Download citation
Download citation
link to html
The stereochemistry of the title compound, C15H26O2, has been established. Intermolecular hydrogen bonds are observed between the hydroxyl groups.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801014374/cf6072sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801014374/cf6072Isup2.hkl
Contains datablock I

CCDC reference: 175348

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.046
  • wR factor = 0.117
  • Data-to-parameter ratio = 10.4

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Red Alert Alert Level A:
EXPT_002 Alert A _exptl_crystal_density_meas is missing, although a method has been given. Density measured experimentally (Mg m-3). The following tests will not be performed. DENSX_01
Amber Alert Alert Level B:
DENSM_01 Alert B _exptl_crystal_density_method is given but no value of _exptl_crystal_density_meas is reported.
Yellow Alert Alert Level C:
CRYSC_01 Alert C The word below has not been recognised as a standard identifier. incolore CRYSC_01 Alert C No recognised colour has been given for crystal colour. General Notes
REFLT_03 From the CIF: _diffrn_reflns_theta_max 25.60 From the CIF: _reflns_number_total 1554 Count of symmetry unique reflns 1582 Completeness (_total/calc) 98.23% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.
1 Alert Level A = Potentially serious problem
1 Alert Level B = Potential problem
2 Alert Level C = Please check

Comment top

L'étude de la composition chimique de l'huile essentielle de Cèdre de l'Atlas (Joseph & Dev, 1968; Nambudiry & Rao, 1974; Teisseire & Plattier, 1974) a toujours montré que, lors de l'extraction, le β-himachalène est le sesquiterpène majoritaire de la fraction des hydrocarbures. Ce composé a fait l'objet d'une hémisynthèse importante (Chiaroni et al., 1996; Lassaba et al., 1997) dans le but de préparer des produits aux propriétés olfactives utilisables dans la parfumerie et la cosmétique. Les résultats que nous rapportons dans ce travail concerne l'étude structurale des produits obtenus par oxydation du β-himachalène avec le permanganate de potassium. Ainsi, l'action d'un équivalent de KMnO4, finement broyé, sur le β-himachalène dans un mélange d'acétone–eau (9/1) à une température de 263 K conduit régiosélectivement avec un rendement de 65% à l'himachal-2-ène-6,7-diol dont la structure a été déterminée par des études RMN 1H, 13C et par spectrométrie de masse.

Sur la base de la connaissance de la structure absolue du fragment himachalène (Joseph & Dev, 1968; Chiaroni et al., 1991), la configuration des atomes de carbone en position 1, 6 e t 7 a été déterminée par une étude par diffraction des RX d'un monocristal de ce produit ce qui nous a permis d'identifier le (1R,6S,7R)-himachal-2-ène-6,7-diol, (I) (Fig. 1). La double liaison C2C3 confère au cycle à 6 chaînons une conformation enveloppe: l'atome C6 est situé à 0.640 (2) Å du plan moyen formé par les atomes C1–C5 (écart type: 0.0117 Å). Le fragment C1—C6—C8—C9—C10 du cycle à 7 chaînons est plan (écart type: 0.0747 Å), avec C7 situé à 0.725 (2) Å e t C11 à -0.739 (2) Å. On note des variations des distances C—C importantes, de 1.492 (4) à 1.569 (3) Å (Tableau 1). Les atomes d'oxygène des deux diols sont situés à 2.654 (2) Å, mais l'angle O12—H12···O13 [120.29 (16)°] n'est pas favorable à une interaction de type hydrogène. Par contre, il existe une liaison hydrogène inter-moléculaire reliant les deux hydroxyles O13 et O12 (Tableau 2).

Experimental top

Dans un réacteur contenant 2 g (9,8 mmol) de β-himachalène solubilisé dans une solution de 30 ml d'un mélange acétone–eau (9/1) e t maintenu sous agitation à une température de 263 K, on ajoute progressivement 1,54 g (9,8 mmol) de permanganate de potassium finement broyé. Après 16 h, la solution est filtrée sur célite puis extraite avec de l'éther. Après avoir évaporé une bonne partie de l'acétone, les phases éthérées sont lavées avec une solution aqueuse d'hydrogénocarbonate de sodium à 15% puis à l'eau, séchées sur sulfate de magnésium et concentrées sous pression réduite. Le résidu obtenu est chromatographié sur colonne de gel de silice avec comme éluant le m\' elange héxane/acétate d'éthyle (95/5). Rendement 65%; point de fusion 359 K. Les cristaux ont été préparés par évaporation, à température ambiante, de solutions saturées dans l'héxane.

Refinement top

L'absence d'atomes présentant une diffusion anomale significative ne permet pas de déterminer la configuration absolue de ces molécules. Les réflexions ont donc été moyennées en appliquant la loi de Friedel avant affinement.

Computing details top

Data collection: KappaCCD Reference Manual (Nonius, 1998); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: maXus (Mackay et al., 1999).

Figures top
[Figure 1] Fig. 1. Dessin ORTEPII (Johnson, 1976) du composé (I). Les ellipsoides de vibration des atomes ont une probabilité de 50%.
(I) top
Crystal data top
C15H26O2Dx = 1.110 Mg m3
Mr = 238.37Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 8437 reflections
a = 5.9498 (2) Åθ = 1.0–25.6°
b = 9.7014 (4) ŵ = 0.07 mm1
c = 24.7207 (9) ÅT = 298 K
V = 1426.9 (1) Å3Cube, incolore
Z = 40.45 × 0.40 × 0.40 mm
F(000) = 552
Data collection top
KappaCCD
diffractometer
Rint = 0.038
Radiation source: tube scéllé, foyer finθmax = 25.6°
ϕ scanh = 77
8437 measured reflectionsk = 1111
1554 independent reflectionsl = 030
1482 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters not refined
S = 1.14 w = 1/[σ2(Fo2) + (0.051P)2 + 0.2724P]
where P = (Fo2 + 2Fc2)/3
1608 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.11 e Å3
Crystal data top
C15H26O2V = 1426.9 (1) Å3
Mr = 238.37Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.9498 (2) ŵ = 0.07 mm1
b = 9.7014 (4) ÅT = 298 K
c = 24.7207 (9) Å0.45 × 0.40 × 0.40 mm
Data collection top
KappaCCD
diffractometer
1482 reflections with I > 2σ(I)
8437 measured reflectionsRint = 0.038
1554 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.117H-atom parameters not refined
S = 1.14Δρmax = 0.14 e Å3
1608 reflectionsΔρmin = 0.11 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O120.5586 (3)0.10413 (15)0.28912 (6)0.0461 (4)
H120.64720.02070.27860.066*
O130.5055 (3)0.16673 (16)0.28099 (7)0.0525 (4)
H130.49790.23110.25800.073*
C10.4924 (3)0.00635 (18)0.37631 (8)0.0332 (4)
H10.62810.04510.37030.054*
C20.5594 (5)0.1410 (2)0.40233 (8)0.0469 (5)
H20.68140.13350.42760.068*
C30.4658 (6)0.2617 (2)0.39342 (10)0.0594 (7)
C40.2798 (6)0.2808 (2)0.35362 (11)0.0645 (8)
H4A0.33290.33800.32460.087*
H4B0.15410.32450.37090.087*
C50.1989 (5)0.1476 (2)0.32664 (10)0.0509 (6)
H5A0.13850.16680.29140.071*
H5B0.08350.10900.34920.071*
C60.3822 (4)0.03923 (19)0.32077 (8)0.0355 (4)
C70.3038 (4)0.0877 (2)0.28691 (9)0.0454 (5)
C80.1153 (5)0.1727 (3)0.31328 (13)0.0641 (7)
H8A0.01420.10520.32790.084*
H8B0.04470.21880.28340.084*
C90.1751 (6)0.2748 (3)0.35747 (15)0.0766 (9)
H9A0.03870.28950.37740.099*
H9B0.21420.35760.33840.099*
C100.3606 (5)0.2387 (2)0.39720 (12)0.0602 (7)
H10A0.50320.25310.37990.081*
H10B0.35080.29570.42890.081*
C110.3760 (4)0.0911 (2)0.41849 (9)0.0417 (5)
C140.2225 (6)0.0436 (3)0.23089 (11)0.0676 (8)
H14A0.33780.01050.21390.088*
H14B0.19170.12350.20920.088*
H14C0.08840.01060.23440.088*
C150.1481 (5)0.0386 (3)0.43849 (11)0.0602 (7)
H15A0.04610.03070.40860.080*
H15B0.08850.10260.46440.080*
H15C0.16670.04990.45520.080*
C160.5272 (5)0.0970 (3)0.46917 (11)0.0644 (8)
H16A0.54230.00730.48520.086*
H16B0.46150.15910.49490.086*
H16C0.67270.13050.45870.086*
C170.5425 (11)0.3909 (3)0.42168 (15)0.1039 (16)
H17A0.66030.36900.44680.124*
H17B0.59750.45520.39530.124*
H17C0.41830.43110.44080.124*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O120.0582 (10)0.0420 (8)0.0382 (7)0.0000 (7)0.0051 (8)0.0060 (6)
O130.0584 (10)0.0455 (8)0.0537 (9)0.0111 (8)0.0030 (9)0.0179 (7)
C10.0310 (9)0.0339 (9)0.0347 (9)0.0039 (8)0.0015 (9)0.0037 (7)
C20.0585 (14)0.0459 (11)0.0363 (10)0.0041 (11)0.0055 (11)0.0019 (9)
C30.095 (2)0.0395 (11)0.0441 (11)0.0017 (14)0.0008 (15)0.0075 (9)
C40.096 (2)0.0426 (12)0.0550 (14)0.0285 (15)0.0003 (16)0.0035 (11)
C50.0594 (14)0.0496 (12)0.0437 (12)0.0232 (12)0.0077 (12)0.0010 (10)
C60.0399 (10)0.0341 (9)0.0323 (9)0.0047 (9)0.0010 (9)0.0007 (8)
C70.0466 (12)0.0447 (11)0.0447 (12)0.0039 (10)0.0085 (11)0.0094 (9)
C80.0565 (15)0.0635 (15)0.0723 (17)0.0178 (14)0.0114 (15)0.0129 (14)
C90.087 (2)0.0530 (15)0.090 (2)0.0286 (16)0.004 (2)0.0001 (15)
C100.0720 (17)0.0399 (11)0.0686 (16)0.0044 (12)0.0047 (16)0.0142 (11)
C110.0400 (11)0.0457 (11)0.0393 (10)0.0022 (10)0.0019 (10)0.0109 (9)
C140.080 (2)0.0742 (17)0.0486 (14)0.0095 (17)0.0212 (15)0.0153 (12)
C150.0490 (14)0.0815 (18)0.0501 (13)0.0048 (14)0.0119 (13)0.0098 (13)
C160.0612 (16)0.0815 (18)0.0506 (13)0.0026 (16)0.0073 (13)0.0270 (13)
C170.181 (5)0.0498 (15)0.081 (2)0.003 (2)0.015 (3)0.0261 (15)
Geometric parameters (Å, º) top
O12—C61.453 (3)C5—C61.521 (3)
O13—C71.431 (3)C6—C71.561 (3)
C1—C21.510 (3)C7—C141.528 (4)
C1—C61.554 (3)C7—C81.537 (4)
C1—C111.569 (3)C8—C91.517 (5)
C2—C31.315 (3)C9—C101.518 (4)
C3—C41.492 (4)C10—C111.529 (3)
C3—C171.506 (4)C11—C151.530 (3)
C4—C51.532 (4)C11—C161.544 (3)
C2—C1—C6108.07 (15)O13—C7—C14108.8 (2)
C2—C1—C11110.77 (17)O13—C7—C8111.6 (2)
C6—C1—C11121.65 (17)C14—C7—C8107.7 (2)
C3—C2—C1125.9 (2)O13—C7—C6103.12 (18)
C2—C3—C4122.4 (2)C14—C7—C6111.1 (2)
C2—C3—C17122.3 (3)C8—C7—C6114.4 (2)
C4—C3—C17115.3 (3)C9—C8—C7119.0 (3)
C3—C4—C5114.5 (2)C8—C9—C10119.1 (2)
C6—C5—C4113.5 (2)C9—C10—C11118.8 (2)
O12—C6—C5105.64 (16)C10—C11—C15111.7 (2)
O12—C6—C1105.06 (17)C10—C11—C16106.2 (2)
C5—C6—C1111.09 (16)C15—C11—C16105.5 (2)
O12—C6—C7105.60 (17)C10—C11—C1111.22 (19)
C5—C6—C7112.49 (19)C15—C11—C1113.94 (19)
C1—C6—C7115.96 (16)C16—C11—C1107.75 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13···O12i0.85 (1)2.01 (1)2.844 (2)171 (1)
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H26O2
Mr238.37
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)5.9498 (2), 9.7014 (4), 24.7207 (9)
V3)1426.9 (1)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.45 × 0.40 × 0.40
Data collection
DiffractometerKappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8437, 1554, 1482
Rint0.038
(sin θ/λ)max1)0.608
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.117, 1.14
No. of reflections1608
No. of parameters154
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.14, 0.11

Computer programs: KappaCCD Reference Manual (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), maXus (Mackay et al., 1999).

Selected geometric parameters (Å, º) top
O12—C61.453 (3)C3—C41.492 (4)
O13—C71.431 (3)C3—C171.506 (4)
C1—C61.554 (3)C6—C71.561 (3)
C1—C111.569 (3)C9—C101.518 (4)
C2—C31.315 (3)C11—C161.544 (3)
C2—C1—C6108.07 (15)C4—C3—C17115.3 (3)
C2—C1—C11110.77 (17)C1—C6—C7115.96 (16)
C6—C1—C11121.65 (17)C9—C8—C7119.0 (3)
C3—C2—C1125.9 (2)C8—C9—C10119.1 (2)
C2—C3—C4122.4 (2)C9—C10—C11118.8 (2)
C2—C3—C17122.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13···O12i0.846 (2)2.006 (2)2.844 (2)171.0 (1)
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds