Download citation
Download citation
link to html
The title compound, C19H23N2O5P, is one of two diastereomers of an aryl­phospho­namide hydro­xamate. The absolute configuration has been determined to establish the relationship between the stereochemistry at the P atom and the activity in inhibition of matrix metalloproteinases.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801014222/ob6066sup1.cif
Contains datablocks default1, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801014222/ob6066Isup2.hkl
Contains datablock I

CCDC reference: 175349

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.041
  • wR factor = 0.102
  • Data-to-parameter ratio = 10.6

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Red Alert Alert Level A:
PLAT_706 Alert A H...A Calc 44.44(2), Rep 2.12(2), Dev. 2116.00 Sigma H10 -O1 1.555 3.566 PLAT_707 Alert A D...A Calc 44.458(9), Rep 2.951(2), Dev. 4611.89 Sigma N2 -O1 1.555 3.566 PLAT_708 Alert A D-H..A Calc 90.3(14), Rep 158(2), Dev. 48.36 Sigma N2 -H10 -O1 1.555 1.555 3.566
Amber Alert Alert Level B:
THETM_01 Alert B The value of sine(theta_max)/wavelength is less than 0.575 Calculated sin(theta_max)/wavelength = 0.5726 General Notes
REFLT_03 From the CIF: _diffrn_reflns_theta_max 61.99 From the CIF: _reflns_number_total 3303 Count of symmetry unique reflns 1731 Completeness (_total/calc) 190.81% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1572 Fraction of Friedel pairs measured 0.908 Are heavy atom types Z>Si present yes Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.
3 Alert Level A = Potentially serious problem
1 Alert Level B = Potential problem
0 Alert Level C = Please check

Comment top

Matrix metalloproteinases (MMPs) are a family of zinc–metalloproteinases involved in the extracellular matrix degradation (Woessner, 1991). So far, more than 20 MMPs have been isolated and they are implicated in the pathological processes of a variety diseases associated with excessive degradation of the extracellular matrix, such as tumor metastasis (Yip et al., 1999), rheumatoid arthritis and osteoarthritis (Clark et al., 2000), multiple sclerosis (Gijbels et al., 1994). Therefore, a number of laboratories have energetically conducted the development of MMP inhibitors for the curatives of the diseases (Whittaker et al., 1999).

Recently, our group has reported that a phosphonamide-based hydroxamate showed potent inhibitory activities against MMP-1, -3, -9 (Sawa et al., 2001). It was found that one of the two diastereomers derived from the chirality at the P atom only showed potent inhibition against MMPs [active isomer: (II)], while the another isomer was inactive [inactive isomer: (I)]. This result suggested that the stereochemistry at the P atom was very important for the inhibition of the enzymes. Therefore, the establishment of the absolute configuration of the P atom would be a great help to study the interactions of the inhibitor in the active sites of MMPs. Moreover, it seems to be worthwhile information for the design of protease inhibitors. The inactive isomer (I) was used to X-ray analysis instead of the active isomer (II), because (I) could be much easily crystallized than (II).

As shown in Fig. 1, the configuration of the P atom of the inactive isomer (I) was determined to be S. The configuration of one of the two chiral centers, the α-carbon of the hydroxamate group was already known, because both (I) and (II) were synthesized from the known R-form of the starting material. The obtained configuration of the α-carbon, C2 is consistent with this stereochemistry (R configuration). Hence, the P atom of the active isomer (II) is in THE R configuration. Recently, Pikul et al. (1999) reported that a phosphinamide-based hydroxamate (III) having AN R configuration at the P atom exhibited inhibitory activities against MMPs, while the S isomer at the P atom was a poor inhibitor. As expected, the stereochemistry of the P atom of (II) was consistent with that of (III).

The structural data of (I) reveals that the non-aromatic portion in the tetrahydroisoquinoline unit adopts a half-chair conformation. The torsion angles C2—C3—C9—C8 and N1—C1—C8—C9 are 29.7 (4) and -9.5 (4)°, respectively. Comparison of the phosphonamide portion of (I) with the corresponding phosphinamide portion of (III) reveals that the structural differences as follows: The bond lengths around the P atom of (I), P1—O3, P1—N1 and P1—C13 are similar to the corresponding bond lengths of (III) in the range of 0.02 Å. On the other hand, the bond angles around the P atom of (I) are different from those of (III). The O3—P1—C13 bond angle of (I) is larger than the corresponding bond angle of (III) [114.0 (1) and 108.3°, respectively], whereas the O4—P1—C13 and N1—P1—C13 bond angles are smaller than those of (III) [O4—P1—C13 105.5 (1)° for (I) and 108.3° for (III); N1—P1—C13 107.9 (1)° for (I) and 110.5° for (III)]. Namely, P1—C13 bond of (I) leans to the N1—P1—O4 plane compared to that of (III).

Experimental top

The synthesis of the title compound is reported elsewhere (Sawa et al., 2001). Crystals of (I) were obtained by recrystallization from EtOH at 293 K. The melting point of (I) is 440.0–440.5 K. The optical rotation of (I), [α]D20, is +68.43° (c 1.02, MeOH) and that of (II) is +18.48° (c 1.10, MeOH).

Refinement top

θmax(Cu Kα) = 62°, which was lower than 67°, because of the restriction of the diffractometer. The methyl H atoms on C12 and C19 were placed at geometrically idealized positions (C—H = 0.95 Å) and not refined. All other H atoms were found from the difference Fourier maps and refined isotropically. The C—H, N—H and O—H bond lengths are 0.90 (3)–1.07 (4), 0.88 (3) and 0.90 (4) Å, respectively.

Computing details top

Data collection: Rigaku/AFC Diffractometer Control (Rigaku, 1998); cell refinement: Rigaku/AFC Diffractometer Control; data reduction: TEXSAN (Molecular Structure Corporation, 1999); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: TEXSAN; molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.
(I) top
Crystal data top
C19H23N2O5PDx = 1.364 Mg m3
Mr = 390.37Melting point: 440-440.5K K
Orthorhombic, P212121Cu Kα radiation, λ = 1.5418 Å
a = 10.156 (2) ÅCell parameters from 21 reflections
b = 19.733 (1) Åθ = 27.5–30.0°
c = 9.486 (1) ŵ = 1.57 mm1
V = 1901.1 (3) Å3T = 294 K
Z = 4Prismatic, colorless
F(000) = 824.000.20 × 0.10 × 0.10 mm
Data collection top
Rigaku AFC-5R
diffractometer
Rint = 0.016
ω–2θ scansθmax = 62.0°
Absorption correction: ψ scan
(North et al., 1968)
h = 911
Tmin = 0.757, Tmax = 0.854k = 2222
3303 measured reflectionsl = 1010
3303 independent reflections3 standard reflections every 150 reflections
2991 reflections with F2 > 2σ(F2) intensity decay: 3.7%
Refinement top
Refinement on F2 w = 1/[σ2(Fo2) + {0.019[Max(Fo2,0) + 2Fc2]/3}2]
R[F2 > 2σ(F2)] = 0.041(Δ/σ)max = 0.013
wR(F2) = 0.102Δρmax = 0.17 e Å3
S = 1.65Δρmin = 0.20 e Å3
3303 reflectionsAbsolute structure: Flack (1983), 1571 Friedel pairs
313 parametersAbsolute structure parameter: 0.01 (3)
H atoms treated by a mixture of independent and constrained refinement
Crystal data top
C19H23N2O5PV = 1901.1 (3) Å3
Mr = 390.37Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 10.156 (2) ŵ = 1.57 mm1
b = 19.733 (1) ÅT = 294 K
c = 9.486 (1) Å0.20 × 0.10 × 0.10 mm
Data collection top
Rigaku AFC-5R
diffractometer
2991 reflections with F2 > 2σ(F2)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.016
Tmin = 0.757, Tmax = 0.854θmax = 62.0°
3303 measured reflections3 standard reflections every 150 reflections
3303 independent reflections intensity decay: 3.7%
Refinement top
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.102Δρmax = 0.17 e Å3
S = 1.65Δρmin = 0.20 e Å3
3303 reflectionsAbsolute structure: Flack (1983), 1571 Friedel pairs
313 parametersAbsolute structure parameter: 0.01 (3)
Special details top

Refinement. Refinement using reflections with F2 > -10.0 σ(F2). The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.56426 (6)0.21711 (3)0.84469 (6)0.0333 (1)
O10.9337 (2)0.2599 (1)0.5117 (2)0.0560 (6)
O20.7287 (2)0.3095 (1)0.3626 (2)0.0580 (6)
O30.4248 (2)0.19923 (9)0.8208 (2)0.0477 (5)
O40.6258 (2)0.17889 (9)0.9759 (2)0.0408 (5)
O50.6213 (2)0.51177 (10)0.9532 (3)0.0773 (7)
N10.6571 (2)0.19471 (10)0.7116 (2)0.0327 (5)
N20.7173 (2)0.2728 (1)0.4865 (2)0.0404 (6)
C10.6238 (2)0.1313 (1)0.6357 (3)0.0369 (7)
C20.7937 (2)0.2187 (1)0.6989 (2)0.0341 (6)
C30.8914 (3)0.1622 (1)0.7332 (3)0.0398 (7)
C40.9687 (3)0.0586 (2)0.6001 (4)0.0548 (9)
C50.9445 (3)0.0036 (2)0.5150 (4)0.0646 (9)
C60.8180 (3)0.0092 (1)0.4663 (4)0.0605 (9)
C70.7159 (3)0.0334 (1)0.5056 (3)0.0474 (8)
C80.7386 (2)0.0884 (1)0.5939 (2)0.0358 (6)
C90.8658 (2)0.1018 (1)0.6419 (3)0.0385 (6)
C100.8202 (3)0.2513 (1)0.5558 (3)0.0355 (6)
C110.5551 (4)0.1765 (2)1.1094 (3)0.0562 (9)
C120.6434 (4)0.1502 (2)1.2186 (3)0.080 (1)
C130.5915 (2)0.3055 (1)0.8773 (2)0.0372 (6)
C140.6706 (3)0.3284 (1)0.9858 (3)0.0410 (7)
C150.6843 (3)0.3969 (1)1.0160 (3)0.0493 (8)
C160.6160 (3)0.4430 (1)0.9350 (3)0.0531 (8)
C170.5378 (3)0.4211 (2)0.8238 (4)0.0640 (9)
C180.5236 (3)0.3534 (2)0.7955 (3)0.0551 (8)
C190.6829 (4)0.5385 (2)1.0744 (5)0.081 (1)
H10.570 (3)0.102 (1)0.691 (3)0.052 (8)*
H20.574 (2)0.138 (1)0.558 (3)0.031 (6)*
H30.814 (2)0.253 (1)0.764 (2)0.025 (6)*
H40.881 (2)0.149 (1)0.838 (3)0.038 (6)*
H50.974 (2)0.178 (1)0.719 (2)0.030 (6)*
H61.058 (3)0.071 (1)0.628 (3)0.046 (7)*
H71.016 (3)0.024 (1)0.482 (3)0.052 (8)*
H80.794 (3)0.045 (1)0.406 (3)0.063 (9)*
H90.624 (2)0.024 (1)0.473 (3)0.037 (7)*
H100.633 (2)0.270 (1)0.507 (3)0.035 (7)*
H110.803 (3)0.301 (2)0.314 (3)0.08 (1)*
H120.517 (3)0.218 (1)1.133 (3)0.051 (8)*
H130.471 (3)0.144 (1)1.102 (3)0.069 (9)*
H140.67980.10821.18730.0968*
H150.59520.14311.30250.0968*
H160.71220.18161.23440.0968*
H170.727 (3)0.301 (1)1.039 (3)0.054 (8)*
H180.745 (3)0.412 (1)1.093 (3)0.051 (8)*
H190.484 (3)0.448 (1)0.777 (3)0.056 (9)*
H200.470 (3)0.339 (1)0.716 (3)0.059 (8)*
H210.77200.52421.07760.0950*
H220.63840.52241.15670.0950*
H230.67900.58651.07260.0950*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0284 (3)0.0447 (3)0.0267 (3)0.0009 (3)0.0019 (3)0.0008 (3)
O10.0266 (9)0.071 (1)0.070 (1)0.0017 (9)0.007 (1)0.028 (1)
O20.043 (1)0.076 (1)0.055 (1)0.012 (1)0.013 (1)0.033 (1)
O30.0313 (8)0.074 (1)0.0381 (9)0.0069 (9)0.0054 (8)0.0000 (9)
O40.046 (1)0.0471 (10)0.0293 (8)0.0045 (9)0.0027 (8)0.0024 (7)
O50.084 (2)0.0412 (10)0.107 (2)0.004 (1)0.010 (2)0.003 (1)
N10.0277 (10)0.041 (1)0.0293 (10)0.0048 (8)0.0006 (8)0.0035 (8)
N20.027 (1)0.055 (1)0.039 (1)0.0001 (10)0.0072 (10)0.0083 (10)
C10.033 (1)0.041 (1)0.037 (1)0.004 (1)0.005 (1)0.001 (1)
C20.029 (1)0.040 (1)0.034 (1)0.0047 (10)0.001 (1)0.007 (1)
C30.029 (1)0.054 (1)0.036 (1)0.001 (1)0.006 (1)0.004 (1)
C40.043 (2)0.054 (2)0.068 (2)0.011 (1)0.010 (1)0.014 (1)
C50.063 (2)0.045 (1)0.087 (2)0.015 (1)0.028 (2)0.003 (1)
C60.073 (2)0.040 (2)0.068 (2)0.004 (1)0.015 (2)0.008 (2)
C70.056 (2)0.041 (1)0.045 (1)0.006 (1)0.000 (1)0.001 (1)
C80.040 (1)0.036 (1)0.031 (1)0.001 (1)0.001 (1)0.0083 (9)
C90.038 (1)0.042 (1)0.036 (1)0.0017 (10)0.001 (1)0.0132 (10)
C100.029 (1)0.036 (1)0.041 (1)0.000 (1)0.005 (1)0.001 (1)
C110.077 (2)0.057 (2)0.035 (1)0.006 (2)0.021 (1)0.002 (1)
C120.125 (3)0.084 (2)0.030 (1)0.006 (2)0.009 (2)0.007 (2)
C130.035 (1)0.046 (1)0.031 (1)0.009 (1)0.0025 (10)0.0006 (10)
C140.037 (1)0.047 (1)0.039 (1)0.007 (1)0.005 (1)0.000 (1)
C150.043 (2)0.050 (1)0.054 (2)0.002 (1)0.005 (1)0.004 (1)
C160.052 (2)0.043 (1)0.064 (2)0.006 (1)0.008 (1)0.003 (1)
C170.072 (2)0.051 (1)0.070 (2)0.019 (2)0.018 (2)0.009 (2)
C180.064 (2)0.055 (1)0.046 (2)0.015 (1)0.017 (1)0.001 (1)
C190.077 (3)0.052 (2)0.113 (3)0.008 (2)0.009 (2)0.024 (2)
Geometric parameters (Å, º) top
P1—O31.477 (2)C15—C161.378 (5)
P1—O41.584 (2)C16—C171.389 (6)
P1—N11.636 (3)C17—C181.372 (5)
P1—C131.793 (3)O2—H110.90 (4)
O1—C101.238 (4)N2—H100.88 (3)
O2—N21.386 (4)C1—H10.95 (3)
O4—C111.456 (4)C1—H20.90 (3)
O5—C161.369 (4)C2—H30.94 (3)
O5—C191.411 (6)C3—H41.03 (3)
N1—C11.482 (4)C3—H50.91 (3)
N1—C21.471 (4)C4—H60.97 (3)
N2—C101.305 (4)C5—H70.95 (3)
C1—C81.494 (4)C6—H80.95 (4)
C2—C31.526 (4)C7—H91.00 (3)
C2—C101.526 (4)C11—H120.93 (3)
C3—C91.496 (5)C11—H131.07 (4)
C4—C51.376 (6)C12—H140.954
C4—C91.406 (5)C12—H150.945
C5—C61.388 (6)C12—H160.946
C6—C71.387 (5)C14—H170.94 (3)
C7—C81.390 (4)C15—H181.00 (3)
C8—C91.395 (4)C17—H190.88 (4)
C11—C121.466 (6)C18—H200.97 (4)
C13—C141.381 (4)C19—H210.948
C13—C181.404 (5)C19—H220.957
C14—C151.389 (4)C19—H230.949
O1···N2i2.951 (4)O2···C3iii3.588 (4)
O1···C1i3.209 (4)O3···C14iv3.214 (4)
O1···N1i3.231 (4)O3···C15iv3.458 (4)
O1···O3i3.257 (4)O4···C6v3.398 (4)
O1···O2i3.503 (4)O5···C7vi3.473 (5)
O2···O3i2.650 (3)O5···C1vi3.532 (4)
O2···C12ii3.536 (6)N2···C12ii3.588 (5)
O3—P1—O4112.6 (1)N1—C1—H2113 (2)
O3—P1—N1111.7 (1)C8—C1—H1105 (2)
O3—P1—C13114.0 (1)C8—C1—H2108 (2)
O4—P1—N1104.5 (1)H1—C1—H2103 (3)
O4—P1—C13105.5 (1)N1—C2—H3113 (2)
N1—P1—C13107.9 (1)C3—C2—H3104 (2)
P1—O4—C11120.3 (2)C10—C2—H3105 (2)
C16—O5—C19119.3 (4)C2—C3—H4109 (2)
P1—N1—C1118.1 (2)C2—C3—H5109 (2)
P1—N1—C2121.4 (2)C9—C3—H4109 (2)
C1—N1—C2116.5 (2)C9—C3—H5110 (2)
O2—N2—C10122.0 (3)H4—C3—H5109 (3)
N1—C1—C8115.4 (3)C5—C4—H6121 (2)
N1—C2—C3111.2 (3)C9—C4—H6118 (2)
N1—C2—C10112.0 (3)C4—C5—H7120 (2)
C3—C2—C10112.5 (3)C6—C5—H7120 (2)
C2—C3—C9110.2 (3)C5—C6—H8125 (2)
C5—C4—C9120.8 (4)C7—C6—H8116 (2)
C4—C5—C6120.2 (4)C6—C7—H9120 (2)
C5—C6—C7119.5 (4)C8—C7—H9119 (2)
C6—C7—C8120.8 (4)O4—C11—H12112 (2)
C1—C8—C7118.2 (3)O4—C11—H13111 (2)
C1—C8—C9121.9 (3)C12—C11—H12113 (2)
C7—C8—C9119.9 (3)C12—C11—H13109 (2)
C3—C9—C4121.1 (3)H12—C11—H13102 (3)
C3—C9—C8120.1 (3)C11—C12—H14108.96
C4—C9—C8118.8 (3)C11—C12—H15109.30
O1—C10—N2122.1 (3)C11—C12—H16109.39
O1—C10—C2121.4 (3)H14—C12—H15109.53
N2—C10—C2116.4 (3)H14—C12—H16109.41
O4—C11—C12108.9 (3)H15—C12—H16110.22
P1—C13—C14122.5 (2)C13—C14—H17125 (2)
P1—C13—C18118.9 (3)C15—C14—H17113 (2)
C14—C13—C18118.5 (3)C14—C15—H18121 (2)
C13—C14—C15122.0 (3)C16—C15—H18121 (2)
C14—C15—C16118.5 (4)C16—C17—H19123 (2)
O5—C16—C15124.4 (4)C18—C17—H19115 (2)
O5—C16—C17115.2 (4)C13—C18—H20120 (2)
C15—C16—C17120.4 (3)C17—C18—H20120 (2)
C16—C17—C18120.7 (4)O5—C19—H21109.79
C13—C18—C17119.8 (4)O5—C19—H22109.37
N2—O2—H11114 (3)O5—C19—H23109.89
O2—N2—H10108 (2)H21—C19—H22109.06
C10—N2—H10130 (2)H21—C19—H23109.74
N1—C1—H1111 (2)H22—C19—H23108.98
P1—O4—C11—C12169.1 (3)C1—N1—P1—C13161.4 (2)
P1—N1—C1—C8139.4 (3)C1—N1—C2—C351.0 (3)
P1—N1—C2—C3106.0 (3)C1—N1—C2—C1075.9 (3)
P1—N1—C2—C10127.2 (2)C1—C8—C7—C6178.3 (3)
P1—C13—C14—C15175.7 (3)C1—C8—C9—C32.5 (5)
P1—C13—C18—C17176.5 (3)C1—C8—C9—C4178.9 (3)
O1—C10—N2—O23.4 (5)C2—N1—P1—C1342.0 (3)
O1—C10—C2—N1162.6 (3)C2—N1—C1—C818.3 (4)
O1—C10—C2—C336.4 (4)C2—C3—C9—C4148.8 (3)
O2—N2—C10—C2173.2 (3)C2—C3—C9—C829.7 (4)
O3—P1—O4—C1147.2 (3)C3—C9—C4—C5179.4 (3)
O3—P1—N1—C135.3 (3)C3—C9—C8—C7178.1 (3)
O3—P1—N1—C2168.1 (2)C4—C5—C6—C70.9 (6)
O3—P1—C13—C14133.6 (3)C4—C9—C8—C70.5 (5)
O3—P1—C13—C1842.3 (3)C5—C4—C9—C80.8 (5)
O4—P1—N1—C186.8 (2)C5—C6—C7—C80.5 (6)
O4—P1—N1—C269.9 (2)C6—C5—C4—C91.5 (6)
O4—P1—C13—C149.5 (3)C6—C7—C8—C91.2 (5)
O4—P1—C13—C18166.3 (3)C9—C3—C2—C1071.1 (3)
O5—C16—C15—C14179.7 (4)C11—O4—P1—C1377.7 (3)
O5—C16—C17—C18179.4 (4)C13—C14—C15—C160.3 (5)
N1—P1—O4—C11168.7 (3)C13—C18—C17—C161.6 (7)
N1—P1—C13—C14101.8 (3)C14—C13—C18—C170.5 (6)
N1—P1—C13—C1882.4 (3)C14—C15—C16—C171.4 (6)
N1—C1—C8—C7171.1 (3)C15—C14—C13—C180.1 (5)
N1—C1—C8—C99.5 (4)C15—C16—O5—C1910.3 (6)
N1—C2—C3—C955.4 (3)C15—C16—C17—C182.1 (6)
N1—C2—C10—N220.8 (4)C17—C16—O5—C19171.3 (4)
N2—C10—C2—C3147.0 (3)
Symmetry codes: (i) x1/2, y1/2, z1; (ii) x, y, z+1; (iii) x+1/2, y1/2, z1; (iv) x+1/2, y1/2, z2; (v) x3/2, y, z1/2; (vi) x1, y1/2, z3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H11···O10.90 (4)2.44 (3)2.701 (2)97 (2)
N2—H10···N10.88 (3)2.46 (2)2.703 (2)96 (1)
N2—H10···O1vii0.88 (3)2.12 (2)2.951 (2)158 (2)
Symmetry code: (vii) x+1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC19H23N2O5P
Mr390.37
Crystal system, space groupOrthorhombic, P212121
Temperature (K)294
a, b, c (Å)10.156 (2), 19.733 (1), 9.486 (1)
V3)1901.1 (3)
Z4
Radiation typeCu Kα
µ (mm1)1.57
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerRigaku AFC-5R
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.757, 0.854
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
3303, 3303, 2991
Rint0.016
θmax (°)62.0
(sin θ/λ)max1)0.573
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.102, 1.65
No. of reflections3303
No. of parameters313
No. of restraints?
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.20
Absolute structureFlack (1983), 1571 Friedel pairs
Absolute structure parameter0.01 (3)

Computer programs: Rigaku/AFC Diffractometer Control (Rigaku, 1998), Rigaku/AFC Diffractometer Control, TEXSAN (Molecular Structure Corporation, 1999), SIR92 (Altomare et al., 1994), TEXSAN, ORTEPII (Johnson, 1976).

Selected geometric parameters (Å, º) top
P1—O31.477 (2)P1—N11.636 (3)
P1—O41.584 (2)P1—C131.793 (3)
O3—P1—O4112.6 (1)O4—P1—N1104.5 (1)
O3—P1—N1111.7 (1)O4—P1—C13105.5 (1)
O3—P1—C13114.0 (1)N1—P1—C13107.9 (1)
N1—C1—C8—C99.5 (4)C2—C3—C9—C829.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H11···O10.90 (4)2.44 (3)2.701 (2)97 (2)
N2—H10···N10.88 (3)2.46 (2)2.703 (2)96 (1)
N2—H10···O1i0.88 (3)2.12 (2)2.951 (2)158 (2)
Symmetry code: (i) x+1/2, y+3/2, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds