrated under reduced pressure. Cooling in a 248 K freezer afforded colorless crystals of (CuDmp)2 in 55% yield. All volatile materials were removed from the mother liquor and the residue was redissolved in a small amount of diethyl ether. After cooling to 248 K, colorless needles of (I) were obtained in ca 3% yield. The origin of the CuI content in (I) can be explained by the presence of LiI impurities (formed by a side reaction from nBuLi and nBuI) followed by an exchange reaction with CuOtBu. M.p.: crystals change color to orange > 353 K and decompose to a black liquid at 497–501 K. IR (Nujol, cm-1): 1610 (m), 1358 (m), 1173 (m), 1080 (w), 1028 (m), 1014 (w), 942 (m), 845 (s), 801 (ms), 770 (w), 740 (s), 716 (ms), 625 (m), 589 (w), 570 (m), 545 (w), 506 (w), 385 (w). EI—MS (70 eV): m/z (%) 1078.3 (0.003%) [M+ with 63Cu].

Refinement top

The H atoms were placed in the idealized positions and refined in a riding-model approximation, including free rotation for methyl groups. For most H atoms the assigned Ueq was allowed to refine freely. Isotropic displacement parameters being larger than 0.15 were constrained to 1.2 Ueq of the parent atom.

Computing details top

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1998); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot (at the 35% probability level) of (I). H atoms have been omitted for clarity.
[Figure 2] Fig. 2. View perpendicular to the central Cu4C2IO ring. Mes substituents and H atoms have been omitted for clarity.
trans-(µ2-tert-butoxy)bis(µ2-2,4,6,2'',4'',6''-hexamethyl-1,1':3';1''- terphenyl-2',2'-diyl)(µ2-iodo)tetracopper(I) top
Crystal data top
[Cu4(C24H25)2(C4H9O)I]F(000) = 1096
Mr = 1081.05Dx = 1.503 Mg m3
Triclinic, P1Melting point: crystals change color to orange at ca 353 K and decompose to a black liquid at 497-501 K K
a = 12.3307 (14) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.6105 (10) ÅCell parameters from 37 reflections
c = 16.3613 (12) Åθ = 11.5–12.5°
α = 89.734 (6)°µ = 2.44 mm1
β = 80.137 (7)°T = 173 K
γ = 72.592 (9)°Needle, colorless
V = 2388.8 (4) Å30.70 × 0.15 × 0.05 mm
Z = 2
Data collection top
Siemens P4
diffractometer
5430 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.050
Graphite monochromatorθmax = 26.0°, θmin = 2.0°
ω scansh = 1515
Absorption correction: ψ scan
(North et al., 1968)
k = 1415
Tmin = 0.280, Tmax = 0.888l = 1920
9829 measured reflections2 standard reflections every 198 reflections
9372 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059Only H-atom displacement parameters refined
S = 0.72 w = 1/[σ2(Fo2) + (0.0129P)2]
where P = (Fo2 + 2Fc2)/3
9372 reflections(Δ/σ)max = 0.002
594 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Cu4(C24H25)2(C4H9O)I]γ = 72.592 (9)°
Mr = 1081.05V = 2388.8 (4) Å3
Triclinic, P1Z = 2
a = 12.3307 (14) ÅMo Kα radiation
b = 12.6105 (10) ŵ = 2.44 mm1
c = 16.3613 (12) ÅT = 173 K
α = 89.734 (6)°0.70 × 0.15 × 0.05 mm
β = 80.137 (7)°
Data collection top
Siemens P4
diffractometer
5430 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.050
Tmin = 0.280, Tmax = 0.8882 standard reflections every 198 reflections
9829 measured reflections intensity decay: none
9372 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.059Only H-atom displacement parameters refined
S = 0.72Δρmax = 0.63 e Å3
9372 reflectionsΔρmin = 0.36 e Å3
594 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.08158 (5)0.13506 (5)0.79467 (3)0.02608 (13)
Cu20.09458 (5)0.13644 (5)0.64811 (3)0.03205 (15)
Cu30.24573 (5)0.25757 (5)0.63380 (3)0.03069 (14)
Cu40.23489 (5)0.26779 (5)0.78012 (3)0.02564 (13)
I0.17975 (3)0.19354 (3)0.515577 (18)0.03773 (9)
O0.1557 (3)0.1998 (2)0.86031 (16)0.0307 (7)
C10.0005 (4)0.0647 (4)0.7314 (2)0.0244 (10)
C20.0401 (4)0.0447 (4)0.6921 (2)0.0267 (10)
C30.0377 (4)0.0973 (4)0.6734 (3)0.0370 (12)
H3A0.00920.17010.64770.052 (15)*
C40.1542 (4)0.0466 (4)0.6911 (3)0.0376 (12)
H4A0.20580.08250.67550.060 (16)*
C50.1969 (4)0.0578 (4)0.7321 (3)0.0323 (11)
H5A0.27800.09180.74700.029 (12)*
C60.1218 (4)0.1122 (3)0.7513 (2)0.0236 (10)
C70.1678 (4)0.1080 (4)0.6693 (3)0.0287 (11)
C80.2336 (4)0.1473 (4)0.7309 (3)0.0320 (11)
C90.3492 (4)0.2081 (4)0.7068 (3)0.0371 (12)
H9A0.39390.23450.74870.018 (11)*
C100.4015 (4)0.2316 (4)0.6254 (3)0.0375 (12)
C110.3332 (4)0.1944 (4)0.5649 (3)0.0419 (14)
H11A0.36760.21000.50800.034 (12)*
C120.2173 (4)0.1355 (4)0.5850 (3)0.0340 (12)
C130.1819 (5)0.1281 (5)0.8226 (3)0.0468 (14)
H13A0.21690.19360.85240.062 (17)*
H13B0.09830.11540.83000.11 (3)*
H13C0.19690.06280.84470.061 (17)*
C140.5285 (4)0.2938 (5)0.5997 (4)0.0585 (17)
H14A0.53990.34110.54970.10 (2)*
H14B0.55570.34020.64470.07 (2)*
H14C0.57220.24040.58810.08 (2)*
C150.1504 (5)0.1053 (5)0.5152 (3)0.0493 (15)
H15A0.20310.10100.46410.070 (18)*
H15B0.09140.03290.52890.038 (14)*
H15C0.11310.16210.50720.09 (2)*
C160.1758 (4)0.2207 (4)0.8022 (2)0.0271 (10)
C170.2182 (4)0.2166 (4)0.8876 (3)0.0319 (11)
C180.2731 (4)0.3147 (4)0.9351 (3)0.0391 (12)
H18A0.29860.31070.99290.056 (16)*
C190.2920 (4)0.4172 (4)0.9018 (3)0.0417 (13)
C200.2525 (4)0.4208 (4)0.8173 (3)0.0422 (13)
H20A0.26590.49100.79280.058 (16)*
C210.1944 (4)0.3256 (4)0.7677 (3)0.0332 (11)
C220.2071 (5)0.1058 (4)0.9263 (3)0.0433 (13)
H22A0.22130.11650.98690.058 (16)*
H22B0.12910.05540.90730.039 (14)*
H22C0.26380.07370.90980.075 (19)*
C230.3514 (5)0.5233 (5)0.9551 (4)0.0715 (19)
H23A0.37070.50481.01300.11 (3)*
H23B0.42230.56410.93540.134*
H23C0.29970.56960.95160.10 (2)*
C240.1533 (5)0.3367 (4)0.6758 (3)0.0455 (13)
H24A0.15040.26970.64440.035 (13)*
H24B0.07600.34590.66780.067 (19)*
H24C0.20690.40180.65610.11 (3)*
C250.3363 (4)0.3262 (3)0.6992 (2)0.0235 (10)
C260.3118 (4)0.4350 (4)0.6694 (2)0.0286 (10)
C270.4005 (4)0.4770 (4)0.6335 (3)0.0352 (12)
H27A0.38270.54930.61230.025 (11)*
C280.5146 (5)0.4134 (4)0.6289 (3)0.0427 (13)
H28A0.57470.44180.60350.080 (19)*
C290.5419 (4)0.3085 (4)0.6608 (3)0.0364 (12)
H29A0.62050.26670.65920.035 (13)*
C300.4543 (4)0.2643 (4)0.6953 (2)0.0274 (10)
C310.1884 (4)0.5086 (4)0.6808 (3)0.0319 (11)
C320.1336 (5)0.5537 (4)0.7613 (3)0.0409 (13)
C330.0156 (5)0.6088 (5)0.7751 (4)0.068 (2)
H33A0.02210.63640.82980.051 (15)*
C340.0474 (5)0.6245 (5)0.7137 (5)0.067 (2)
C350.0099 (5)0.5883 (4)0.6340 (4)0.0590 (17)
H35A0.03270.60290.58990.042 (14)*
C360.1275 (5)0.5315 (4)0.6154 (3)0.0384 (12)
C370.2029 (5)0.5453 (5)0.8316 (3)0.0600 (18)
H37A0.15230.58670.88130.12 (2)*
H37B0.26650.57670.81450.08 (2)*
H37C0.23420.46700.84380.018 (11)*
C380.1752 (5)0.6793 (6)0.7282 (5)0.114 (3)
H38A0.19790.73050.77730.040 (16)*
H38B0.21500.62250.73720.13 (3)*
H38C0.19660.72080.67960.159*
C390.1881 (5)0.5034 (5)0.5258 (3)0.0533 (15)
H39A0.24380.42870.52130.059 (17)*
H39B0.22880.55770.50780.061 (17)*
H39C0.13090.50570.49040.09 (2)*
C400.4835 (3)0.1563 (4)0.7380 (2)0.0242 (10)
C410.5020 (4)0.0542 (4)0.6966 (2)0.0269 (10)
C420.5254 (4)0.0418 (4)0.7407 (3)0.0333 (11)
H42A0.54060.11140.71200.044 (14)*
C430.5273 (4)0.0397 (4)0.8251 (3)0.0375 (12)
C440.5122 (4)0.0615 (4)0.8646 (3)0.0368 (12)
H44A0.51540.06400.92210.022 (11)*
C450.4922 (4)0.1598 (4)0.8227 (3)0.0328 (11)
C460.4979 (5)0.0442 (4)0.6052 (2)0.0371 (12)
H46A0.42650.02880.59860.063 (17)*
H46B0.56450.01660.57820.11 (2)*
H46C0.50010.11410.57940.043 (14)*
C470.5462 (5)0.1465 (4)0.8723 (3)0.0556 (16)
H47A0.60780.15290.90450.08 (2)*
H47B0.56820.21060.83280.060 (17)*
H47C0.47470.14440.91010.12 (3)*
C480.4809 (4)0.2674 (4)0.8670 (3)0.0392 (13)
H48A0.47620.25660.92670.066 (17)*
H48B0.41060.32390.85730.056 (16)*
H48C0.54830.29200.84600.028 (12)*
C490.1058 (4)0.2462 (4)0.9406 (2)0.0362 (13)
C500.1961 (6)0.2675 (7)0.9836 (3)0.080 (2)
H50A0.25540.19700.98820.07 (2)*
H50B0.16010.30151.03920.082*
H50C0.23180.31790.95130.045 (15)*
C510.0129 (5)0.3598 (5)0.9329 (3)0.0630 (18)
H51A0.05130.34630.91110.056 (17)*
H51B0.04780.40580.89500.076 (19)*
H51C0.01590.39850.98770.076 (18)*
C520.0479 (5)0.1718 (5)0.9897 (3)0.0539 (16)
H52A0.01530.16420.96350.035 (13)*
H52B0.01700.20391.04640.064 (17)*
H52C0.10410.09840.99130.10 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0287 (3)0.0282 (3)0.0226 (3)0.0117 (3)0.0025 (2)0.0018 (2)
Cu20.0368 (4)0.0390 (4)0.0236 (3)0.0189 (3)0.0007 (3)0.0006 (3)
Cu30.0359 (4)0.0367 (4)0.0244 (3)0.0179 (3)0.0062 (3)0.0003 (2)
Cu40.0255 (3)0.0305 (3)0.0217 (3)0.0107 (3)0.0020 (2)0.0006 (2)
I0.0481 (2)0.0543 (2)0.01965 (14)0.02876 (19)0.00603 (13)0.00254 (14)
O0.0354 (19)0.036 (2)0.0253 (16)0.0183 (17)0.0054 (14)0.0001 (14)
C10.028 (3)0.027 (3)0.020 (2)0.013 (2)0.0006 (18)0.0029 (18)
C20.032 (3)0.028 (3)0.020 (2)0.010 (2)0.0017 (19)0.0013 (18)
C30.043 (3)0.031 (3)0.037 (3)0.012 (3)0.006 (2)0.012 (2)
C40.031 (3)0.039 (3)0.046 (3)0.017 (3)0.002 (2)0.011 (2)
C50.025 (3)0.034 (3)0.038 (3)0.009 (2)0.004 (2)0.000 (2)
C60.026 (3)0.023 (2)0.022 (2)0.009 (2)0.0026 (18)0.0014 (18)
C70.033 (3)0.020 (2)0.031 (2)0.009 (2)0.001 (2)0.0010 (19)
C80.030 (3)0.025 (3)0.037 (3)0.007 (2)0.003 (2)0.005 (2)
C90.035 (3)0.033 (3)0.045 (3)0.011 (2)0.011 (2)0.003 (2)
C100.026 (3)0.023 (3)0.057 (3)0.006 (2)0.008 (2)0.012 (2)
C110.053 (4)0.033 (3)0.035 (3)0.020 (3)0.018 (3)0.010 (2)
C120.036 (3)0.026 (3)0.038 (3)0.013 (2)0.007 (2)0.007 (2)
C130.051 (4)0.046 (4)0.033 (3)0.002 (3)0.004 (3)0.007 (3)
C140.034 (3)0.047 (4)0.088 (5)0.012 (3)0.009 (3)0.009 (4)
C150.072 (4)0.044 (4)0.025 (3)0.008 (3)0.006 (3)0.006 (2)
C160.023 (3)0.028 (3)0.028 (2)0.004 (2)0.0060 (19)0.0075 (19)
C170.028 (3)0.036 (3)0.033 (2)0.012 (2)0.006 (2)0.002 (2)
C180.035 (3)0.051 (4)0.031 (3)0.013 (3)0.002 (2)0.010 (2)
C190.034 (3)0.036 (3)0.053 (3)0.011 (3)0.000 (2)0.020 (3)
C200.044 (3)0.028 (3)0.058 (3)0.016 (3)0.007 (3)0.001 (2)
C210.033 (3)0.034 (3)0.035 (3)0.014 (2)0.003 (2)0.004 (2)
C220.049 (4)0.054 (4)0.028 (3)0.020 (3)0.005 (2)0.004 (2)
C230.072 (5)0.053 (4)0.084 (5)0.021 (4)0.003 (4)0.032 (4)
C240.052 (4)0.037 (3)0.043 (3)0.009 (3)0.005 (3)0.009 (3)
C250.024 (2)0.024 (3)0.025 (2)0.013 (2)0.0005 (18)0.0053 (18)
C260.036 (3)0.025 (3)0.024 (2)0.010 (2)0.000 (2)0.0066 (18)
C270.039 (3)0.024 (3)0.044 (3)0.016 (2)0.001 (2)0.000 (2)
C280.041 (3)0.035 (3)0.051 (3)0.018 (3)0.006 (3)0.001 (2)
C290.020 (3)0.040 (3)0.048 (3)0.010 (2)0.001 (2)0.002 (2)
C300.027 (3)0.029 (3)0.025 (2)0.010 (2)0.0002 (19)0.0054 (19)
C310.035 (3)0.027 (3)0.034 (2)0.014 (2)0.002 (2)0.004 (2)
C320.044 (3)0.027 (3)0.041 (3)0.001 (3)0.004 (2)0.007 (2)
C330.056 (4)0.046 (4)0.077 (5)0.000 (3)0.028 (4)0.023 (3)
C340.042 (4)0.035 (4)0.107 (6)0.001 (3)0.013 (4)0.033 (4)
C350.045 (4)0.038 (3)0.103 (5)0.013 (3)0.038 (4)0.036 (3)
C360.047 (3)0.024 (3)0.049 (3)0.015 (3)0.013 (3)0.011 (2)
C370.086 (5)0.042 (4)0.035 (3)0.002 (4)0.005 (3)0.012 (3)
C380.052 (5)0.044 (4)0.212 (10)0.012 (4)0.023 (5)0.061 (6)
C390.076 (4)0.040 (4)0.045 (3)0.013 (4)0.022 (3)0.011 (3)
C400.012 (2)0.030 (3)0.028 (2)0.004 (2)0.0020 (17)0.0035 (19)
C410.018 (2)0.034 (3)0.025 (2)0.003 (2)0.0017 (18)0.000 (2)
C420.031 (3)0.035 (3)0.029 (2)0.007 (2)0.001 (2)0.003 (2)
C430.032 (3)0.042 (3)0.032 (3)0.001 (3)0.004 (2)0.005 (2)
C440.026 (3)0.052 (3)0.027 (2)0.005 (3)0.001 (2)0.005 (2)
C450.027 (3)0.038 (3)0.035 (2)0.011 (2)0.006 (2)0.005 (2)
C460.053 (4)0.032 (3)0.025 (2)0.011 (3)0.005 (2)0.005 (2)
C470.063 (4)0.047 (4)0.048 (3)0.002 (3)0.014 (3)0.017 (3)
C480.035 (3)0.046 (3)0.034 (3)0.004 (3)0.014 (2)0.009 (2)
C490.040 (3)0.063 (4)0.017 (2)0.033 (3)0.006 (2)0.008 (2)
C500.065 (5)0.153 (8)0.031 (3)0.050 (6)0.001 (3)0.014 (4)
C510.066 (4)0.064 (4)0.051 (4)0.022 (4)0.016 (3)0.013 (3)
C520.060 (4)0.073 (5)0.033 (3)0.030 (4)0.003 (3)0.004 (3)
Geometric parameters (Å, º) top
Cu1—C11.946 (4)C25—C261.417 (6)
Cu1—O1.856 (3)C25—C301.421 (6)
Cu2—C12.031 (4)C26—C271.395 (5)
Cu2—I2.4457 (6)C26—C311.508 (6)
Cu3—C252.033 (4)C27—C281.384 (6)
Cu3—I2.4499 (6)C27—H27A0.9500
Cu4—O1.861 (3)C28—C291.387 (6)
Cu4—C251.957 (4)C28—H28A0.9500
Cu1—Cu22.3761 (7)C29—C301.394 (5)
Cu1—Cu42.8578 (8)C29—H29A0.9500
Cu2—Cu32.7227 (8)C30—C401.502 (6)
Cu3—Cu42.3766 (7)C31—C361.391 (6)
O—C491.400 (5)C31—C321.410 (6)
C1—C61.414 (6)C32—C331.391 (7)
C1—C21.433 (6)C32—C371.531 (7)
C2—C31.393 (5)C33—C341.351 (8)
C2—C71.518 (6)C33—H33A0.9500
C3—C41.366 (6)C34—C351.380 (8)
C3—H3A0.9500C34—C381.497 (8)
C4—C51.391 (6)C35—C361.392 (7)
C4—H4A0.9500C35—H35A0.9500
C5—C61.383 (5)C36—C391.518 (6)
C5—H5A0.9500C37—H37A0.9800
C6—C161.511 (5)C37—H37B0.9800
C7—C81.398 (6)C37—H37C0.9800
C7—C121.407 (5)C38—H38A0.9800
C8—C91.390 (6)C38—H38B0.9800
C8—C131.517 (6)C38—H38C0.9800
C9—C101.368 (6)C39—H39A0.9800
C9—H9A0.9500C39—H39B0.9800
C10—C111.398 (7)C39—H39C0.9800
C10—C141.513 (6)C40—C411.396 (6)
C11—C121.381 (6)C40—C451.410 (5)
C11—H11A0.9500C41—C421.387 (6)
C12—C151.504 (6)C41—C461.512 (5)
C13—H13A0.9800C42—C431.386 (6)
C13—H13B0.9800C42—H42A0.9500
C13—H13C0.9800C43—C441.380 (6)
C14—H14A0.9800C43—C471.526 (6)
C14—H14B0.9800C44—C451.391 (6)
C14—H14C0.9800C44—H44A0.9500
C15—H15A0.9800C45—C481.499 (6)
C15—H15B0.9800C46—H46A0.9800
C15—H15C0.9800C46—H46B0.9800
C16—C211.406 (6)C46—H46C0.9800
C16—C171.412 (5)C47—H47A0.9800
C17—C181.385 (6)C47—H47B0.9800
C17—C221.510 (6)C47—H47C0.9800
C18—C191.371 (7)C48—H48A0.9800
C18—H18A0.9500C48—H48B0.9800
C19—C201.391 (6)C48—H48C0.9800
C19—C231.514 (6)C49—C521.494 (6)
C20—C211.381 (6)C49—C501.502 (6)
C20—H20A0.9500C49—C511.564 (7)
C21—C241.523 (6)C50—H50A0.9800
C22—H22A0.9800C50—H50B0.9800
C22—H22B0.9800C50—H50C0.9800
C22—H22C0.9800C51—H51A0.9800
C23—H23A0.9800C51—H51B0.9800
C23—H23B0.9800C51—H51C0.9800
C23—H23C0.9800C52—H52A0.9800
C24—H24A0.9800C52—H52B0.9800
C24—H24B0.9800C52—H52C0.9800
C24—H24C0.9800
O—Cu1—C1176.84 (14)H24A—C24—H24C109.5
O—Cu1—Cu2128.17 (9)H24B—C24—H24C109.5
C1—Cu1—Cu254.98 (11)C26—C25—C30117.4 (4)
O—Cu1—Cu439.81 (8)C26—C25—Cu4127.3 (3)
C1—Cu1—Cu4143.34 (11)C30—C25—Cu4111.5 (3)
Cu2—Cu1—Cu488.38 (2)C26—C25—Cu3101.3 (3)
C1—Cu2—Cu151.69 (11)C30—C25—Cu3115.6 (3)
C1—Cu2—I160.42 (11)Cu4—C25—Cu373.07 (13)
Cu1—Cu2—I147.87 (3)C27—C26—C25121.0 (4)
C1—Cu2—Cu3143.29 (11)C27—C26—C31119.5 (4)
Cu1—Cu2—Cu391.60 (2)C25—C26—C31119.5 (4)
I—Cu2—Cu356.284 (18)C28—C27—C26120.0 (5)
C25—Cu3—Cu451.99 (11)C28—C27—H27A120.0
C25—Cu3—I160.20 (11)C26—C27—H27A120.0
Cu4—Cu3—I147.75 (3)C27—C28—C29120.7 (5)
C25—Cu3—Cu2143.45 (11)C27—C28—H28A119.7
Cu4—Cu3—Cu291.63 (2)C29—C28—H28A119.7
I—Cu3—Cu256.137 (18)C28—C29—C30120.0 (5)
O—Cu4—C25172.67 (16)C28—C29—H29A120.0
O—Cu4—Cu3127.93 (9)C30—C29—H29A120.0
C25—Cu4—Cu354.94 (11)C29—C30—C25120.8 (4)
O—Cu4—Cu139.69 (8)C29—C30—C40119.9 (4)
C25—Cu4—Cu1142.90 (11)C25—C30—C40118.9 (4)
Cu3—Cu4—Cu188.33 (2)C36—C31—C32119.7 (5)
Cu2—I—Cu367.58 (2)C36—C31—C26122.3 (4)
C49—O—Cu1123.5 (3)C32—C31—C26118.0 (4)
C49—O—Cu4123.8 (3)C33—C32—C31118.6 (5)
Cu1—O—Cu4100.51 (13)C33—C32—C37120.6 (5)
C6—C1—C2116.1 (4)C31—C32—C37120.8 (5)
C6—C1—Cu1112.7 (3)C34—C33—C32122.5 (6)
C2—C1—Cu1127.6 (3)C34—C33—H33A118.7
C6—C1—Cu2120.0 (3)C32—C33—H33A118.7
C2—C1—Cu297.4 (3)C33—C34—C35117.8 (6)
Cu1—C1—Cu273.33 (14)C33—C34—C38123.2 (7)
C3—C2—C1120.5 (4)C35—C34—C38119.0 (7)
C3—C2—C7117.3 (4)C34—C35—C36123.0 (6)
C1—C2—C7122.2 (4)C34—C35—H35A118.5
C4—C3—C2121.5 (4)C36—C35—H35A118.5
C4—C3—H3A119.3C31—C36—C35117.9 (5)
C2—C3—H3A119.3C31—C36—C39121.4 (5)
C3—C4—C5119.6 (4)C35—C36—C39120.5 (5)
C3—C4—H4A120.2C32—C37—H37A109.5
C5—C4—H4A120.2C32—C37—H37B109.5
C6—C5—C4120.1 (4)H37A—C37—H37B109.5
C6—C5—H5A119.9C32—C37—H37C109.5
C4—C5—H5A119.9H37A—C37—H37C109.5
C5—C6—C1122.1 (4)H37B—C37—H37C109.5
C5—C6—C16116.3 (4)C34—C38—H38A109.5
C1—C6—C16121.3 (4)C34—C38—H38B109.5
C8—C7—C12120.0 (4)H38A—C38—H38B109.5
C8—C7—C2120.8 (4)C34—C38—H38C109.5
C12—C7—C2119.0 (4)H38A—C38—H38C109.5
C9—C8—C7118.6 (4)H38B—C38—H38C109.5
C9—C8—C13119.4 (5)C36—C39—H39A109.5
C7—C8—C13122.0 (4)C36—C39—H39B109.5
C10—C9—C8122.9 (5)H39A—C39—H39B109.5
C10—C9—H9A118.5C36—C39—H39C109.5
C8—C9—H9A118.5H39A—C39—H39C109.5
C9—C10—C11117.5 (5)H39B—C39—H39C109.5
C9—C10—C14122.5 (5)C41—C40—C45119.7 (4)
C11—C10—C14120.0 (5)C41—C40—C30122.2 (4)
C12—C11—C10122.2 (4)C45—C40—C30118.1 (4)
C12—C11—H11A118.9C42—C41—C40118.9 (4)
C10—C11—H11A118.9C42—C41—C46118.7 (4)
C11—C12—C7118.7 (5)C40—C41—C46122.4 (4)
C11—C12—C15117.8 (4)C43—C42—C41122.4 (5)
C7—C12—C15123.5 (5)C43—C42—H42A118.8
C8—C13—H13A109.5C41—C42—H42A118.8
C8—C13—H13B109.5C44—C43—C42118.0 (5)
H13A—C13—H13B109.5C44—C43—C47121.3 (4)
C8—C13—H13C109.5C42—C43—C47120.7 (5)
H13A—C13—H13C109.5C43—C44—C45121.9 (4)
H13B—C13—H13C109.5C43—C44—H44A119.0
C10—C14—H14A109.5C45—C44—H44A119.0
C10—C14—H14B109.5C44—C45—C40119.0 (4)
H14A—C14—H14B109.5C44—C45—C48120.3 (4)
C10—C14—H14C109.5C40—C45—C48120.7 (4)
H14A—C14—H14C109.5C41—C46—H46A109.5
H14B—C14—H14C109.5C41—C46—H46B109.5
C12—C15—H15A109.5H46A—C46—H46B109.5
C12—C15—H15B109.5C41—C46—H46C109.5
H15A—C15—H15B109.5H46A—C46—H46C109.5
C12—C15—H15C109.5H46B—C46—H46C109.5
H15A—C15—H15C109.5C43—C47—H47A109.5
H15B—C15—H15C109.5C43—C47—H47B109.5
C21—C16—C17118.1 (4)H47A—C47—H47B109.5
C21—C16—C6123.3 (4)C43—C47—H47C109.5
C17—C16—C6118.4 (4)H47A—C47—H47C109.5
C18—C17—C16119.7 (4)H47B—C47—H47C109.5
C18—C17—C22120.2 (4)C45—C48—H48A109.5
C16—C17—C22120.0 (4)C45—C48—H48B109.5
C19—C18—C17122.5 (5)H48A—C48—H48B109.5
C19—C18—H18A118.8C45—C48—H48C109.5
C17—C18—H18A118.8H48A—C48—H48C109.5
C18—C19—C20117.6 (4)H48B—C48—H48C109.5
C18—C19—C23121.5 (5)O—C49—C52110.8 (4)
C20—C19—C23120.9 (5)O—C49—C50110.0 (4)
C21—C20—C19122.1 (5)C52—C49—C50110.5 (4)
C21—C20—H20A119.0O—C49—C51108.0 (4)
C19—C20—H20A119.0C52—C49—C51108.7 (4)
C20—C21—C16119.9 (4)C50—C49—C51108.7 (5)
C20—C21—C24118.8 (5)C49—C50—H50A109.5
C16—C21—C24121.2 (4)C49—C50—H50B109.5
C17—C22—H22A109.5H50A—C50—H50B109.5
C17—C22—H22B109.5C49—C50—H50C109.5
H22A—C22—H22B109.5H50A—C50—H50C109.5
C17—C22—H22C109.5H50B—C50—H50C109.5
H22A—C22—H22C109.5C49—C51—H51A109.5
H22B—C22—H22C109.5C49—C51—H51B109.5
C19—C23—H23A109.5H51A—C51—H51B109.5
C19—C23—H23B109.5C49—C51—H51C109.5
H23A—C23—H23B109.5H51A—C51—H51C109.5
C19—C23—H23C109.5H51B—C51—H51C109.5
H23A—C23—H23C109.5C49—C52—H52A109.5
H23B—C23—H23C109.5C49—C52—H52B109.5
C21—C24—H24A109.5H52A—C52—H52B109.5
C21—C24—H24B109.5C49—C52—H52C109.5
H24A—C24—H24B109.5H52A—C52—H52C109.5
C21—C24—H24C109.5H52B—C52—H52C109.5

Experimental details

Crystal data
Chemical formula[Cu4(C24H25)2(C4H9O)I]
Mr1081.05
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)12.3307 (14), 12.6105 (10), 16.3613 (12)
α, β, γ (°)89.734 (6), 80.137 (7), 72.592 (9)
V3)2388.8 (4)
Z2
Radiation typeMo Kα
µ (mm1)2.44
Crystal size (mm)0.70 × 0.15 × 0.05
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.280, 0.888
No. of measured, independent and
observed [I > 2σ(I)] reflections
9829, 9372, 5430
Rint0.050
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.059, 0.72
No. of reflections9372
No. of parameters594
H-atom treatmentOnly H-atom displacement parameters refined
Δρmax, Δρmin (e Å3)0.63, 0.36

Computer programs: XSCANS (Siemens, 1994), XSCANS, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 1998), SHELXTL.

Selected geometric parameters (Å, º) top
Cu1—C11.946 (4)Cu4—O1.861 (3)
Cu1—O1.856 (3)Cu4—C251.957 (4)
Cu2—C12.031 (4)Cu1—Cu22.3761 (7)
Cu2—I2.4457 (6)Cu1—Cu42.8578 (8)
Cu3—C252.033 (4)Cu2—Cu32.7227 (8)
Cu3—I2.4499 (6)Cu3—Cu42.3766 (7)
O—Cu1—C1176.84 (14)Cu2—I—Cu367.58 (2)
C1—Cu2—I160.42 (11)Cu1—O—Cu4100.51 (13)
C25—Cu3—I160.20 (11)Cu1—C1—Cu273.33 (14)
O—Cu4—C25172.67 (16)Cu4—C25—Cu373.07 (13)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds