Download citation
Download citation
link to html
From a hexane solution, the title compound, C14H21IO2S, crystallizes in the centrosymmetric space group Pbca with one mol­ecule in the asymmetric unit. As a result of the bulky substituent, small deviations from ideal bond angles are found for the aliphatic part of the mol­ecule.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801015069/wn6046sup1.cif
Contains datablocks 3a, diaster1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801015069/wn60463asup2.hkl
Contains datablock 3a

CCDC reference: 175366

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.037
  • wR factor = 0.069
  • Data-to-parameter ratio = 13.4

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Red Alert Alert Level A:
DIFF_012 Alert A _diffrn_reflns_av_R_equivalents is missing R factor for symmetry-equivalent intensities. The following tests will not be performed RINTA
1 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
0 Alert Level C = Please check

Comment top

In the course of our continuing study on atom-transfer free radical additions of α-iodoalkylphenyl sulfones to alkenes, we found secondary iodide (1) reacting with terminal alkene (2) under standard conditions (Jankowski et al., 1995; Masnyk, 1991), producing a chromatographically separable mixture of diastereomers (3a) and (3 b) in a 1:1.2 ratio. The correlation of the crystal structure with the corresponding NMR spectrum will enable the application of NMR techniques to stereochemical assignments of other related compounds resulting from analogous reactions. We now present the crystal structure of (3a) (Fig. 1).

The compound crystallizes in the centrosymmetric space group Pbca with one molecule in the asymmetric unit. All bond lengths, bond angles and torsion angles are in the expected ranges. This includes a significantly enlarged O—S—O angle of 118.2° for the SO double bonds. The geometric deviations at atoms C3 and C4, as expressed by bond angles of 116.3 (4) and 116.0 (4)°, respectively, can be related to the steric effect of bulky groups attached to C3 (tert-butyl and iodine) and C4 [–CH(CH3) and –SO2(C6H5)] favouring a more stretched arrangement of the aliphatic part of the molecule.

Experimental top

A mixture of (1-iodoethanesulfonyl)benzene (1) (600 mg), 3,3-dimethylbut-1-ene (2) (1.0 ml), benzene (1.5 ml) and benzoyl peroxide (40 mg) was heated for 6 h at 373 K in a sealed tube. The reaction mixture was then chromatographed on silica gel (hexanes–ethyl acetate 93:7) yielding (3a) (280 mg, isomer anti, 2S4R and 2R4S) and (3 b) (350 mg, isomer syn, 2R4R and 2S4S). Isometric crystals of (3a) were grown from hexane solution at room temperature over the course of a few days (m.p. = 346–348 K), 1H NMR (500 MHz, CDCl3): δ = 1.10 (s, 9H), 1.26 (d, J = 7.1 Hz, 1H), 1.88 (ddd, J = 16.4, 12.0, 1.9 Hz, 1H), 2.53 (ddd, J = 16.4, 8.5, 1.9 Hz, 1H), 3.45 (m, 1H), 4.42 (dd, J = 12.0, 1.9 Hz, 1H), 7.57–7.61 (m, 2H), 7.68 (tt, J = 7.4, 1.3 Hz, 1H), 7.89–7.92 (m, 2H). 13C NMR (125 MHz, CDCl3): δ = 16.72, 28.26, 35.98, 37.53, 56.14, 61.21, 128.88, 129.21, 133.79, 137.64.

Refinement top

H atoms belonging to CH2 groups and aromatic H atoms were included in the final stages of refinement, using a riding model with one common Uiso value refined for each group. H atoms belonging to methyl groups were included in the refinement, riding on their attached C atom and allowed to rotate about the C—C bond with one common Uiso value refined for each methyl group. The H atoms at C3 and C5 (C—H groups) were refined freely, together with their individual Uiso values.

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (3a). Displacement ellipsoids are shown at the 50% probability level and H atoms are drawn with an arbitrary radius.
(2SR,4RS)-(4-Iodo-5,5-dimethyl-2-hexylsulfonyl)benzene top
Crystal data top
C14H21IO2SDx = 1.578 Mg m3
Mr = 380.27Melting point: 73-75 °C K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 30 reflections
a = 7.6427 (14) Åθ = 7.7–13.8°
b = 11.035 (2) ŵ = 2.13 mm1
c = 37.950 (5) ÅT = 293 K
V = 3200.6 (10) Å3Isometric, colourless
Z = 80.90 × 0.80 × 0.57 mm
F(000) = 1520
Data collection top
Siemens P4
diffractometer
1891 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.2°
Graphite monochromatorh = 09
ω scansk = 013
Absorption correction: numerical
(Stoe & Cie, 1996)
l = 045
Tmin = 0.215, Tmax = 0.3623 standard reflections every 100 reflections
2815 measured reflections intensity decay: none
2815 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.012P)2 + 9.P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
2815 reflectionsΔρmax = 0.55 e Å3
210 parametersΔρmin = 0.55 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00258 (8)
Crystal data top
C14H21IO2SV = 3200.6 (10) Å3
Mr = 380.27Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.6427 (14) ŵ = 2.13 mm1
b = 11.035 (2) ÅT = 293 K
c = 37.950 (5) Å0.90 × 0.80 × 0.57 mm
Data collection top
Siemens P4
diffractometer
2815 independent reflections
Absorption correction: numerical
(Stoe & Cie, 1996)
1891 reflections with I > 2σ(I)
Tmin = 0.215, Tmax = 0.3623 standard reflections every 100 reflections
2815 measured reflections intensity decay: none
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.55 e Å3
2815 reflectionsΔρmin = 0.55 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.13696 (4)0.80390 (4)0.415289 (9)0.06613 (16)
S10.36916 (16)0.80333 (11)0.33542 (3)0.0464 (3)
O10.3582 (5)0.8880 (3)0.30673 (9)0.0660 (10)
O20.4507 (4)0.8429 (3)0.36774 (9)0.0624 (10)
C10.1398 (7)0.7158 (5)0.47958 (12)0.0696 (16)
H1a0.17930.66790.49910.072 (10)*
H1b0.20620.78950.47850.072 (10)*
H1c0.01810.73470.48260.072 (10)*
C20.1650 (7)0.6444 (5)0.44536 (12)0.0522 (13)
C30.1277 (6)0.7262 (4)0.41351 (12)0.0408 (10)
H30.188 (5)0.802 (4)0.4151 (11)0.053*
C40.1457 (6)0.6674 (4)0.37730 (11)0.0466 (12)
H410.25250.61990.37710.056 (9)*
H420.04880.61170.37410.056 (9)*
C50.1500 (6)0.7543 (4)0.34574 (11)0.0409 (11)
H50.099 (6)0.837 (4)0.3523 (11)0.053*
C60.0608 (6)0.7039 (5)0.31319 (12)0.0538 (13)
H610.07860.75820.29380.065 (9)*
H620.10970.62610.30760.065 (9)*
H630.06220.69550.31760.065 (9)*
C70.3595 (8)0.6085 (6)0.44328 (15)0.086 (2)
H710.39250.56690.46450.099 (12)*
H720.37750.55610.42340.099 (12)*
H730.42980.68000.44060.099 (12)*
C80.0521 (8)0.5313 (5)0.44581 (15)0.0769 (19)
H810.08220.48260.46590.093 (12)*
H820.06890.55400.44720.093 (12)*
H830.07170.48570.42460.093 (12)*
C110.4839 (6)0.6740 (4)0.31984 (12)0.0430 (12)
C120.4752 (7)0.6433 (5)0.28446 (12)0.0553 (14)
H120.40690.68850.26900.067 (7)*
C130.5689 (8)0.5454 (5)0.27249 (14)0.0687 (17)
H130.56230.52330.24890.067 (7)*
C140.6727 (7)0.4797 (5)0.29532 (16)0.0643 (16)
H140.73770.41460.28690.067 (7)*
C150.6805 (6)0.5098 (5)0.33030 (15)0.0594 (14)
H150.74950.46430.34560.067 (7)*
C160.5864 (6)0.6074 (5)0.34308 (13)0.0521 (13)
H160.59160.62820.36680.067 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0485 (2)0.0921 (3)0.0578 (2)0.0152 (2)0.00716 (18)0.0001 (2)
S10.0485 (6)0.0403 (6)0.0503 (6)0.0081 (6)0.0082 (6)0.0003 (6)
O10.076 (2)0.048 (2)0.074 (2)0.001 (2)0.019 (2)0.0213 (19)
O20.058 (2)0.064 (2)0.065 (2)0.0155 (19)0.0026 (18)0.0211 (19)
C10.077 (4)0.087 (4)0.045 (3)0.005 (4)0.008 (3)0.005 (3)
C20.058 (3)0.058 (3)0.041 (3)0.000 (3)0.004 (2)0.007 (2)
C30.039 (2)0.039 (3)0.045 (2)0.002 (2)0.007 (2)0.000 (2)
C40.052 (3)0.042 (3)0.045 (3)0.005 (3)0.012 (2)0.001 (2)
C50.042 (3)0.038 (2)0.043 (3)0.001 (2)0.006 (2)0.002 (2)
C60.054 (3)0.060 (3)0.047 (3)0.010 (3)0.002 (2)0.002 (3)
C70.076 (4)0.114 (5)0.068 (4)0.034 (4)0.001 (4)0.023 (4)
C80.108 (5)0.064 (4)0.059 (4)0.011 (4)0.010 (4)0.014 (3)
C110.040 (2)0.045 (3)0.044 (3)0.006 (2)0.007 (2)0.002 (2)
C120.068 (3)0.065 (4)0.033 (3)0.006 (3)0.006 (2)0.006 (3)
C130.085 (4)0.070 (4)0.050 (3)0.002 (4)0.022 (3)0.009 (3)
C140.061 (4)0.050 (3)0.082 (4)0.001 (3)0.032 (3)0.009 (3)
C150.047 (3)0.059 (3)0.072 (4)0.003 (3)0.010 (3)0.012 (3)
C160.044 (3)0.065 (3)0.048 (3)0.005 (3)0.005 (2)0.002 (3)
Geometric parameters (Å, º) top
I1—C32.198 (4)C6—H620.9600
S1—O11.437 (3)C6—H630.9600
S1—O21.443 (3)C7—H710.9600
S1—C111.776 (5)C7—H720.9600
S1—C51.803 (5)C7—H730.9600
C1—C21.531 (7)C8—H810.9600
C1—H1a0.9600C8—H820.9600
C1—H1b0.9600C8—H830.9600
C1—H1c0.9600C11—C121.386 (6)
C2—C31.535 (6)C11—C161.389 (6)
C2—C81.518 (7)C12—C131.373 (7)
C2—C71.541 (7)C12—H120.9300
C3—C41.526 (6)C13—C141.381 (8)
C3—H30.96 (4)C13—H130.9300
C4—C51.535 (6)C14—C151.370 (7)
C4—H410.9700C14—H140.9300
C4—H420.9700C15—C161.383 (7)
C5—C61.516 (6)C15—H150.9300
C5—H51.02 (4)C16—H160.9300
C6—H610.9600
O1—S1—O2118.2 (2)C5—C6—H63109.5
O1—S1—C11107.4 (2)H61—C6—H63109.5
O2—S1—C11108.2 (2)H62—C6—H63109.5
O1—S1—C5107.8 (2)C2—C7—H71109.5
O2—S1—C5107.9 (2)C2—C7—H72109.5
C11—S1—C5106.9 (2)H71—C7—H72109.5
C1—C2—C3110.0 (4)C2—C7—H73109.5
C1—C2—C8110.0 (4)H71—C7—H73109.5
C3—C2—C8112.8 (4)H72—C7—H73109.5
C1—C2—C7107.3 (5)C2—C8—H81109.5
C3—C2—C7106.9 (4)C2—C8—H82109.5
C8—C2—C7109.7 (5)H81—C8—H82109.5
C4—C3—C2116.3 (4)C2—C8—H83109.5
C4—C3—I1106.1 (3)H81—C8—H83109.5
C2—C3—I1112.1 (3)H82—C8—H83109.5
C4—C3—H3113 (3)C12—C11—C16120.8 (5)
C2—C3—H3112 (3)C12—C11—S1119.7 (4)
I1—C3—H396 (3)C16—C11—S1119.5 (4)
C3—C4—C5116.0 (4)C13—C12—C11119.2 (5)
C3—C4—H41108.3C13—C12—H12120.4
C5—C4—H41108.3C11—C12—H12120.4
C3—C4—H42108.3C14—C13—C12120.4 (5)
C5—C4—H42108.3C14—C13—H13119.8
H41—C4—H42107.4C12—C13—H13119.8
C6—C5—C4113.4 (4)C15—C14—C13120.4 (5)
C6—C5—S1110.5 (3)C15—C14—H14119.8
C4—C5—S1112.1 (3)C13—C14—H14119.8
C6—C5—H5111 (3)C14—C15—C16120.4 (5)
C4—C5—H5111 (2)C14—C15—H15119.8
S1—C5—H598 (2)C16—C15—H15119.8
C5—C6—H61109.5C15—C16—C11118.8 (5)
C5—C6—H62109.5C15—C16—H16120.6
H61—C6—H62109.5C11—C16—H16120.6
C1—C2—C3—C4179.5 (4)C11—S1—C5—C467.4 (4)
C8—C2—C3—C456.3 (6)O1—S1—C11—C1228.9 (5)
C7—C2—C3—C464.4 (6)O2—S1—C11—C12157.6 (4)
C1—C2—C3—I157.2 (5)C5—S1—C11—C1286.5 (4)
C8—C2—C3—I166.0 (5)O1—S1—C11—C16148.8 (4)
C7—C2—C3—I1173.4 (4)O2—S1—C11—C1620.1 (4)
C2—C3—C4—C5166.5 (4)C5—S1—C11—C1695.8 (4)
I1—C3—C4—C568.1 (4)C16—C11—C12—C130.3 (7)
C3—C4—C5—C6144.9 (4)S1—C11—C12—C13178.0 (4)
C3—C4—C5—S189.1 (4)C11—C12—C13—C141.1 (8)
O1—S1—C5—C655.0 (4)C12—C13—C14—C151.4 (8)
O2—S1—C5—C6176.4 (3)C13—C14—C15—C160.9 (8)
C11—S1—C5—C660.2 (4)C14—C15—C16—C110.1 (7)
O1—S1—C5—C4177.4 (3)C12—C11—C16—C150.2 (7)
O2—S1—C5—C448.8 (4)S1—C11—C16—C15177.5 (4)

Experimental details

Crystal data
Chemical formulaC14H21IO2S
Mr380.27
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)7.6427 (14), 11.035 (2), 37.950 (5)
V3)3200.6 (10)
Z8
Radiation typeMo Kα
µ (mm1)2.13
Crystal size (mm)0.90 × 0.80 × 0.57
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correctionNumerical
(Stoe & Cie, 1996)
Tmin, Tmax0.215, 0.362
No. of measured, independent and
observed [I > 2σ(I)] reflections
2815, 2815, 1891
Rint?
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.069, 1.01
No. of reflections2815
No. of parameters210
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.55, 0.55

Computer programs: XSCANS (Siemens, 1996), XSCANS, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 1998), SHELXL97.

Selected geometric parameters (Å, º) top
I1—C32.198 (4)S1—C51.803 (5)
S1—O11.437 (3)C2—C31.535 (6)
S1—O21.443 (3)C3—C41.526 (6)
S1—C111.776 (5)
O1—S1—O2118.2 (2)C3—C2—C8112.8 (4)
O1—S1—C11107.4 (2)C3—C2—C7106.9 (4)
O2—S1—C11108.2 (2)C4—C3—C2116.3 (4)
O1—S1—C5107.8 (2)C4—C3—I1106.1 (3)
O2—S1—C5107.9 (2)C2—C3—I1112.1 (3)
C11—S1—C5106.9 (2)C3—C4—C5116.0 (4)
C1—C2—C3110.0 (4)
C1—C2—C3—C4179.5 (4)C7—C2—C3—I1173.4 (4)
C8—C2—C3—C456.3 (6)C2—C3—C4—C5166.5 (4)
C7—C2—C3—C464.4 (6)I1—C3—C4—C568.1 (4)
C1—C2—C3—I157.2 (5)C3—C4—C5—C6144.9 (4)
C8—C2—C3—I166.0 (5)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds