Download citation
Download citation
link to html
The attempt to crystallize CuIBr(bpy)2, where bpy is bi­pyridine, from an aceto­nitrile solution in a glove-box led unexpectedly to a dimeric carbonato-bridged CuII precipitate, viz. μ-carbonato-bis­[bis­(bi­pyridine)copper(II)] dibromide diaceto­nitrile monohydrate, [Cu2(C10H8N2)4(CO3)]Br2·2CH3CN·H2O. The μ2-carbonato ligand is probably the result of an oxidation of traces of CO2 by CuI. The resulting structure contains two square-pyramidally coordinated CuII atoms bridged by a CO32− unit.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801015276/wn6050sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801015276/wn6050Isup2.hkl
Contains datablock I

CCDC reference: 175341

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.012 Å
  • R factor = 0.047
  • wR factor = 0.110
  • Data-to-parameter ratio = 8.2

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Red Alert Alert Level A:
THETM_01 Alert A The value of sine(theta_max)/wavelength is less than 0.550 Calculated sin(theta_max)/wavelength = 0.5001
Author response: The measured dataset had a low scattering intensity in the high theta range, therefore we employed a high resolution limit of 1.0 \%A and used this modified dataset for the refinement!

Yellow Alert Alert Level C:
CHEMW_01 Alert C The difference between the given and expected weight for compound is greater 1 mass unit. Check that all hydrogen atoms have been taken into account. REFNR_01 Alert C Ratio of reflections to parameters is < 10 for a centrosymmetric structure sine(theta)/lambda 0.5001 Proportion of unique data used 1.0000 Ratio reflections to parameters 8.2267 RINTA_01 Alert C The value of Rint is greater than 0.10 Rint given 0.149 PLAT_030 Alert C Refined Extinction parameter within range .... 2.50 Sigma General Notes
FORMU_01 There is a discrepancy between the atom counts in the _chemical_formula_sum and _chemical_formula_moiety. This is usually due to the moiety formula being in the wrong format. Atom count from _chemical_formula_sum: C45 H38 Br2 Cu2 N10 O4 Atom count from _chemical_formula_moiety:C45 H40 Br2 Cu2 N10 O4
1 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
4 Alert Level C = Please check

Comment top

The fixation of atmospheric CO2 by copper complexes is a widely known phenomenon (Van Albada et al., 2000; Sertucha et al., 1999; Escuer et al., 1997; Kitajima et al., 1993). However, it is still not easy to predict whether fixation will occur or not. The crystals studied in this report were obtained from a reaction in an argon-filled glove-box where CO2 should not usually be present. Currently, we do not know the source of the CO2. Either there were small impurities in the argon atmosphere or the chemicals, such as the acetonitrile, were carriers of CO2 impurities. A possible explanation for the reaction is an oxidation of traces of CO2 by CuI resulting in CO32- ions. In addition, H2O was also found in the structure; therefore, probably traces of Cu(OH)2 were also present in the acetonitrile solution. This has been described already in the literature as promoting CO2 fixation (Kruger et al., 1995; Kitajima et al., 1991; Menif et al., 1991).

In the title complex, (I), each copper has a square-pyramidal environment with a basal plane formed by three N atoms of the two chelating bipyridine ligands and the O atom of the bridging carbonato group (Fig. 1). The axial position is occupied by the remaining N atom of the bipyridine ligand. The same structural motif was also obtained by the recrystallization of a hexanuclear (µ2-hydroxo)(µ2-carbonato)copper(II) bipyridine complex (Kruger et al., 1995). However, in this related compound, the counter-ion is PF6- and the structure crystallized in space group P1. Additionally, the latter structure shows disorder over two sites of the bridging carbonate ligand, which seems to be a reasonably common phenomenon in bridged carbonate structures but was not observed in the current structure (Einstein & Willis, 1981; Palmer & van Eldik, 1983). Cu—O distances [Cu1—O62 1.944 (4) Å, Cu2—O63 1.928 (4) Å] are similar to those in other (µ2-carbonato)copper complexes (Kruger et al., 1995). The Cu1···Cu2 separation is 5.339 Å, with the non-coordinated carbonate O atom sitting almost centrally between the two Cu atoms (Cu1—O61 2.808 Å and Cu2—O62 2.779 Å). The µ2-carbonato ligand shows an internal asymmetry with three different C—O bond lengths [C60—O61 1.245 (8) Å, C60—O62 1.293 (8) Å and C60—O63 1.311 (8) Å]. These bond lengths also reveal the different bonding modes of the carbonato O atoms; two atoms are coordinated to the copper centers, which reduces the electron density on these atoms and leads to a lower C—O bond order with a longer bond, while the third O atom shows obviously no, or only a small, interaction with the copper centers resulting in a shorter C—O bond distance. Bipyridyl–bipyridyl π-stacking interactions in the crystal lattice may be a reason for the crystallization of this compound (Fig. 2).

Experimental top

0.57 g (4.0 mmol) CuBr and 1.25 g (8.0 mmol) bipyridine were placed in a 50 ml round-bottomed flask in a glove-box containing an argon atmosphere. 10 ml of acetonitrile were slowly added with stirring. The mixture was heated for a short time until all of the solid completely dissolved. The maroon solution was cooled to room temperature and was allowed to stand for one week. The solvent was evaporated and green crystals were isolated.

Refinement top

The data set was limited to a resolution of 1.0 Å, since only very weak diffraction was observed at higher angles. H atoms were located by difference Fourier maps and refined with a riding model, with the exception of the H atoms of the water solvate, which were not included.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The structure of (I) showing displacement ellipsoids at the 50% probability level. For clarity, H atoms have been omitted. The asymmetric unit also contains (not shown) two molecules of acetonitrile, one molecule of water and two bromide counter-ions.
[Figure 2] Fig. 2. Projection of the structure of (I) along [100], showing displacement ellipsoids at the 50% probability level. For clarity, H atoms have been omitted.
(I) top
Crystal data top
[Cu2(C10H8N2)4(CO3)]Br2·2CH3CN·H2OF(000) = 2152
Mr = 1071.77Dx = 1.579 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.0977 (2) ÅCell parameters from 5127 reflections
b = 23.7744 (2) Åθ = 2.3–24.3°
c = 17.1024 (1) ŵ = 2.78 mm1
β = 94.347 (1)°T = 293 K
V = 4499.34 (9) Å3Irregular, green
Z = 40.16 × 0.14 × 0.14 mm
Data collection top
Siemens SMART
diffractometer with CCD area detector
4681 independent reflections
Radiation source: fine-focus sealed tube4013 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.149
ω scansθmax = 20.8°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.665, Tmax = 0.697k = 023
10354 measured reflectionsl = 017
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0245P)2 + 20.6621P]
where P = (Fo2 + 2Fc2)/3
S = 1.17(Δ/σ)max = 0.001
4681 reflectionsΔρmax = 1.02 e Å3
569 parametersΔρmin = 0.56 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00015 (6)
Crystal data top
[Cu2(C10H8N2)4(CO3)]Br2·2CH3CN·H2OV = 4499.34 (9) Å3
Mr = 1071.77Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.0977 (2) ŵ = 2.78 mm1
b = 23.7744 (2) ÅT = 293 K
c = 17.1024 (1) Å0.16 × 0.14 × 0.14 mm
β = 94.347 (1)°
Data collection top
Siemens SMART
diffractometer with CCD area detector
4681 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4013 reflections with I > 2σ(I)
Tmin = 0.665, Tmax = 0.697Rint = 0.149
10354 measured reflectionsθmax = 20.8°
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.17 w = 1/[σ2(Fo2) + (0.0245P)2 + 20.6621P]
where P = (Fo2 + 2Fc2)/3
4681 reflectionsΔρmax = 1.02 e Å3
569 parametersΔρmin = 0.56 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.84485 (7)0.81670 (3)0.43039 (4)0.0327 (3)
N10.8511 (5)0.8820 (2)0.3537 (3)0.0373 (15)
Br10.07263 (10)0.43466 (4)0.62217 (5)0.0731 (3)
Cu20.50038 (7)0.70377 (3)0.26131 (4)0.0301 (2)
Br20.42833 (8)0.95427 (3)0.28040 (5)0.0572 (3)
C20.7538 (7)0.9085 (3)0.3216 (4)0.045 (2)
H2A0.67850.89650.33540.054*
C30.7570 (8)0.9527 (3)0.2692 (4)0.057 (2)
H3A0.68690.96980.24760.068*
C40.8708 (9)0.9700 (4)0.2508 (5)0.058 (2)
H4A0.87811.00010.21670.069*
C50.9723 (8)0.9434 (3)0.2822 (4)0.050 (2)
H5A1.04820.95480.26890.060*
C60.9611 (7)0.8986 (3)0.3347 (4)0.0391 (19)
C71.0651 (6)0.8670 (3)0.3699 (4)0.0398 (19)
C81.1848 (7)0.8767 (4)0.3530 (5)0.055 (2)
H8A1.20290.90540.31900.066*
C91.2747 (8)0.8437 (4)0.3868 (5)0.065 (3)
H9A1.35410.84910.37460.078*
C101.2479 (7)0.8021 (4)0.4390 (5)0.062 (2)
H10A1.30820.77950.46300.074*
C111.1276 (7)0.7952 (4)0.4544 (5)0.052 (2)
H11A1.10840.76750.48980.062*
N121.0396 (5)0.8262 (3)0.4212 (3)0.0408 (15)
N130.8303 (5)0.8658 (2)0.5267 (3)0.0359 (14)
C140.8255 (7)0.9219 (3)0.5293 (4)0.049 (2)
H14A0.83270.94180.48310.059*
C150.8104 (8)0.9519 (3)0.5972 (5)0.061 (2)
H15A0.80650.99100.59650.073*
C160.8015 (8)0.9228 (3)0.6649 (5)0.057 (2)
H16A0.79040.94170.71130.068*
C170.8091 (6)0.8647 (3)0.6641 (4)0.0412 (19)
H17A0.80430.84450.71030.049*
C180.8238 (6)0.8370 (3)0.5948 (4)0.0324 (17)
C190.8327 (6)0.7752 (3)0.5868 (4)0.0312 (17)
C200.8314 (6)0.7380 (3)0.6490 (4)0.0377 (18)
H20A0.82290.75120.69950.045*
C210.8426 (7)0.6817 (3)0.6355 (4)0.045 (2)
H21A0.84180.65630.67690.054*
C220.8550 (7)0.6626 (3)0.5608 (4)0.046 (2)
H22A0.86440.62450.55100.055*
C230.8531 (6)0.7014 (3)0.5008 (4)0.0374 (18)
H23A0.85940.68850.44990.045*
N240.8425 (4)0.7565 (2)0.5128 (3)0.0301 (13)
N250.3203 (5)0.7086 (3)0.2758 (3)0.0427 (16)
C260.2440 (7)0.7463 (4)0.2430 (5)0.056 (2)
H26A0.27350.77350.21040.067*
C270.1211 (8)0.7467 (5)0.2557 (6)0.078 (3)
H27A0.06920.77340.23200.094*
C280.0797 (8)0.7065 (5)0.3042 (6)0.079 (3)
H28A0.00160.70570.31390.095*
C290.1588 (8)0.6669 (4)0.3390 (5)0.068 (3)
H29A0.13110.63990.37260.081*
C300.2791 (7)0.6682 (4)0.3230 (4)0.048 (2)
C310.3712 (7)0.6273 (3)0.3524 (4)0.042 (2)
C320.3460 (9)0.5777 (4)0.3906 (5)0.065 (3)
H32A0.26760.56990.40320.078*
C330.4376 (12)0.5400 (4)0.4097 (5)0.074 (3)
H33A0.42120.50630.43420.089*
C340.5529 (10)0.5525 (3)0.3925 (4)0.065 (3)
H34A0.61610.52770.40520.078*
C350.5731 (8)0.6032 (3)0.3556 (4)0.0427 (19)
H35A0.65170.61230.34490.051*
N360.4853 (5)0.6390 (2)0.3351 (3)0.0349 (14)
N370.4918 (5)0.6506 (2)0.1537 (3)0.0333 (14)
C380.4829 (7)0.5953 (3)0.1462 (4)0.046 (2)
H38A0.47090.57400.19060.055*
C390.4905 (8)0.5678 (3)0.0764 (5)0.059 (2)
H39A0.48110.52890.07320.070*
C400.5124 (8)0.5988 (3)0.0113 (5)0.055 (2)
H40A0.51900.58110.03670.065*
C410.5245 (6)0.6561 (3)0.0177 (4)0.0394 (18)
H41A0.54060.67770.02570.047*
C420.5125 (5)0.6813 (3)0.0900 (4)0.0280 (16)
C430.5189 (5)0.7434 (3)0.1012 (4)0.0291 (16)
C440.5366 (6)0.7808 (3)0.0418 (4)0.0347 (17)
H44A0.54590.76780.00870.042*
C450.5405 (7)0.8374 (3)0.0574 (4)0.044 (2)
H45A0.55280.86290.01750.053*
C460.5260 (7)0.8567 (3)0.1325 (4)0.046 (2)
H46A0.52720.89500.14390.055*
C470.5099 (6)0.8177 (3)0.1891 (4)0.0391 (18)
H47A0.50130.83010.23990.047*
N480.5059 (5)0.7626 (2)0.1750 (3)0.0301 (13)
C600.6989 (6)0.7512 (3)0.3344 (4)0.0278 (16)
O610.6196 (4)0.7778 (2)0.3665 (3)0.0395 (12)
O620.8128 (4)0.76267 (19)0.3460 (2)0.0371 (12)
O630.6725 (4)0.71026 (18)0.2849 (2)0.0325 (11)
C1020.8523 (11)0.1174 (6)0.3569 (8)0.142 (6)
H10B0.93420.12450.34540.171*
H10C0.81560.15190.37230.171*
H10D0.80770.10260.31120.171*
C1010.8512 (10)0.0783 (5)0.4181 (7)0.095 (4)
N1000.8547 (12)0.0494 (5)0.4703 (7)0.137 (4)
N1030.2028 (10)0.8144 (5)0.0675 (7)0.128 (4)
C1040.1948 (9)0.8581 (5)0.0839 (5)0.065 (3)
C1050.1878 (11)0.9153 (4)0.1074 (7)0.109 (4)
H10E0.16150.91720.15950.130*
H10F0.13110.93490.07190.130*
H10G0.26600.93250.10650.130*
O1100.1553 (6)0.4851 (3)0.4541 (4)0.0798 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0362 (5)0.0423 (5)0.0193 (5)0.0102 (4)0.0000 (4)0.0004 (4)
N10.040 (4)0.042 (4)0.031 (3)0.014 (3)0.005 (3)0.004 (3)
Br10.0967 (8)0.0682 (6)0.0551 (6)0.0036 (6)0.0112 (5)0.0080 (5)
Cu20.0276 (5)0.0374 (5)0.0253 (5)0.0016 (4)0.0008 (4)0.0045 (4)
Br20.0736 (6)0.0457 (5)0.0543 (5)0.0041 (4)0.0187 (4)0.0056 (4)
C20.053 (5)0.054 (5)0.028 (4)0.009 (4)0.003 (4)0.001 (4)
C30.073 (7)0.053 (5)0.042 (5)0.003 (5)0.009 (4)0.007 (4)
C40.082 (7)0.054 (5)0.037 (5)0.008 (5)0.005 (5)0.011 (4)
C50.064 (6)0.049 (5)0.037 (5)0.017 (5)0.008 (4)0.000 (4)
C60.048 (5)0.046 (5)0.023 (4)0.014 (4)0.004 (4)0.003 (4)
C70.037 (5)0.054 (5)0.029 (4)0.019 (4)0.005 (4)0.005 (4)
C80.051 (6)0.072 (6)0.044 (5)0.022 (5)0.009 (4)0.000 (4)
C90.042 (5)0.098 (7)0.054 (6)0.015 (5)0.002 (5)0.002 (6)
C100.040 (6)0.082 (7)0.059 (6)0.008 (5)0.020 (4)0.007 (5)
C110.043 (5)0.068 (6)0.045 (5)0.015 (5)0.001 (4)0.003 (4)
N120.034 (4)0.051 (4)0.037 (4)0.010 (3)0.006 (3)0.005 (3)
N130.039 (4)0.037 (4)0.032 (4)0.005 (3)0.003 (3)0.003 (3)
C140.065 (6)0.048 (6)0.034 (5)0.010 (4)0.003 (4)0.001 (4)
C150.095 (7)0.041 (5)0.046 (6)0.016 (5)0.002 (5)0.012 (5)
C160.082 (7)0.055 (6)0.033 (5)0.017 (5)0.008 (4)0.014 (4)
C170.046 (5)0.051 (5)0.026 (4)0.012 (4)0.000 (3)0.000 (4)
C180.031 (4)0.046 (5)0.021 (4)0.011 (3)0.001 (3)0.001 (4)
C190.025 (4)0.046 (5)0.022 (4)0.004 (3)0.001 (3)0.002 (4)
C200.035 (4)0.056 (5)0.023 (4)0.000 (4)0.003 (3)0.002 (4)
C210.050 (5)0.048 (5)0.038 (5)0.005 (4)0.003 (4)0.017 (4)
C220.049 (5)0.042 (5)0.047 (5)0.005 (4)0.002 (4)0.002 (4)
C230.042 (5)0.051 (5)0.019 (4)0.002 (4)0.004 (3)0.004 (4)
N240.026 (3)0.040 (4)0.025 (4)0.004 (3)0.002 (2)0.000 (3)
N250.027 (3)0.064 (4)0.036 (4)0.007 (3)0.003 (3)0.006 (3)
C260.039 (5)0.079 (6)0.050 (5)0.002 (5)0.003 (4)0.008 (5)
C270.044 (6)0.120 (9)0.068 (7)0.015 (6)0.005 (5)0.028 (7)
C280.034 (5)0.145 (10)0.058 (6)0.001 (7)0.007 (5)0.036 (7)
C290.051 (6)0.114 (8)0.040 (5)0.029 (6)0.013 (5)0.016 (5)
C300.041 (5)0.073 (6)0.031 (4)0.022 (5)0.010 (4)0.005 (4)
C310.052 (5)0.053 (5)0.022 (4)0.022 (4)0.009 (4)0.003 (4)
C320.088 (7)0.070 (7)0.037 (5)0.044 (6)0.014 (5)0.000 (5)
C330.151 (11)0.040 (6)0.032 (5)0.028 (7)0.007 (6)0.004 (4)
C340.121 (9)0.043 (6)0.031 (5)0.001 (6)0.015 (5)0.003 (4)
C350.065 (6)0.040 (5)0.024 (4)0.002 (4)0.010 (4)0.002 (4)
N360.041 (4)0.039 (4)0.025 (3)0.004 (3)0.003 (3)0.001 (3)
N370.039 (3)0.032 (4)0.029 (4)0.003 (3)0.001 (3)0.005 (3)
C380.062 (5)0.043 (5)0.033 (5)0.004 (4)0.000 (4)0.000 (4)
C390.094 (7)0.035 (5)0.047 (6)0.007 (5)0.004 (5)0.001 (5)
C400.079 (6)0.049 (5)0.034 (5)0.006 (5)0.006 (4)0.010 (4)
C410.049 (5)0.046 (5)0.021 (4)0.006 (4)0.005 (3)0.001 (4)
C420.024 (4)0.037 (4)0.023 (4)0.001 (3)0.002 (3)0.001 (3)
C430.022 (4)0.039 (4)0.026 (4)0.001 (3)0.000 (3)0.001 (4)
C440.034 (4)0.048 (5)0.021 (4)0.002 (4)0.003 (3)0.002 (4)
C450.056 (5)0.044 (5)0.032 (5)0.001 (4)0.000 (4)0.012 (4)
C460.065 (5)0.030 (4)0.041 (5)0.001 (4)0.002 (4)0.004 (4)
C470.047 (5)0.036 (5)0.034 (4)0.002 (4)0.003 (4)0.006 (4)
N480.034 (3)0.035 (4)0.021 (3)0.003 (3)0.002 (3)0.003 (3)
C600.030 (5)0.037 (4)0.017 (4)0.006 (4)0.001 (3)0.007 (3)
O610.042 (3)0.050 (3)0.027 (3)0.005 (3)0.006 (2)0.006 (2)
O620.038 (3)0.051 (3)0.022 (3)0.012 (2)0.001 (2)0.003 (2)
O630.029 (3)0.040 (3)0.028 (3)0.003 (2)0.003 (2)0.003 (2)
C1020.113 (10)0.176 (14)0.132 (11)0.017 (10)0.026 (9)0.094 (11)
C1010.098 (9)0.102 (9)0.085 (9)0.002 (7)0.005 (7)0.023 (7)
N1000.210 (13)0.098 (8)0.104 (9)0.002 (8)0.019 (8)0.030 (7)
N1030.126 (9)0.095 (8)0.153 (10)0.004 (7)0.061 (7)0.034 (8)
C1040.073 (7)0.061 (7)0.059 (6)0.007 (6)0.014 (5)0.003 (5)
C1050.147 (11)0.078 (8)0.100 (9)0.023 (8)0.003 (8)0.008 (7)
O1100.080 (4)0.093 (5)0.070 (4)0.018 (4)0.026 (3)0.000 (4)
Geometric parameters (Å, º) top
Cu1—O621.944 (4)C23—N241.333 (9)
Cu1—N242.011 (5)N25—C261.328 (10)
Cu1—N132.035 (5)N25—C301.355 (9)
Cu1—N12.036 (6)C26—C271.398 (12)
Cu1—N122.191 (6)C27—C281.366 (14)
N1—C21.333 (9)C28—C291.391 (13)
N1—C61.346 (9)C29—C301.384 (11)
Cu2—O631.928 (4)C30—C311.471 (11)
Cu2—N362.005 (5)C31—N361.351 (9)
Cu2—N252.036 (6)C31—C321.388 (11)
Cu2—N482.037 (5)C32—C331.375 (13)
Cu2—N372.229 (5)C33—C341.367 (13)
C2—C31.382 (10)C34—C351.385 (11)
C3—C41.387 (11)C35—N361.322 (9)
C4—C51.366 (11)N37—C381.325 (9)
C5—C61.404 (10)N37—C421.345 (8)
C6—C71.468 (10)C38—C391.369 (10)
C7—N121.352 (9)C39—C401.373 (11)
C7—C81.400 (10)C40—C411.373 (10)
C8—C91.362 (12)C41—C421.390 (9)
C9—C101.379 (12)C42—C431.490 (9)
C10—C111.390 (11)C43—N481.359 (8)
C11—N121.318 (9)C43—C441.376 (9)
N13—C141.335 (9)C44—C451.372 (10)
N13—C181.357 (8)C45—C461.385 (10)
C14—C151.384 (10)C46—C471.362 (9)
C15—C161.359 (11)C47—N481.333 (8)
C16—C171.383 (10)C60—O611.244 (7)
C17—C181.376 (9)C60—O621.294 (7)
C18—C191.479 (10)C60—O631.310 (8)
C19—N241.353 (8)C102—C1011.400 (15)
C19—C201.385 (9)C101—N1001.125 (13)
C20—C211.365 (10)N103—C1041.082 (12)
C21—C221.372 (10)C104—C1051.422 (14)
C22—C231.378 (10)
O62—Cu1—N2492.2 (2)C20—C21—C22119.8 (7)
O62—Cu1—N13163.4 (2)C21—C22—C23118.5 (7)
N24—Cu1—N1380.5 (2)N24—C23—C22122.5 (6)
O62—Cu1—N192.2 (2)C23—N24—C19118.9 (6)
N24—Cu1—N1175.5 (2)C23—N24—Cu1125.8 (4)
N13—Cu1—N195.3 (2)C19—N24—Cu1115.3 (4)
O62—Cu1—N1298.1 (2)C26—N25—C30119.8 (7)
N24—Cu1—N12100.9 (2)C26—N25—Cu2125.9 (5)
N13—Cu1—N1298.0 (2)C30—N25—Cu2114.3 (5)
N1—Cu1—N1278.1 (2)N25—C26—C27122.5 (9)
C2—N1—C6118.8 (6)C28—C27—C26117.8 (10)
C2—N1—Cu1124.1 (5)C27—C28—C29120.2 (9)
C6—N1—Cu1117.1 (5)C30—C29—C28119.2 (9)
O63—Cu2—N3693.4 (2)N25—C30—C29120.5 (8)
O63—Cu2—N25159.4 (2)N25—C30—C31114.5 (6)
N36—Cu2—N2580.6 (2)C29—C30—C31125.0 (8)
O63—Cu2—N4890.73 (19)N36—C31—C32120.3 (8)
N36—Cu2—N48172.3 (2)N36—C31—C30115.3 (6)
N25—Cu2—N4897.7 (2)C32—C31—C30124.2 (8)
O63—Cu2—N37101.39 (19)C33—C32—C31119.5 (8)
N36—Cu2—N3794.8 (2)C34—C33—C32119.7 (8)
N25—Cu2—N3798.7 (2)C33—C34—C35118.3 (9)
N48—Cu2—N3778.0 (2)N36—C35—C34122.7 (8)
N1—C2—C3124.5 (7)C35—N36—C31119.5 (6)
C2—C3—C4116.3 (8)C35—N36—Cu2124.6 (5)
C5—C4—C3120.6 (8)C31—N36—Cu2114.9 (5)
C4—C5—C6119.5 (8)C38—N37—C42118.5 (6)
N1—C6—C5120.2 (7)C38—N37—Cu2129.9 (5)
N1—C6—C7116.7 (6)C42—N37—Cu2111.2 (4)
C5—C6—C7123.0 (7)N37—C38—C39123.3 (7)
N12—C7—C8120.0 (7)C38—C39—C40118.5 (7)
N12—C7—C6115.9 (6)C39—C40—C41119.4 (7)
C8—C7—C6124.1 (7)C40—C41—C42118.9 (7)
C9—C8—C7119.6 (8)N37—C42—C41121.4 (6)
C8—C9—C10120.0 (8)N37—C42—C43116.3 (6)
C9—C10—C11117.7 (8)C41—C42—C43122.4 (6)
N12—C11—C10122.9 (8)N48—C43—C44120.0 (6)
C11—N12—C7119.8 (6)N48—C43—C42116.4 (6)
C11—N12—Cu1127.9 (5)C44—C43—C42123.6 (6)
C7—N12—Cu1112.1 (5)C45—C44—C43119.6 (6)
C14—N13—C18118.0 (6)C44—C45—C46120.1 (7)
C14—N13—Cu1127.2 (5)C47—C46—C45117.7 (7)
C18—N13—Cu1114.7 (4)N48—C47—C46123.1 (7)
N13—C14—C15123.5 (7)C47—N48—C43119.5 (6)
C16—C15—C14118.2 (8)C47—N48—Cu2123.1 (5)
C15—C16—C17119.5 (7)C43—N48—Cu2117.0 (4)
C18—C17—C16119.8 (7)O61—C60—O62122.8 (6)
N13—C18—C17121.0 (6)O61—C60—O63122.2 (6)
N13—C18—C19114.4 (6)O62—C60—O63115.1 (6)
C17—C18—C19124.6 (6)C60—O62—Cu1112.0 (4)
N24—C19—C20120.9 (6)C60—O63—Cu2111.4 (4)
N24—C19—C18115.1 (6)N100—C101—C102175.4 (15)
C20—C19—C18124.0 (6)N103—C104—C105178.0 (12)
C21—C20—C19119.4 (7)

Experimental details

Crystal data
Chemical formula[Cu2(C10H8N2)4(CO3)]Br2·2CH3CN·H2O
Mr1071.77
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.0977 (2), 23.7744 (2), 17.1024 (1)
β (°) 94.347 (1)
V3)4499.34 (9)
Z4
Radiation typeMo Kα
µ (mm1)2.78
Crystal size (mm)0.16 × 0.14 × 0.14
Data collection
DiffractometerSiemens SMART
diffractometer with CCD area detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.665, 0.697
No. of measured, independent and
observed [I > 2σ(I)] reflections
10354, 4681, 4013
Rint0.149
θmax (°)20.8
(sin θ/λ)max1)0.500
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.110, 1.17
No. of reflections4681
No. of parameters569
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0245P)2 + 20.6621P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.02, 0.56

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1998), SHELXL97.

Selected geometric parameters (Å, º) top
Cu1—O621.944 (4)Cu2—O631.928 (4)
Cu1—N242.011 (5)Cu2—N362.005 (5)
Cu1—N132.035 (5)Cu2—N252.036 (6)
Cu1—N12.036 (6)Cu2—N482.037 (5)
Cu1—N122.191 (6)Cu2—N372.229 (5)
O62—Cu1—N2492.2 (2)N36—Cu2—N2580.6 (2)
O62—Cu1—N13163.4 (2)O63—Cu2—N4890.73 (19)
N24—Cu1—N1380.5 (2)N36—Cu2—N48172.3 (2)
O62—Cu1—N192.2 (2)N25—Cu2—N4897.7 (2)
N24—Cu1—N1175.5 (2)O63—Cu2—N37101.39 (19)
N13—Cu1—N195.3 (2)N36—Cu2—N3794.8 (2)
O62—Cu1—N1298.1 (2)N25—Cu2—N3798.7 (2)
N24—Cu1—N12100.9 (2)N48—Cu2—N3778.0 (2)
N13—Cu1—N1298.0 (2)O61—C60—O62122.8 (6)
N1—Cu1—N1278.1 (2)O61—C60—O63122.2 (6)
O63—Cu2—N3693.4 (2)O62—C60—O63115.1 (6)
O63—Cu2—N25159.4 (2)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds