Download citation
Download citation
link to html
The title compound, [Co(NCS)2(C4H12N2)2]NCS, (I), has an octahedral coordination geometry, in which one of the seven-membered chelate rings adopts the chair form and the other the twist-boat form.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801015239/ob6073sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801015239/ob6073Isup2.hkl
Contains datablock I

CCDC reference: 175339

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.033
  • wR factor = 0.094
  • Data-to-parameter ratio = 27.0

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

Metal complexes of 1,4-butanediamine (tmd: putrescin or tetramethylenediamine) are of interest in the context of bioinorganic chemistry (Gasowska et al., 2000). Only a few structures have been reported for transition metal complexes of tmd (Sato et al., 1974; Shimoi et al., 1988; Kurachi & Ohba, 1992).

The two geometrical isomers of [CoIII(NCS)2(tmd)2]+ have been prepared and their geometrical configurations have been determined by the spectroscopic properties (Nagata & Kanamori, 2001). The present X-ray analysis confirms the trans configuration for one of the isomers, (I) (Fig. 1). In (I), the two seven-membered chelate rings adopt the different conformations (Fig. 2). The conformation of Fig. 2(a) corresponds to the chair form that has been found in trans-[Co(III)(NO2)2(tmd)2]+ (Shimoi et al., 1988). The other chelate ring (Fig. 2 b) adopts approximately the twist-boat form. The coordination bond distances and angles are in the normal region.

Experimental top

The title compound, (I), was prepared by adapting the procedures described by Nagata et al. (1985) and Nagata & Kanamori (2001). Crystals of (I) were obtained by a spontaneous evaporation of an aqueous solution at room temperature.

Refinement top

H atoms bonded to C and N atoms were placed geometrically and refined using a riding model via SHELXL97 HFIX/AFIX 23 facility. The displacement parameter was set as 1.2 times that of the parent atom.

Computing details top

Data collection: AFC-7R Diffractometer Control Software (Rigaku, 1999); cell refinement: AFC-7R Diffractometer Control Software; data reduction: AFC-7R Diffractometer Control Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the labelling of the non-H atoms. Displacement ellipsoids are shown at 50% probability levels.
[Figure 2] Fig. 2. The conformation of the chelate rings. Projection is made along the bisector of the N—Co—N angle.
trans-bis(isothiocyanato)bis(1,4-butanediamine)cobalt(III) thiocyanate top
Crystal data top
[Co(NCS)2(C4H12N2)2]NCSF(000) = 856
Mr = 409.48Dx = 1.477 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.739 (2) ÅCell parameters from 25 reflections
b = 13.647 (4) Åθ = 14.8–15.0°
c = 14.5479 (19) ŵ = 1.28 mm1
β = 107.790 (13)°T = 296 K
V = 1841.2 (7) Å3Prism, brown
Z = 40.20 × 0.20 × 0.15 mm
Data collection top
Rigaku AFC-7R
diffractometer
4027 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 30.0°, θmin = 2.7°
ω–2θ scansh = 013
Absorption correction: ψ scan
(North et al., 1968)
k = 019
Tmin = 0.784, Tmax = 0.831l = 2019
5653 measured reflections3 standard reflections every 60 min
5371 independent reflections intensity decay: 1.8%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0409P)2 + 0.8638P]
where P = (Fo2 + 2Fc2)/3
5371 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
[Co(NCS)2(C4H12N2)2]NCSV = 1841.2 (7) Å3
Mr = 409.48Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.739 (2) ŵ = 1.28 mm1
b = 13.647 (4) ÅT = 296 K
c = 14.5479 (19) Å0.20 × 0.20 × 0.15 mm
β = 107.790 (13)°
Data collection top
Rigaku AFC-7R
diffractometer
4027 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.027
Tmin = 0.784, Tmax = 0.8313 standard reflections every 60 min
5653 measured reflections intensity decay: 1.8%
5371 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.06Δρmax = 0.42 e Å3
5371 reflectionsΔρmin = 0.56 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co0.61578 (3)0.727614 (19)0.160813 (17)0.02571 (7)
N10.45397 (18)0.70888 (13)0.03981 (12)0.0329 (3)
H11A0.44450.76510.00740.040*
H11B0.48350.66460.00510.040*
N20.53694 (18)0.85379 (12)0.18814 (13)0.0333 (3)
H12A0.53510.85010.24880.040*
H12B0.60270.89890.18760.040*
N30.78374 (18)0.74681 (14)0.27788 (12)0.0356 (4)
H21A0.76540.80020.30720.043*
H21B0.78380.69660.31690.043*
N40.69300 (18)0.59780 (12)0.13768 (12)0.0315 (3)
H22A0.61760.55860.11340.038*
H22B0.73450.60630.09160.038*
C10.3057 (2)0.67895 (17)0.03832 (17)0.0393 (5)
H11C0.31280.63600.09270.047*
H11D0.26110.64220.02030.047*
C20.2104 (2)0.76543 (17)0.04305 (17)0.0400 (5)
H12C0.11680.74040.04220.048*
H12D0.19630.80420.01500.048*
C30.2649 (2)0.83303 (17)0.12974 (17)0.0394 (5)
H13A0.28950.79340.18790.047*
H13B0.18680.87620.13170.047*
C40.3952 (2)0.89565 (15)0.13133 (17)0.0371 (4)
H14A0.39570.90550.06540.044*
H14B0.38450.95940.15780.044*
C50.9349 (2)0.7570 (2)0.27415 (19)0.0500 (6)
H21C1.00030.75470.33950.060*
H21D0.94520.82080.24760.060*
C60.9802 (3)0.6785 (2)0.2143 (2)0.0528 (6)
H22C0.92960.69080.14670.063*
H22D1.08240.68650.22300.063*
C70.9543 (3)0.5728 (2)0.2358 (2)0.0531 (6)
H23A1.00640.55980.30300.064*
H23B0.99530.53110.19690.064*
C80.7979 (2)0.54302 (17)0.21793 (16)0.0403 (5)
H24A0.78860.47360.20320.048*
H24B0.77270.55320.27680.048*
N50.70753 (19)0.79497 (13)0.08213 (13)0.0361 (4)
N60.52243 (18)0.66423 (13)0.24127 (12)0.0338 (4)
N70.4676 (3)0.43263 (16)0.10374 (15)0.0497 (5)
C90.7676 (2)0.84419 (15)0.04234 (14)0.0312 (4)
C100.4574 (2)0.63575 (15)0.29055 (14)0.0308 (4)
C110.3473 (3)0.43338 (16)0.08874 (15)0.0417 (5)
S10.85770 (7)0.91171 (5)0.01093 (5)0.04828 (16)
S20.36308 (7)0.59482 (5)0.35728 (5)0.04567 (15)
S30.17016 (8)0.43348 (6)0.06252 (6)0.06087 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.02639 (12)0.02624 (13)0.02650 (12)0.00079 (10)0.01105 (9)0.00022 (10)
N10.0335 (8)0.0332 (8)0.0318 (8)0.0040 (7)0.0096 (7)0.0048 (7)
N20.0351 (8)0.0287 (8)0.0380 (9)0.0010 (7)0.0139 (7)0.0047 (7)
N30.0340 (9)0.0371 (9)0.0338 (8)0.0022 (7)0.0078 (7)0.0027 (7)
N40.0337 (8)0.0317 (8)0.0318 (8)0.0026 (7)0.0138 (7)0.0003 (7)
C10.0326 (10)0.0360 (11)0.0461 (12)0.0045 (8)0.0075 (9)0.0073 (9)
C20.0291 (9)0.0439 (12)0.0461 (12)0.0003 (9)0.0101 (9)0.0029 (10)
C30.0326 (10)0.0410 (11)0.0472 (12)0.0048 (9)0.0163 (9)0.0019 (9)
C40.0363 (10)0.0308 (10)0.0442 (11)0.0040 (8)0.0123 (9)0.0028 (8)
C50.0311 (11)0.0619 (16)0.0518 (13)0.0101 (10)0.0047 (10)0.0020 (12)
C60.0307 (11)0.0706 (18)0.0598 (15)0.0053 (11)0.0176 (11)0.0156 (13)
C70.0375 (12)0.0639 (17)0.0583 (15)0.0160 (11)0.0153 (11)0.0145 (13)
C80.0452 (12)0.0366 (11)0.0399 (11)0.0085 (9)0.0140 (9)0.0066 (9)
N50.0356 (9)0.0378 (9)0.0390 (9)0.0001 (7)0.0173 (7)0.0060 (7)
N60.0347 (9)0.0338 (8)0.0366 (9)0.0007 (7)0.0165 (7)0.0019 (7)
N70.0597 (14)0.0483 (12)0.0417 (11)0.0024 (10)0.0163 (10)0.0060 (9)
C90.0299 (9)0.0323 (9)0.0325 (9)0.0027 (8)0.0110 (8)0.0033 (8)
C100.0309 (9)0.0297 (9)0.0336 (9)0.0036 (7)0.0124 (8)0.0003 (8)
C110.0656 (16)0.0323 (10)0.0300 (10)0.0012 (10)0.0190 (10)0.0003 (8)
S10.0443 (3)0.0522 (3)0.0531 (3)0.0073 (3)0.0218 (3)0.0157 (3)
S20.0476 (3)0.0504 (3)0.0503 (3)0.0009 (3)0.0317 (3)0.0051 (3)
S30.0578 (4)0.0584 (4)0.0710 (5)0.0028 (3)0.0265 (4)0.0117 (4)
Geometric parameters (Å, º) top
Co—N11.9881 (17)C2—C31.521 (3)
Co—N21.9747 (17)C3—H13A0.9700
Co—N31.9856 (17)C3—H13B0.9700
Co—N41.9930 (17)C3—C41.525 (3)
Co—N51.8918 (17)C4—H14A0.9700
Co—N61.8961 (17)C4—H14B0.9700
N1—H11A0.8900C5—H21C0.9700
N1—H11B0.8900C5—H21D0.9700
N1—C11.494 (3)C5—C61.528 (4)
N2—H12A0.8900C6—H22C0.9700
N2—H12B0.8900C6—H22D0.9700
N2—C41.489 (3)C6—C71.514 (4)
N3—H21A0.8900C7—H23A0.9700
N3—H21B0.8900C7—H23B0.9700
N3—C51.496 (3)C7—C81.520 (3)
N4—H22A0.8900C8—H24A0.9700
N4—H22B0.8900C8—H24B0.9700
N4—C81.496 (3)N5—C91.155 (3)
C1—H11C0.9700N6—C101.159 (3)
C1—H11D0.9700N7—C111.124 (3)
C1—C21.516 (3)C9—S11.624 (2)
C2—H12C0.9700C10—S21.626 (2)
C2—H12D0.9700C11—S31.649 (3)
Co···C13.074 (2)N3···S3ii3.383 (2)
Co···C43.081 (2)N4···C53.369 (3)
Co···C53.067 (2)N4···C62.894 (3)
Co···C63.459 (2)N4···N52.826 (3)
Co···C83.047 (2)N4···N73.079 (3)
Co···C93.040 (2)N4···N7i3.405 (3)
Co···C103.048 (2)N4···C11i3.224 (3)
N1···N22.856 (2)C1···C43.258 (3)
N1···C33.074 (3)C1···N63.067 (3)
N1···C43.010 (3)C1···C113.428 (3)
N1···N62.866 (2)C3···N63.427 (3)
N1···N7i3.106 (3)C5···C83.211 (4)
N2···C23.452 (3)C5···N53.033 (3)
N2···N7ii3.226 (3)C5···C93.477 (3)
N2···C11ii3.279 (3)C6···N53.187 (3)
N3···N42.824 (2)C8···N63.257 (3)
N3···C73.065 (3)C8···N73.480 (3)
N3···C82.931 (3)
N1—Co—N292.21 (7)C1—C2—H12D108.2
N1—Co—N3177.26 (7)C1—C2—C3116.53 (18)
N1—Co—N488.51 (7)H12C—C2—H12D107.3
N1—Co—N585.41 (8)H12C—C2—C3108.2
N1—Co—N695.05 (7)H12D—C2—C3108.2
N2—Co—N388.94 (7)C2—C3—H13A108.4
N2—Co—N4177.64 (7)C2—C3—H13B108.4
N2—Co—N589.01 (8)C2—C3—C4115.47 (18)
N2—Co—N689.10 (7)H13A—C3—H13B107.5
N3—Co—N490.44 (7)H13A—C3—C4108.4
N3—Co—N592.13 (8)H13B—C3—C4108.4
N3—Co—N687.45 (8)N2—C4—C3114.81 (18)
N4—Co—N593.29 (8)N2—C4—H14A108.6
N4—Co—N688.60 (7)N2—C4—H14B108.6
N5—Co—N6178.07 (8)C3—C4—H14A108.6
Co—N1—H11A106.5C3—C4—H14B108.6
Co—N1—H11B106.5H14A—C4—H14B107.5
Co—N1—C1123.30 (14)N3—C5—H21C108.6
H11A—N1—H11B106.5N3—C5—H21D108.6
H11A—N1—C1106.5N3—C5—C6114.5 (2)
H11B—N1—C1106.5H21C—C5—H21D107.6
Co—N2—H12A106.1H21C—C5—C6108.6
Co—N2—H12B106.1H21D—C5—C6108.6
Co—N2—C4125.05 (13)C5—C6—H22C108.0
H12A—N2—H12B106.3C5—C6—H22D108.0
H12A—N2—C4106.1C5—C6—C7117.0 (2)
H12B—N2—C4106.1H22C—C6—H22D107.3
Co—N3—H21A106.6H22C—C6—C7108.0
Co—N3—H21B106.6H22D—C6—C7108.0
Co—N3—C5122.89 (14)C6—C7—H23A108.2
H21A—N3—H21B106.6C6—C7—H23B108.2
H21A—N3—C5106.6C6—C7—C8116.2 (2)
H21B—N3—C5106.6H23A—C7—H23B107.4
Co—N4—H22A107.1H23A—C7—C8108.2
Co—N4—H22B107.1H23B—C7—C8108.2
Co—N4—C8121.03 (13)N4—C8—C7114.20 (19)
H22A—N4—H22B106.8N4—C8—H24A108.7
H22A—N4—C8107.1N4—C8—H24B108.7
H22B—N4—C8107.1C7—C8—H24A108.7
N1—C1—H11C109.0C7—C8—H24B108.7
N1—C1—H11D109.0H24A—C8—H24B107.6
N1—C1—C2112.88 (18)Co—N5—C9172.11 (18)
H11C—C1—H11D107.8Co—N6—C10172.07 (17)
H11C—C1—C2109.0N5—C9—S1177.81 (19)
H11D—C1—C2109.0N6—C10—S2178.6 (2)
C1—C2—H12C108.2N7—C11—S3177.9 (2)
Co—N1—C1—C288.3 (2)N4—Co—N3—C565.05 (19)
Co—N2—C4—C361.1 (2)C1—C2—C3—C470.2 (3)
Co—N3—C5—C649.0 (3)C2—C3—C4—N295.3 (2)
Co—N4—C8—C785.0 (2)C5—C6—C7—C862.9 (3)
N1—Co—N2—C45.81 (17)C6—C7—C8—N431.0 (3)
N1—Co—N4—C8160.59 (16)N5—Co—N1—C1164.02 (16)
N1—C1—C2—C357.6 (3)N5—Co—N2—C491.17 (17)
N2—Co—N1—C175.19 (16)N5—Co—N3—C528.26 (19)
N2—Co—N3—C5117.23 (19)N5—Co—N4—C8114.09 (16)
N3—Co—N2—C4176.68 (17)N6—Co—N1—C114.10 (16)
N3—Co—N4—C821.93 (16)N6—Co—N2—C489.21 (17)
N3—C5—C6—C750.8 (3)N6—Co—N3—C5153.63 (19)
N4—Co—N1—C1102.56 (16)N6—Co—N4—C865.50 (16)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(NCS)2(C4H12N2)2]NCS
Mr409.48
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.739 (2), 13.647 (4), 14.5479 (19)
β (°) 107.790 (13)
V3)1841.2 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.28
Crystal size (mm)0.20 × 0.20 × 0.15
Data collection
DiffractometerRigaku AFC-7R
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.784, 0.831
No. of measured, independent and
observed [I > 2σ(I)] reflections
5653, 5371, 4027
Rint0.027
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.094, 1.06
No. of reflections5371
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.56

Computer programs: AFC-7R Diffractometer Control Software (Rigaku, 1999), AFC-7R Diffractometer Control Software, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997).

Selected geometric parameters (Å, º) top
Co—N11.9881 (17)Co—N41.9930 (17)
Co—N21.9747 (17)Co—N51.8918 (17)
Co—N31.9856 (17)Co—N61.8961 (17)
N1—Co—N292.21 (7)N2—Co—N689.10 (7)
N1—Co—N3177.26 (7)N3—Co—N490.44 (7)
N1—Co—N488.51 (7)N3—Co—N592.13 (8)
N1—Co—N585.41 (8)N3—Co—N687.45 (8)
N1—Co—N695.05 (7)N4—Co—N593.29 (8)
N2—Co—N388.94 (7)N4—Co—N688.60 (7)
N2—Co—N4177.64 (7)N5—Co—N6178.07 (8)
N2—Co—N589.01 (8)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds