Download citation
Download citation
link to html
The title complex, [Ni(dppe)Br2]·THF, where dppe is bis­(di­phenyl­phosphino)­ethane (C26H24P2) and THF is tetra­hydro­furan (C4H8O), consists of a square-planar Ni center coordinated by the chelating phosphine ligand and by two cis-Br atoms. One mol­ecule of THF is included in the asymmetric unit.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801014581/wn6045sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801014581/wn6045Isup2.hkl
Contains datablock I

CCDC reference: 175326

Key indicators

  • Single-crystal X-ray study
  • T = 220 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.052
  • wR factor = 0.138
  • Data-to-parameter ratio = 16.6

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
RADNW_01 Alert C The radiation wavelength lies outside the expected range for the supplied radiation type. Expected range 1.54175-1.54180 Wavelength given = 1.54056 General Notes
RADNT_01 Extra text has been found in the _diffrn_radiation_type field. Radiation given as CuK\a1 Radiation identified as Cu K\a RADNW_01 The radiation wavelength given implies that Cu Kalpha1 has been used. Please check that this is correct. Wavelength given = 1.54056
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

In the course of our studies, the formation of Ni(dppe)Br2 was observed as a by-product for the reaction of Ni(dppe)2 with N-bromophthalimide. Even though this compound is well known as a good starting product, only the CH2Cl2 adduct has been previously characterized using X-ray crystallography (Rahn et al., 1989). The structure of the THF adduct, (I) (Fig. 1), is isostructural with the one previously reported for the CH2Cl2 analogue, having a slightly larger volume (about 20 Å3), presumably because of the larger volume of THF compared to CH2Cl2. The THF adduct adopts a pseudo-square planar geometry with a P—Ni—P bite angle of 89.97 (5)° and an angle of 93.93 (4)° between the Br atoms. We note that the Ni—P bond lengths [2.1573 (14) and 2.1603 (14) Å] are also slightly longer in the THF adduct than the corresponding distances in the CH2Cl2 adduct [2.141 (1) and 2.156 (1) Å], but both Ni—Br bonds are very similar. In this structure, there is a stacking interaction between the THF ring and the C121–C126 phenyl ring, as shown in Fig. 2.

Experimental top

Using Schlenk techniques, THF (10 ml) was added to a mixture of Ni(dppe)2 (40 mg, 0.047 mmol) and N-bromophthalimide (13 mg, 0.058 mmol) and stirred for 5 min. A large excess of hexanes was then addded to the solution, resulting, after 12 h, in the formation of dark-red crystals. The filtrate was removed and the solid dried under N2.

Refinement top

The space group was confirmed by the PLATON program (Spek, 1995). Data reduction was performed using a locally modified version of the NRC-2 program (Ahmed et al., 1973). The structure was solved by direct methods using SHELXS97 (Sheldrick, 1997) and difmap synthesis using SHELXTL (Bruker, 1997) and SHELXL96 (Sheldrick, 1996). H atoms were constrained to ride on the attached atoms; SHELXL96 defaults, C—H = 0.94–0.98 Å. The isotropic displacement parameters, Uiso, were set to values 20% higher than those of the attached atoms. A final verification of possible voids was performed using the VOID routine of the PLATON program (Spek, 1995).

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: NRC-2 and NRC-2A (Ahmed et al., 1973); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL96 (Sheldrick, 1996); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXL96.

Figures top
[Figure 1] Fig. 1. SHELXTL (Bruker, 1997) drawing of the title molecule, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. SHELXTL (Bruker, 1997) drawing of the unit-cell contents showing the interaction between THF and phenyl rings. Ellipsoids are drawn at the 30% probability level.
[1,2-Bis(diphenylphosphino)ethane]dibromonickel(II) tetrahydrofuran solvate top
Crystal data top
[NiBr2(C26H24P2)]·C4H8OF(000) = 1392.0
Mr = 689.03Dx = 1.603 Mg m3
Monoclinic, P21/cCu Kα1 radiation, λ = 1.54056 Å
a = 11.709 (5) ÅCell parameters from 25 reflections
b = 14.551 (4) Åθ = 20.0–21.0°
c = 17.558 (6) ŵ = 5.48 mm1
β = 107.38 (3)°T = 220 K
V = 2854.9 (17) Å3Block, dark red
Z = 40.57 × 0.15 × 0.12 mm
Data collection top
Nonius CAD-4
diffractometer
4582 reflections with I > 2σ(I)
Radiation source: normal-focus xray tubeRint = 0.038
Graphite monochromatorθmax = 70.0°, θmin = 4.0°
ω/2θ scansh = 1414
Absorption correction: integration
(ABSORP in NRCVAX; Gabe et al, 1989)
k = 1717
Tmin = 0.234, Tmax = 0.573l = 2121
6651 measured reflections5 standard reflections every 60 min
5425 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.138 w = 1/[σ2(Fo2) + (0.1052P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
5425 reflectionsΔρmax = 1.80 e Å3
326 parametersΔρmin = 1.12 e Å3
0 restraintsExtinction correction: SHELXL96 (Sheldrick, 1996), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00115 (13)
Crystal data top
[NiBr2(C26H24P2)]·C4H8OV = 2854.9 (17) Å3
Mr = 689.03Z = 4
Monoclinic, P21/cCu Kα1 radiation
a = 11.709 (5) ŵ = 5.48 mm1
b = 14.551 (4) ÅT = 220 K
c = 17.558 (6) Å0.57 × 0.15 × 0.12 mm
β = 107.38 (3)°
Data collection top
Nonius CAD-4
diffractometer
4582 reflections with I > 2σ(I)
Absorption correction: integration
(ABSORP in NRCVAX; Gabe et al, 1989)
Rint = 0.038
Tmin = 0.234, Tmax = 0.5735 standard reflections every 60 min
6651 measured reflections intensity decay: none
5425 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.02Δρmax = 1.80 e Å3
5425 reflectionsΔρmin = 1.12 e Å3
326 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating R-factor_obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.25326 (5)0.29831 (4)0.16750 (4)0.03025 (18)
Br10.44167 (4)0.32094 (3)0.15262 (3)0.04225 (16)
Br20.16321 (4)0.26625 (3)0.03209 (2)0.04360 (16)
P10.32582 (8)0.32090 (6)0.29445 (6)0.0307 (2)
P20.08503 (8)0.26886 (7)0.18911 (6)0.0340 (2)
C10.2016 (3)0.3302 (3)0.3369 (2)0.0373 (8)
H1A0.22980.31970.39470.045*
H1B0.16570.39150.32710.045*
C20.1104 (3)0.2573 (3)0.2965 (2)0.0393 (8)
H2A0.03550.26660.30950.047*
H2B0.14100.19580.31440.047*
C1110.4244 (3)0.4160 (3)0.3364 (2)0.0354 (8)
C1120.3821 (4)0.4955 (3)0.3634 (3)0.0509 (11)
H1120.30050.50060.35940.061*
C1130.4590 (5)0.5667 (3)0.3957 (3)0.0625 (13)
H1130.42960.61950.41450.075*
C1140.5788 (5)0.5613 (3)0.4008 (3)0.0585 (13)
H1140.63070.61040.42210.070*
C1150.6217 (4)0.4832 (3)0.3743 (3)0.0540 (12)
H1150.70350.47900.37840.065*
C1160.5462 (4)0.4109 (3)0.3418 (2)0.0439 (9)
H1160.57650.35840.32330.053*
C1210.4058 (3)0.2200 (2)0.3425 (2)0.0320 (7)
C1220.4538 (4)0.2166 (3)0.4255 (3)0.0442 (9)
H1220.44480.26690.45670.053*
C1230.5146 (4)0.1390 (3)0.4617 (3)0.0463 (10)
H1230.54670.13690.51750.056*
C1240.5283 (4)0.0644 (3)0.4159 (3)0.0442 (9)
H1240.57080.01230.44080.053*
C1250.4802 (4)0.0666 (3)0.3349 (3)0.0415 (9)
H1250.48810.01550.30410.050*
C1260.4192 (3)0.1446 (2)0.2980 (2)0.0349 (8)
H1260.38690.14600.24210.042*
C2110.0267 (3)0.3587 (3)0.1582 (2)0.0387 (8)
C2120.1296 (4)0.3561 (4)0.1827 (3)0.0554 (12)
H2120.14030.30850.21600.066*
C2130.2164 (4)0.4242 (4)0.1577 (3)0.0638 (14)
H2130.28600.42160.17390.077*
C2140.2018 (4)0.4944 (3)0.1102 (3)0.0563 (12)
H2140.26070.54010.09370.068*
C2150.1005 (4)0.4976 (3)0.0867 (3)0.0540 (11)
H2150.09020.54620.05410.065*
C2160.0123 (4)0.4301 (3)0.1101 (3)0.0458 (10)
H2160.05660.43330.09320.055*
C2210.0158 (4)0.1612 (3)0.1472 (3)0.0431 (9)
C2220.0801 (5)0.0807 (3)0.1687 (3)0.0570 (12)
H2220.15470.08190.20830.068*
C2230.0357 (6)0.0018 (3)0.1324 (4)0.0686 (16)
H2230.08010.05610.14750.082*
C2240.0725 (6)0.0042 (4)0.0747 (4)0.0749 (19)
H2240.10130.05960.04840.090*
C2250.1390 (6)0.0752 (5)0.0554 (3)0.0735 (18)
H2250.21520.07250.01770.088*
C2260.0963 (5)0.1589 (4)0.0901 (3)0.0563 (12)
H2260.14190.21280.07560.068*
O110.7740 (4)0.2668 (3)0.3144 (3)0.0755 (11)
C120.7226 (5)0.1867 (5)0.2718 (4)0.0756 (17)
H12A0.72790.18870.21710.091*
H12B0.63830.18110.26960.091*
C130.7935 (6)0.1077 (5)0.3167 (4)0.086 (2)
H13A0.86290.09450.29820.104*
H13B0.74410.05230.31110.104*
C140.8318 (6)0.1418 (5)0.4018 (4)0.091 (2)
H14B0.78580.11140.43300.110*
H14A0.91710.13010.42720.110*
C150.8069 (7)0.2426 (5)0.3960 (4)0.0823 (19)
H15B0.74180.25720.41850.099*
H15A0.87830.27680.42580.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0251 (3)0.0260 (3)0.0406 (4)0.0004 (2)0.0114 (3)0.0010 (2)
Br10.0351 (2)0.0410 (3)0.0558 (3)0.00752 (16)0.02150 (19)0.00123 (17)
Br20.0391 (3)0.0500 (3)0.0402 (3)0.00253 (17)0.00951 (18)0.00166 (17)
P10.0271 (4)0.0251 (4)0.0400 (5)0.0000 (3)0.0104 (4)0.0008 (3)
P20.0263 (4)0.0319 (5)0.0444 (5)0.0032 (3)0.0115 (4)0.0006 (4)
C10.0346 (19)0.0351 (19)0.045 (2)0.0023 (15)0.0159 (16)0.0022 (16)
C20.0330 (19)0.040 (2)0.048 (2)0.0032 (16)0.0164 (17)0.0032 (17)
C1110.0350 (18)0.0301 (18)0.0383 (19)0.0001 (15)0.0066 (15)0.0028 (14)
C1120.046 (2)0.032 (2)0.071 (3)0.0010 (18)0.012 (2)0.0061 (19)
C1130.072 (3)0.033 (2)0.075 (3)0.007 (2)0.010 (3)0.012 (2)
C1140.064 (3)0.044 (2)0.055 (3)0.022 (2)0.002 (2)0.004 (2)
C1150.043 (2)0.059 (3)0.051 (2)0.017 (2)0.0003 (19)0.011 (2)
C1160.035 (2)0.043 (2)0.051 (2)0.0040 (16)0.0078 (17)0.0047 (18)
C1210.0301 (17)0.0286 (17)0.0388 (19)0.0024 (13)0.0124 (14)0.0009 (14)
C1220.048 (2)0.037 (2)0.048 (2)0.0065 (18)0.0145 (19)0.0012 (17)
C1230.054 (2)0.039 (2)0.045 (2)0.0072 (19)0.0128 (19)0.0061 (17)
C1240.043 (2)0.033 (2)0.057 (2)0.0056 (17)0.0163 (19)0.0111 (17)
C1250.041 (2)0.0261 (18)0.061 (3)0.0031 (15)0.0203 (18)0.0023 (17)
C1260.0324 (17)0.0281 (17)0.044 (2)0.0010 (14)0.0114 (15)0.0008 (15)
C2110.0267 (17)0.038 (2)0.050 (2)0.0014 (15)0.0105 (15)0.0011 (17)
C2120.036 (2)0.057 (3)0.079 (3)0.003 (2)0.025 (2)0.009 (2)
C2130.030 (2)0.078 (4)0.085 (4)0.010 (2)0.020 (2)0.001 (3)
C2140.037 (2)0.052 (3)0.073 (3)0.011 (2)0.004 (2)0.009 (2)
C2150.050 (2)0.040 (2)0.071 (3)0.008 (2)0.016 (2)0.003 (2)
C2160.037 (2)0.040 (2)0.063 (3)0.0011 (17)0.0182 (19)0.0005 (19)
C2210.040 (2)0.041 (2)0.052 (2)0.0136 (17)0.0185 (18)0.0038 (17)
C2220.053 (3)0.036 (2)0.085 (4)0.008 (2)0.027 (2)0.001 (2)
C2230.091 (4)0.035 (2)0.097 (4)0.017 (3)0.055 (4)0.009 (2)
C2240.108 (5)0.061 (3)0.071 (3)0.051 (4)0.051 (3)0.020 (3)
C2250.079 (4)0.084 (4)0.055 (3)0.049 (3)0.017 (3)0.014 (3)
C2260.054 (3)0.058 (3)0.054 (3)0.017 (2)0.012 (2)0.000 (2)
O110.091 (3)0.067 (3)0.070 (3)0.014 (2)0.027 (2)0.0020 (19)
C120.052 (3)0.087 (4)0.081 (4)0.018 (3)0.011 (3)0.013 (3)
C130.067 (4)0.067 (4)0.111 (5)0.004 (3)0.006 (4)0.002 (4)
C140.067 (4)0.108 (6)0.087 (5)0.006 (4)0.004 (3)0.020 (4)
C150.079 (4)0.102 (5)0.066 (4)0.015 (4)0.023 (3)0.004 (3)
Geometric parameters (Å, º) top
Ni—P22.1573 (14)C126—H1260.9400
Ni—P12.1603 (14)C211—C2161.381 (6)
Ni—Br12.3212 (12)C211—C2121.396 (6)
Ni—Br22.3419 (12)C212—C2131.392 (7)
P1—C1211.808 (4)C212—H2120.9400
P1—C1111.811 (4)C213—C2141.362 (8)
P1—C11.827 (4)C213—H2130.9400
P2—C2111.814 (4)C214—C2151.368 (7)
P2—C2211.816 (4)C214—H2140.9400
P2—C21.826 (4)C215—C2161.394 (6)
C1—C21.522 (5)C215—H2150.9400
C1—H1A0.9800C216—H2160.9400
C1—H1B0.9800C221—C2221.383 (7)
C2—H2A0.9800C221—C2261.394 (7)
C2—H2B0.9800C222—C2231.385 (7)
C111—C1121.397 (6)C222—H2220.9400
C111—C1161.403 (5)C223—C2241.366 (9)
C112—C1131.379 (6)C223—H2230.9400
C112—H1120.9400C224—C2251.378 (9)
C113—C1141.382 (8)C224—H2240.9400
C113—H1130.9400C225—C2261.387 (7)
C114—C1151.379 (7)C225—H2250.9400
C114—H1140.9400C226—H2260.9400
C115—C1161.382 (6)O11—C151.413 (7)
C115—H1150.9400O11—C121.419 (7)
C116—H1160.9400C12—C131.496 (9)
C121—C1261.383 (5)C12—H12A0.9800
C121—C1221.397 (6)C12—H12B0.9800
C122—C1231.383 (6)C13—C141.511 (10)
C122—H1220.9400C13—H13A0.9800
C123—C1241.389 (6)C13—H13B0.9800
C123—H1230.9400C14—C151.493 (10)
C124—C1251.364 (6)C14—H14B0.9800
C124—H1240.9400C14—H14A0.9800
C125—C1261.394 (5)C15—H15B0.9800
C125—H1250.9400C15—H15A0.9800
P2—Ni—P186.97 (5)C121—C126—H126119.6
P2—Ni—Br1175.13 (4)C125—C126—H126119.6
P1—Ni—Br190.02 (5)C216—C211—C212118.9 (4)
P2—Ni—Br288.92 (5)C216—C211—P2121.1 (3)
P1—Ni—Br2175.46 (4)C212—C211—P2120.0 (3)
Br1—Ni—Br293.95 (4)C213—C212—C211120.0 (5)
C121—P1—C111104.58 (17)C213—C212—H212120.0
C121—P1—C1103.52 (18)C211—C212—H212120.0
C111—P1—C1105.42 (18)C214—C213—C212120.8 (4)
C121—P1—Ni110.30 (13)C214—C213—H213119.6
C111—P1—Ni122.85 (13)C212—C213—H213119.6
C1—P1—Ni108.47 (14)C213—C214—C215119.3 (4)
C211—P2—C221107.8 (2)C213—C214—H214120.3
C211—P2—C2104.83 (19)C215—C214—H214120.3
C221—P2—C2104.73 (19)C214—C215—C216121.3 (5)
C211—P2—Ni114.77 (14)C214—C215—H215119.4
C221—P2—Ni114.88 (14)C216—C215—H215119.4
C2—P2—Ni108.92 (13)C211—C216—C215119.7 (4)
C2—C1—P1106.9 (3)C211—C216—H216120.2
C2—C1—H1A110.3C215—C216—H216120.2
P1—C1—H1A110.3C222—C221—C226119.7 (4)
C2—C1—H1B110.3C222—C221—P2118.6 (3)
P1—C1—H1B110.3C226—C221—P2121.5 (4)
H1A—C1—H1B108.6C221—C222—C223120.6 (5)
C1—C2—P2107.0 (3)C221—C222—H222119.7
C1—C2—H2A110.3C223—C222—H222119.7
P2—C2—H2A110.3C224—C223—C222120.1 (6)
C1—C2—H2B110.3C224—C223—H223119.9
P2—C2—H2B110.3C222—C223—H223119.9
H2A—C2—H2B108.6C223—C224—C225119.5 (5)
C112—C111—C116118.5 (4)C223—C224—H224120.3
C112—C111—P1121.5 (3)C225—C224—H224120.3
C116—C111—P1119.9 (3)C224—C225—C226121.7 (5)
C113—C112—C111120.6 (4)C224—C225—H225119.2
C113—C112—H112119.7C226—C225—H225119.2
C111—C112—H112119.7C225—C226—C221118.4 (5)
C112—C113—C114120.6 (5)C225—C226—H226120.8
C112—C113—H113119.7C221—C226—H226120.8
C114—C113—H113119.7C15—O11—C12105.9 (5)
C115—C114—C113119.4 (4)O11—C12—C13105.8 (5)
C115—C114—H114120.3O11—C12—H12A110.6
C113—C114—H114120.3C13—C12—H12A110.6
C114—C115—C116120.9 (4)O11—C12—H12B110.6
C114—C115—H115119.5C13—C12—H12B110.6
C116—C115—H115119.5H12A—C12—H12B108.7
C115—C116—C111120.0 (4)C12—C13—C14102.9 (6)
C115—C116—H116120.0C12—C13—H13A111.2
C111—C116—H116120.0C14—C13—H13A111.2
C126—C121—C122118.8 (4)C12—C13—H13B111.2
C126—C121—P1120.7 (3)C14—C13—H13B111.2
C122—C121—P1120.4 (3)H13A—C13—H13B109.1
C123—C122—C121120.0 (4)C15—C14—C13105.1 (6)
C123—C122—H122120.0C15—C14—H14B110.7
C121—C122—H122120.0C13—C14—H14B110.7
C122—C123—C124120.3 (4)C15—C14—H14A110.7
C122—C123—H123119.9C13—C14—H14A110.7
C124—C123—H123119.9H14B—C14—H14A108.8
C125—C124—C123120.1 (4)O11—C15—C14107.6 (6)
C125—C124—H124119.9O11—C15—H15B110.2
C123—C124—H124119.9C14—C15—H15B110.2
C124—C125—C126119.9 (4)O11—C15—H15A110.2
C124—C125—H125120.0C14—C15—H15A110.2
C126—C125—H125120.0H15B—C15—H15A108.5
C121—C126—C125120.8 (4)
P2—Ni—P1—C12199.08 (13)P1—C121—C122—C123179.9 (3)
Br1—Ni—P1—C12177.09 (13)C121—C122—C123—C1240.0 (7)
P2—Ni—P1—C111136.98 (15)C122—C123—C124—C1251.0 (7)
Br1—Ni—P1—C11146.85 (15)C123—C124—C125—C1261.3 (6)
P2—Ni—P1—C113.65 (14)C122—C121—C126—C1250.4 (6)
Br1—Ni—P1—C1170.18 (13)P1—C121—C126—C125179.6 (3)
P1—Ni—P2—C211105.85 (15)C124—C125—C126—C1210.6 (6)
Br2—Ni—P2—C21176.08 (15)C221—P2—C211—C216116.6 (4)
P1—Ni—P2—C221128.35 (17)C2—P2—C211—C216132.2 (4)
Br2—Ni—P2—C22149.71 (17)Ni—P2—C211—C21612.8 (4)
P1—Ni—P2—C211.28 (15)C221—P2—C211—C21263.1 (4)
Br2—Ni—P2—C2166.79 (14)C2—P2—C211—C21248.1 (4)
C121—P1—C1—C276.2 (3)Ni—P2—C211—C212167.5 (3)
C111—P1—C1—C2174.3 (3)C216—C211—C212—C2130.9 (7)
Ni—P1—C1—C241.0 (3)P2—C211—C212—C213178.8 (4)
P1—C1—C2—P249.3 (3)C211—C212—C213—C2140.8 (8)
C211—P2—C2—C184.1 (3)C212—C213—C214—C2150.2 (8)
C221—P2—C2—C1162.5 (3)C213—C214—C215—C2160.3 (8)
Ni—P2—C2—C139.1 (3)C212—C211—C216—C2150.4 (7)
C121—P1—C111—C112133.7 (4)P2—C211—C216—C215179.3 (4)
C1—P1—C111—C11224.9 (4)C214—C215—C216—C2110.2 (7)
Ni—P1—C111—C11299.8 (4)C211—P2—C221—C222173.9 (4)
C121—P1—C111—C11646.8 (4)C2—P2—C221—C22262.7 (4)
C1—P1—C111—C116155.6 (3)Ni—P2—C221—C22256.7 (4)
Ni—P1—C111—C11679.7 (3)C211—P2—C221—C22610.6 (5)
C116—C111—C112—C1131.1 (7)C2—P2—C221—C226121.8 (4)
P1—C111—C112—C113179.5 (4)Ni—P2—C221—C226118.7 (4)
C111—C112—C113—C1141.1 (8)C226—C221—C222—C2231.9 (7)
C112—C113—C114—C1151.0 (8)P2—C221—C222—C223173.7 (4)
C113—C114—C115—C1160.9 (7)C221—C222—C223—C2240.1 (8)
C114—C115—C116—C1110.9 (7)C222—C223—C224—C2252.6 (8)
C112—C111—C116—C1150.9 (6)C223—C224—C225—C2263.3 (8)
P1—C111—C116—C115179.6 (3)C224—C225—C226—C2211.4 (8)
C111—P1—C121—C126130.5 (3)C222—C221—C226—C2251.2 (7)
C1—P1—C121—C126119.3 (3)P2—C221—C226—C225174.2 (4)
Ni—P1—C121—C1263.4 (3)C15—O11—C12—C1336.8 (7)
C111—P1—C121—C12250.3 (4)O11—C12—C13—C1430.7 (7)
C1—P1—C121—C12259.9 (4)C12—C13—C14—C1513.6 (7)
Ni—P1—C121—C122175.8 (3)C12—O11—C15—C1427.8 (7)
C126—C121—C122—C1230.6 (6)C13—C14—C15—O117.9 (8)

Experimental details

Crystal data
Chemical formula[NiBr2(C26H24P2)]·C4H8O
Mr689.03
Crystal system, space groupMonoclinic, P21/c
Temperature (K)220
a, b, c (Å)11.709 (5), 14.551 (4), 17.558 (6)
β (°) 107.38 (3)
V3)2854.9 (17)
Z4
Radiation typeCu Kα1
µ (mm1)5.48
Crystal size (mm)0.57 × 0.15 × 0.12
Data collection
DiffractometerNonius CAD-4
diffractometer
Absorption correctionIntegration
(ABSORP in NRCVAX; Gabe et al, 1989)
Tmin, Tmax0.234, 0.573
No. of measured, independent and
observed [I > 2σ(I)] reflections
6651, 5425, 4582
Rint0.038
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.138, 1.02
No. of reflections5425
No. of parameters326
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.80, 1.12

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, NRC-2 and NRC-2A (Ahmed et al., 1973), SHELXS97 (Sheldrick, 1997), SHELXL96 (Sheldrick, 1996), SHELXTL (Bruker, 1997), SHELXL96.

Selected geometric parameters (Å, º) top
Ni—P22.1573 (14)Ni—Br12.3212 (12)
Ni—P12.1603 (14)Ni—Br22.3419 (12)
P2—Ni—P186.97 (5)P2—Ni—Br288.92 (5)
P2—Ni—Br1175.13 (4)P1—Ni—Br2175.46 (4)
P1—Ni—Br190.02 (5)Br1—Ni—Br293.95 (4)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds