Download citation
Download citation
link to html
In the title compound, [RhCl2(C18H32N4)]PF6, the RhIII ion lies at the centre of a distorted octahedron of two axial chloride and four equatorial aza ligands. Within estimated error, the complex cation possesses non-crystallographic mirror symmetry. The Rh—Cl distances of 2.345 (3) and 2.349 (3) Å are equivalent, as are the three Rh—Nsp3 distances [mean 2.145 (7) Å]. The Rh—Nsp2 distance is much shorter at 1.964 (7) Å, reflecting the different hybridization of this donor atom. The four N atoms are not coplanar, and the metal ion lies out of the N4 plane by 0.013 (3) Å, suggesting that, with an ionic radius of 0.805 Å, the RhIII ion is somewhat large for the macrocyclic cavity.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801014568/ob6068sup1.cif
Contains datablocks 1, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801014568/ob60681sup2.hkl
Contains datablock 1

CCDC reference: 175335

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.016 Å
  • Disorder in solvent or counterion
  • R factor = 0.065
  • wR factor = 0.182
  • Data-to-parameter ratio = 9.5

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Red Alert Alert Level A:
THETM_01 Alert A The value of sine(theta_max)/wavelength is less than 0.550 Calculated sin(theta_max)/wavelength = 0.5378
Yellow Alert Alert Level C:
ABSTM_02 Alert C The ratio of expected to reported Tmax/Tmin(RR') is < 0.90 Tmin and Tmax reported: 0.448 0.898 Tmin' and Tmax expected: 0.581 0.898 RR' = 0.771 Please check that your absorption correction is appropriate. REFNR_01 Alert C Ratio of reflections to parameters is < 10 for a centrosymmetric structure sine(theta)/lambda 0.5378 Proportion of unique data used 0.9987 Ratio reflections to parameters 9.5200 PLAT_302 Alert C Anion/Solvent Disorder ....................... 36.00 Perc. General Notes
ABSTY_01 Extra text has been found in the _exptl_absorpt_correction_type field, which should be only a single keyword. A literature citation should be included in the _exptl_absorpt_process_details field.
1 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
3 Alert Level C = Please check

Comment top

The distortions from ideal octahedral coordination on the metal centre in the title complex, (1), are seen in the cis and trans angles subtended at that centre, which range from 82.3 (3) to 97.9 (3)° and from 164.5 (3) to 175.9 (3)°, respectively. The bonds to Rh formed by the two chloride ligands are equivalent, as are the three bonds from the sp3 nitrogen donors N3, N7 and N11. The Rh—N17 distance is much shorter, reflecting the sp2 hybridization of this donor atom. The four N atoms are not coplanar [mean r.m.s. deviation from the N4 best plane is 0.065 (8) Å] and this effect is represented in the 29° twists of N3 and N11 from the plane of the pyridyl ring. The metal ion lies 0.013 (3) Å out of the N4 plane, in the direction of Cl2. These observations suggest that with an ionic radius of 0.805 Å (Shannon, 1976), the RhIII ion is somewhat large for the macrocyclic cavity and the observed distortions are a mechanism to accommodate this misfit. A non-crystallographic mirror plane bisects the cation, passing through C15, N17, Rh, Cl1, Cl2, N7 and C7N (Fig. 1).

Complexes of second-row transition metals with the 2,3,7,11,12-pentamethyl- 3,7,11,17-tetra-azabicyclo(11.3.1)heptadeca-1(17),13,15-triene ligand are rare, the only structurally characterized example of which we are aware being the trans-isocyanatooxoruthenium(IV) complex, (2) (Che et al., 1989). However, a number of complexes of first-row elements are known, for example with cobalt(II) (Che et al., 1986) and nickel(II) (Che et al., 1988) and there are a large number of complexes with ligands having different functionalization of the 3,7,11,17-tetra-azabicyclo[11.3.1]heptadeca-1(17),13,15-triene backbone, for example, carbonylchloro[cis-2,7,12-trimethyl-3,7,11,17-tetra- azabicyclo[11.3.1]heptadeca-1(17),13,15-triene-κN3,κN7,κN11,κN17]- ruthenium(II) tetraphenylborate (Blake et al., 1986).

Experimental top

Reaction of RhCl3 with meso-2,3,7,11,12-pentamethyl-3,7,11,17-tetra- azabicyclo[11.3.1]heptadeca-1(17),13,15-triene in MeOH, followed by addition of PF6-. Crystals of (1) were grown from CH3NO2 solution. Elemental analysis, found: C 35.9, H 5.17, N 8.5%; calculated for C18H32Cl2F6N4PRh: C 34.6, H 5.17, N 9.0%.

Refinement top

The primary absorption correction was semi-empirical (North et al., 1968), supplemented by calculated corrections (Walker & Stuart, 1983). The largest residuals in the final ΔF synthesis lie near the metal atom. There is disorder in the equatorial F atoms of the anion which was modelled by allowing two orientations for each of these four atoms, F2—F5. Extensive restraints were applied to P–F distances, F—P—F angles and anisotropic displacement parameters. The occupancies of these orientations refined to 0.50 (3), indicating that they are equally occupied, and so all were set equal to 0.5. H atoms were placed geometrically and refining riding on their parent C atoms at distances of 0.93, 0.96, 0.97 and 0.98 Å for aromatic, methine, methylene and methyl groups, respectively, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H atoms and 1.2 for all others.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CADABS (Gould & Smith, 1986); program(s) used to solve structure: SHELX76 (Sheldrick, 1976); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1994); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2001).

Figures top
[Figure 1] Fig. 1. A view of the cation of (1) with the atom-numbering scheme. Displacement ellipsoids enclose 30% probability surfaces. A non-crystallographic mirror plane bisects the cation, passing through atoms C15, N17, Rh, Cl1 Cl2, N7 and C7N.
trans-Dichloro(meso-2,3,7,11,12-pentamethyl-3,7,11,17-tetra- azabicyclo[11.3.1]heptadeca-1(17),13,15-triene-κ4N3,7,11,17)rhodium(III) hexafluorphosphate top
Crystal data top
[RhCl2(C18H32N4)]PF6Z = 2
Mr = 623.26F(000) = 632
Triclinic, P1Dx = 1.741 Mg m3
a = 7.949 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.067 (5) ÅCell parameters from 19 reflections
c = 14.116 (5) Åθ = 12–13°
α = 74.22 (5)°µ = 1.07 mm1
β = 86.26 (5)°T = 293 K
γ = 84.67 (5)°Lath, yellow
V = 1188.7 (10) Å30.5 × 0.2 × 0.1 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
2378 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.00
Graphite monochromatorθmax = 22.5°, θmin = 2.1°
ω–2θ scansh = 88
Absorption correction: ψ scans; part of the refinement model (ΔF)
(North et al., 1968; Walker & Stuart, 1983)
k = 1111
Tmin = 0.448, Tmax = 0.898l = 015
3098 measured reflections2 standard reflections every 60 reflections
3098 independent reflections intensity decay: 3%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.149P)2]
where P = (Fo2 + 2Fc2)/3
3094 reflections(Δ/σ)max = 0.003
325 parametersΔρmax = 1.92 e Å3
360 restraintsΔρmin = 1.77 e Å3
Crystal data top
[RhCl2(C18H32N4)]PF6γ = 84.67 (5)°
Mr = 623.26V = 1188.7 (10) Å3
Triclinic, P1Z = 2
a = 7.949 (5) ÅMo Kα radiation
b = 11.067 (5) ŵ = 1.07 mm1
c = 14.116 (5) ÅT = 293 K
α = 74.22 (5)°0.5 × 0.2 × 0.1 mm
β = 86.26 (5)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
2378 reflections with I > 2σ(I)
Absorption correction: ψ scans; part of the refinement model (ΔF)
(North et al., 1968; Walker & Stuart, 1983)
Rint = 0.00
Tmin = 0.448, Tmax = 0.898θmax = 22.5°
3098 measured reflections2 standard reflections every 60 reflections
3098 independent reflections intensity decay: 3%
Refinement top
R[F2 > 2σ(F2)] = 0.065360 restraints
wR(F2) = 0.182H-atom parameters constrained
S = 1.00Δρmax = 1.92 e Å3
3094 reflectionsΔρmin = 1.77 e Å3
325 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Rh0.09546 (7)0.23461 (6)0.21425 (5)0.0284 (3)
Cl10.2853 (3)0.1324 (2)0.33661 (18)0.0466 (6)
Cl20.1108 (3)0.3363 (2)0.10132 (18)0.0469 (6)
N30.1235 (9)0.4127 (7)0.2420 (6)0.0413 (16)
N70.2980 (8)0.2396 (7)0.1060 (6)0.0447 (17)
N110.0066 (9)0.0580 (7)0.2113 (6)0.0420 (16)
N170.0790 (8)0.2230 (7)0.3208 (5)0.0344 (15)
C10.1075 (11)0.3213 (8)0.3597 (7)0.044 (2)
C20.0294 (13)0.4128 (9)0.3393 (8)0.052 (2)
H20.02800.49710.33100.062*
C2A0.1309 (17)0.3866 (11)0.4284 (9)0.073 (3)
H2A10.21700.44480.41710.110*
H2A20.18270.30210.44210.110*
H2A30.05850.39580.48350.110*
C3N0.0398 (14)0.5275 (9)0.1698 (9)0.058 (3)
H3N10.07810.51660.16740.087*
H3N20.09290.53660.10540.087*
H3N30.05200.60150.19100.087*
C40.3075 (13)0.4366 (10)0.2398 (8)0.056 (2)
H4A0.36260.37280.29230.067*
H4B0.31580.51770.25240.067*
C50.3994 (12)0.4356 (10)0.1433 (9)0.062 (3)
H5A0.32970.48410.09000.074*
H5B0.50290.47720.13870.074*
C60.4430 (11)0.3071 (11)0.1291 (9)0.059 (3)
H6A0.49400.25450.18840.071*
H6B0.52820.31400.07590.071*
C7N0.2509 (13)0.3016 (11)0.0029 (7)0.061 (3)
H7NA0.20140.38530.00150.091*
H7NB0.17070.25390.01630.091*
H7NC0.35010.30550.04000.091*
C80.3750 (12)0.1091 (10)0.1117 (9)0.060 (3)
H8A0.43410.07900.17270.072*
H8B0.45920.11460.05810.072*
C90.2582 (14)0.0116 (11)0.1074 (9)0.067 (3)
H9A0.18430.04700.05290.080*
H9B0.32540.05970.09330.080*
C100.1506 (14)0.0353 (9)0.1994 (9)0.057 (2)
H10A0.10570.11310.19770.069*
H10B0.22070.05350.25610.069*
C11N0.1140 (14)0.0651 (10)0.1309 (9)0.062 (3)
H1110.20840.12420.13550.094*
H1120.15360.01650.13860.094*
H1130.05640.09190.06770.094*
C120.0983 (12)0.0120 (9)0.3079 (8)0.049 (2)
H120.19510.02660.29190.059*
C12A0.0088 (14)0.0868 (9)0.3910 (8)0.061 (3)
H1210.03670.15710.36720.091*
H1220.08820.11510.44500.091*
H1230.08130.05030.41280.091*
C130.1693 (10)0.1245 (9)0.3439 (7)0.0420 (19)
C140.3077 (12)0.1216 (11)0.4091 (8)0.062 (3)
H140.37250.05250.42680.074*
C150.3471 (12)0.2223 (12)0.4469 (8)0.061 (3)
H150.44320.22360.48790.074*
C160.2456 (13)0.3232 (11)0.4248 (8)0.060 (3)
H160.26970.39000.45300.072*
P0.4075 (3)0.2810 (2)0.7110 (2)0.0533 (7)
F10.3713 (8)0.4012 (6)0.7469 (6)0.102 (3)
F20.483 (3)0.3606 (9)0.6136 (8)0.185 (12)0.50
F30.5818 (13)0.2598 (12)0.7555 (16)0.196 (12)0.50
F40.2326 (15)0.3034 (14)0.6664 (16)0.157 (11)0.50
F50.332 (3)0.2024 (9)0.8085 (8)0.168 (11)0.50
F2'0.450 (3)0.2057 (11)0.8163 (7)0.205 (13)0.50
F3'0.2197 (11)0.2543 (14)0.7345 (17)0.155 (11)0.50
F4'0.5934 (10)0.3083 (14)0.6880 (15)0.115 (8)0.50
F5'0.364 (3)0.3566 (13)0.6064 (6)0.154 (9)0.50
F60.4437 (10)0.1610 (6)0.6750 (7)0.137 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh0.0221 (4)0.0299 (4)0.0347 (5)0.0043 (3)0.0019 (3)0.0112 (3)
Cl10.0393 (12)0.0457 (13)0.0563 (16)0.0019 (10)0.0134 (11)0.0153 (12)
Cl20.0362 (11)0.0530 (14)0.0478 (15)0.0005 (10)0.0068 (10)0.0072 (11)
N30.042 (4)0.038 (4)0.046 (4)0.010 (3)0.002 (3)0.014 (3)
N70.032 (3)0.057 (4)0.047 (4)0.007 (3)0.013 (3)0.018 (4)
N110.042 (4)0.035 (4)0.053 (4)0.003 (3)0.008 (3)0.017 (3)
N170.024 (3)0.041 (4)0.040 (4)0.006 (3)0.004 (3)0.014 (3)
C10.045 (5)0.038 (5)0.039 (5)0.010 (3)0.006 (4)0.001 (4)
C20.064 (6)0.039 (5)0.058 (5)0.001 (4)0.007 (4)0.026 (4)
C2A0.099 (9)0.073 (8)0.058 (6)0.028 (7)0.001 (6)0.029 (6)
C3N0.072 (6)0.034 (5)0.069 (7)0.002 (4)0.002 (5)0.014 (5)
C40.054 (5)0.055 (6)0.067 (7)0.032 (4)0.000 (4)0.022 (5)
C50.044 (5)0.064 (6)0.080 (8)0.028 (5)0.009 (5)0.019 (6)
C60.028 (4)0.079 (6)0.072 (7)0.011 (4)0.007 (4)0.023 (6)
C7N0.052 (6)0.092 (8)0.035 (5)0.002 (5)0.016 (4)0.017 (5)
C80.043 (5)0.070 (6)0.069 (8)0.015 (4)0.005 (5)0.029 (5)
C90.070 (7)0.065 (6)0.073 (8)0.015 (5)0.000 (5)0.040 (6)
C100.074 (6)0.031 (5)0.073 (7)0.008 (4)0.009 (5)0.026 (5)
C11N0.063 (6)0.057 (7)0.071 (7)0.010 (5)0.028 (5)0.017 (6)
C120.042 (5)0.040 (5)0.063 (6)0.019 (4)0.011 (4)0.003 (4)
C12A0.075 (7)0.045 (6)0.059 (7)0.011 (5)0.011 (5)0.002 (5)
C130.032 (4)0.052 (5)0.036 (5)0.011 (3)0.000 (3)0.000 (4)
C140.039 (5)0.070 (7)0.067 (8)0.012 (4)0.007 (4)0.002 (5)
C150.031 (5)0.095 (7)0.049 (7)0.001 (4)0.013 (4)0.009 (5)
C160.048 (5)0.077 (7)0.054 (7)0.014 (4)0.007 (4)0.024 (6)
P0.0528 (15)0.0430 (15)0.067 (2)0.0049 (11)0.0085 (13)0.0223 (13)
F10.082 (5)0.090 (5)0.166 (8)0.006 (4)0.005 (5)0.090 (5)
F20.31 (3)0.105 (12)0.124 (15)0.08 (2)0.128 (17)0.024 (11)
F30.101 (10)0.034 (9)0.44 (4)0.004 (7)0.145 (16)0.013 (14)
F40.116 (14)0.15 (2)0.25 (3)0.031 (11)0.109 (17)0.119 (19)
F50.29 (3)0.169 (14)0.072 (11)0.17 (2)0.051 (12)0.035 (9)
F2'0.26 (3)0.218 (17)0.069 (8)0.15 (2)0.036 (12)0.013 (8)
F3'0.071 (9)0.105 (15)0.32 (3)0.043 (9)0.093 (15)0.131 (19)
F4'0.046 (6)0.088 (15)0.22 (2)0.011 (7)0.005 (9)0.061 (15)
F5'0.154 (18)0.211 (16)0.073 (8)0.087 (18)0.026 (11)0.027 (8)
F60.124 (6)0.083 (5)0.234 (10)0.029 (4)0.073 (7)0.105 (6)
Geometric parameters (Å, º) top
Rh—Cl12.345 (3)C7N—H7NB0.9600
Rh—Cl22.349 (3)C7N—H7NC0.9600
Rh—N32.145 (7)C8—C91.503 (16)
Rh—N72.140 (7)C8—H8A0.9700
Rh—N112.150 (7)C8—H8B0.9700
Rh—N171.964 (7)C9—C101.504 (16)
N3—C41.507 (12)C9—H9A0.9700
N3—C21.521 (13)C9—H9B0.9700
N3—C3N1.524 (12)C10—H10A0.9700
N7—C7N1.486 (13)C10—H10B0.9700
N7—C81.499 (12)C11N—H1110.9600
N7—C61.528 (12)C11N—H1120.9600
N11—C101.501 (12)C11N—H1130.9600
N11—C11N1.514 (12)C12—C131.518 (14)
N11—C121.539 (13)C12—C12A1.531 (14)
N17—C131.316 (11)C12—H120.9800
N17—C11.342 (11)C12A—H1210.9600
C1—C161.387 (13)C12A—H1220.9600
C1—C21.516 (14)C12A—H1230.9600
C2—C2A1.485 (16)C13—C141.385 (14)
C2—H20.9800C14—C151.364 (16)
C2A—H2A10.9600C14—H140.9300
C2A—H2A20.9600C15—C161.393 (16)
C2A—H2A30.9600C15—H150.9300
C3N—H3N10.9600C16—H160.9300
C3N—H3N20.9600P—F11.545 (5)
C3N—H3N30.9600P—F21.537 (7)
C4—C51.507 (15)P—F31.530 (7)
C4—H4A0.9700P—F41.535 (7)
C4—H4B0.9700P—F51.534 (7)
C5—C61.495 (15)P—F61.543 (5)
C5—H5A0.9700P—F2'1.537 (7)
C5—H5B0.9700P—F3'1.546 (7)
C6—H6A0.9700P—F4'1.532 (7)
C6—H6B0.9700P—F5'1.530 (7)
C7N—H7NA0.9600
Cl1—Rh—Cl2175.61 (8)H7NA—C7N—H7NC109.5
Cl1—Rh—N391.1 (2)H7NB—C7N—H7NC109.5
Cl1—Rh—N788.9 (2)N7—C8—C9117.5 (8)
Cl1—Rh—N1191.3 (2)N7—C8—H8A107.9
Cl1—Rh—N1786.9 (2)C9—C8—H8A107.9
Cl2—Rh—N388.3 (2)N7—C8—H8B107.9
Cl2—Rh—N795.4 (2)C9—C8—H8B107.9
Cl2—Rh—N1188.2 (2)H8A—C8—H8B107.2
Cl2—Rh—N1788.7 (2)C10—C9—C8115.1 (10)
N3—Rh—N797.9 (3)C10—C9—H9A108.5
N3—Rh—N11164.5 (3)C8—C9—H9A108.5
N3—Rh—N1782.5 (3)C10—C9—H9B108.5
N7—Rh—N1197.5 (3)C8—C9—H9B108.5
N7—Rh—N17175.9 (3)H9A—C9—H9B107.5
N11—Rh—N1782.3 (3)N11—C10—C9112.6 (8)
C4—N3—C2113.8 (8)N11—C10—H10A109.1
C4—N3—C3N105.9 (7)C9—C10—H10A109.1
C2—N3—C3N103.1 (7)N11—C10—H10B109.1
C4—N3—Rh111.0 (6)C9—C10—H10B109.1
C2—N3—Rh107.3 (5)H10A—C10—H10B107.8
C3N—N3—Rh115.7 (6)N11—C11N—H111109.5
C7N—N7—C8108.8 (8)N11—C11N—H112109.5
C7N—N7—C6107.9 (8)H111—C11N—H112109.5
C8—N7—C6103.9 (7)N11—C11N—H113109.5
C7N—N7—Rh114.9 (6)H111—C11N—H113109.5
C8—N7—Rh110.4 (6)H112—C11N—H113109.5
C6—N7—Rh110.3 (6)C13—C12—C12A110.2 (9)
C10—N11—C11N106.6 (8)C13—C12—N11109.3 (7)
C10—N11—C12112.4 (7)C12A—C12—N11116.3 (8)
C11N—N11—C12104.5 (7)C13—C12—H12106.8
C10—N11—Rh111.5 (6)C12A—C12—H12106.8
C11N—N11—Rh115.5 (6)N11—C12—H12106.8
C12—N11—Rh106.4 (5)C12—C12A—H121109.5
C13—N17—C1124.2 (8)C12—C12A—H122109.5
C13—N17—Rh118.1 (6)H121—C12A—H122109.5
C1—N17—Rh117.5 (6)C12—C12A—H123109.5
N17—C1—C16118.5 (9)H121—C12A—H123109.5
N17—C1—C2116.1 (8)H122—C12A—H123109.5
C16—C1—C2124.9 (9)N17—C13—C14119.4 (10)
C2A—C2—C1108.4 (9)N17—C13—C12116.5 (8)
C2A—C2—N3117.6 (9)C14—C13—C12123.5 (9)
C1—C2—N3110.1 (8)C15—C14—C13118.6 (10)
C2A—C2—H2106.7C15—C14—H14120.7
C1—C2—H2106.7C13—C14—H14120.7
N3—C2—H2106.7C14—C15—C16121.0 (9)
C2—C2A—H2A1109.5C14—C15—H15119.5
C2—C2A—H2A2109.5C16—C15—H15119.5
H2A1—C2A—H2A2109.5C1—C16—C15118.2 (10)
C2—C2A—H2A3109.5C1—C16—H16120.9
H2A1—C2A—H2A3109.5C15—C16—H16120.9
H2A2—C2A—H2A3109.5F3—P—F590.1 (4)
N3—C3N—H3N1109.5F5'—P—F4'90.0 (4)
N3—C3N—H3N2109.5F3—P—F289.9 (4)
H3N1—C3N—H3N2109.5F5—P—F2179.6 (5)
N3—C3N—H3N3109.5F3—P—F189.7 (3)
H3N1—C3N—H3N3109.5F5'—P—F190.1 (5)
H3N2—C3N—H3N3109.5F5—P—F190.1 (4)
N3—C4—C5113.2 (8)F4'—P—F190.9 (4)
N3—C4—H4A108.9F2—P—F189.5 (3)
C5—C4—H4A108.9F3—P—F690.4 (3)
N3—C4—H4B108.9F5'—P—F689.8 (6)
C5—C4—H4B108.9F5—P—F689.9 (3)
H4A—C4—H4B107.7F4'—P—F689.2 (5)
C6—C5—C4114.5 (9)F2—P—F690.5 (4)
C6—C5—H5A108.6F1—P—F6179.9 (5)
C4—C5—H5A108.6F3—P—F4179.5 (4)
C6—C5—H5B108.6F5—P—F490.1 (4)
C4—C5—H5B108.6F2—P—F489.9 (4)
H5A—C5—H5B107.6F1—P—F489.9 (4)
C5—C6—N7116.8 (8)F6—P—F490.1 (3)
C5—C6—H6A108.1F5'—P—F2'179.6 (6)
N7—C6—H6A108.1F4'—P—F2'90.1 (4)
C5—C6—H6B108.1F1—P—F2'89.6 (4)
N7—C6—H6B108.1F6—P—F2'90.5 (6)
H6A—C6—H6B107.3F5'—P—F3'90.0 (4)
N7—C7N—H7NA109.5F4'—P—F3'179.6 (6)
N7—C7N—H7NB109.5F1—P—F3'88.7 (4)
H7NA—C7N—H7NB109.5F6—P—F3'91.3 (5)
N7—C7N—H7NC109.5F2'—P—F3'89.9 (4)
C13—N17—C1—C163.4 (13)C11N—N11—C10—C968.6 (11)
C13—N17—C1—C2168.4 (8)C12—N11—C10—C9177.5 (8)
N17—C1—C2—C2A101.6 (10)C8—C9—C10—N1175.4 (12)
C16—C1—C2—C2A69.6 (12)C10—N11—C12—C13148.7 (8)
N17—C1—C2—N328.3 (11)C11N—N11—C12—C1396.2 (8)
C16—C1—C2—N3160.6 (9)C10—N11—C12—C12A23.1 (11)
C4—N3—C2—C2A22.8 (12)C11N—N11—C12—C12A138.3 (9)
C3N—N3—C2—C2A137.0 (9)C1—N17—C13—C142.9 (14)
C4—N3—C2—C1147.6 (8)C1—N17—C13—C12168.4 (8)
C3N—N3—C2—C198.2 (8)C12A—C12—C13—N1799.2 (10)
C2—N3—C4—C5179.6 (8)N11—C12—C13—N1729.8 (11)
C3N—N3—C4—C567.8 (11)C12A—C12—C13—C1471.8 (12)
N3—C4—C5—C676.6 (12)N11—C12—C13—C14159.2 (9)
C4—C5—C6—N774.3 (12)N17—C13—C14—C150.6 (15)
C7N—N7—C6—C573.0 (11)C12—C13—C14—C15171.3 (9)
C8—N7—C6—C5171.5 (9)C13—C14—C15—C163.4 (16)
C7N—N7—C8—C974.1 (12)N17—C1—C16—C150.4 (14)
C6—N7—C8—C9171.1 (10)C2—C1—C16—C15170.6 (10)
N7—C8—C9—C1074.0 (14)C14—C15—C16—C12.9 (16)

Experimental details

Crystal data
Chemical formula[RhCl2(C18H32N4)]PF6
Mr623.26
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.949 (5), 11.067 (5), 14.116 (5)
α, β, γ (°)74.22 (5), 86.26 (5), 84.67 (5)
V3)1188.7 (10)
Z2
Radiation typeMo Kα
µ (mm1)1.07
Crystal size (mm)0.5 × 0.2 × 0.1
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ scans; part of the refinement model (ΔF)
(North et al., 1968; Walker & Stuart, 1983)
Tmin, Tmax0.448, 0.898
No. of measured, independent and
observed [I > 2σ(I)] reflections
3098, 3098, 2378
Rint0.00
θmax (°)22.5
(sin θ/λ)max1)0.538
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.182, 1.00
No. of reflections3094
No. of parameters325
No. of restraints360
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.92, 1.77

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, CADABS (Gould & Smith, 1986), SHELX76 (Sheldrick, 1976), SHELXL97 (Sheldrick, 1997), SHELXTL/PC (Sheldrick, 1994), SHELXL97 and PLATON (Spek, 2001).

Selected geometric parameters (Å, º) top
Rh—Cl12.345 (3)Rh—N72.140 (7)
Rh—Cl22.349 (3)Rh—N112.150 (7)
Rh—N32.145 (7)Rh—N171.964 (7)
Cl1—Rh—Cl2175.61 (8)Cl2—Rh—N1788.7 (2)
Cl1—Rh—N391.1 (2)N3—Rh—N797.9 (3)
Cl1—Rh—N788.9 (2)N3—Rh—N11164.5 (3)
Cl1—Rh—N1191.3 (2)N3—Rh—N1782.5 (3)
Cl1—Rh—N1786.9 (2)N7—Rh—N1197.5 (3)
Cl2—Rh—N388.3 (2)N7—Rh—N17175.9 (3)
Cl2—Rh—N795.4 (2)N11—Rh—N1782.3 (3)
Cl2—Rh—N1188.2 (2)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds