Download citation
Download citation
link to html
The title compound, C13H11ClO4, a previously unknown coumarin, has the acetoxy and chloro­ethyl substituents aligned at angles of 65.76 (7) and 63.52 (9)°, respectively, from the plane of the coumarin rings.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801014799/ya6060sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801014799/ya6060Isup2.hkl
Contains datablock I

CCDC reference: 175358

Key indicators

  • Single-crystal X-ray study
  • T = 200 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.042
  • wR factor = 0.118
  • Data-to-parameter ratio = 12.2

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

Coumarins are of considerable general importance (Campbell, 1959) and are prominent in natural products chemistry (Dean, 1963; Murray et al., 1982). They have been found to possess a wide variety of uses in the perfumery industry, as flavour enhancers, sunscreens, laser dyes (Khalfan et al., 1987) and in the pharmaceutical industry (Hooper et al., 1982; Morris & Russell, 1971). Our recent work showed pronounced activity of 4-methylcoumarins against Herpes simplex and Vascular stomatitis viruses (Parmar et al., 1996). Encouraged by these findings, we have synthesized a series of coumarins for structure–activity studies. This paper reports the synthesis and structure of the new coumarin, 7-acetoxy-4-(1-chloroethyl)coumarin, (I).

The molecular structure of (I) is illustrated in Fig. 1. A l l bond lengths and angles are largely unremarkable. The inclinations of the planes of the acetoxy and chloroethyl substituents (defined by the O3/C11/O4/C12 and Cl1/C1'/C2' atoms) with respect to the coumarin ring system are 65.76 (7) and 63.52 (9)°, respectively.

Experimental top

The previously unknown 4-(1-chloroethyl)-7-hydroxycoumarin, (II), was prepared by the addition of resorcinol (25.41 g, 0.231 mol) and ethyl 2-(2-chloropropionyl)-2-ethoxycarbonyl acetate (58.0 g, 0.231 mol) to ice-cooled concentrated H2SO4 (45 ml). The reaction mixture was maintained at room temperature for 20 h and ice-cooled water was added. (II) precipitated out, was filtered off and crystallized from alcohol as colourless needles (16.5 g, 32% yield), m.p. 429–431 K. The title compound (I) (560 mg, 91% yield) was obtained by the acetylation of (II) (500 mg, 0.228 mol) using acetic anhydride and pyridine. It crystallized from ethyl acetate/petroleum ether as colourless needles, m.p. 410 K.

Refinement top

The temperature of the crystal during the X-ray diffraction experiment was controlled using an Oxford Cryosystems Cryostream Cooler (Cosier & Glazer, 1986). H atoms were added at calculated positions and refined using a riding model. Anisotropic displacement parameters were used for all non-H atoms; H atoms were given isotropic displacement parameters equal to 1.2 (or 1.5 for methyl H atoms) times the equivalent isotropic displacement parameter of their parent atoms.

Computing details top

Data collection: SMART (Siemens, 1994); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT; program(s) used to solve structure: SHELXTL/PC (Siemens, 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC; software used to prepare material for publication: SHELXTL/PC.

Figures top
[Figure 1] Fig. 1. View of the title molecule showing the atomic numbering. Displacement ellipsoids are drawn at the 50% probability level for non-H atoms. H atoms are shown as spheres of arbitrary radii.
4-(1-Chloroethyl)coumarin-7-yl acetate top
Crystal data top
C13H11ClO4Z = 2
Mr = 266.67F(000) = 276
Triclinic, P1Dx = 1.480 Mg m3
a = 4.1204 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.7106 (17) ÅCell parameters from 1852 reflections
c = 13.842 (2) Åθ = 1.5–25.1°
α = 97.450 (4)°µ = 0.32 mm1
β = 94.291 (4)°T = 200 K
γ = 97.184 (4)°Plate, colourless
V = 598.39 (16) Å30.40 × 0.24 × 0.06 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
2010 independent reflections
Radiation source: normal-focus sealed tube1570 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 8.192 pixels mm-1θmax = 25.1°, θmin = 1.5°
ω scansh = 44
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 812
Tmin = 0.882, Tmax = 0.981l = 1613
2931 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0746P)2]
where P = (Fo2 + 2Fc2)/3
2010 reflections(Δ/σ)max < 0.001
165 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C13H11ClO4γ = 97.184 (4)°
Mr = 266.67V = 598.39 (16) Å3
Triclinic, P1Z = 2
a = 4.1204 (6) ÅMo Kα radiation
b = 10.7106 (17) ŵ = 0.32 mm1
c = 13.842 (2) ÅT = 200 K
α = 97.450 (4)°0.40 × 0.24 × 0.06 mm
β = 94.291 (4)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
2010 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1570 reflections with I > 2σ(I)
Tmin = 0.882, Tmax = 0.981Rint = 0.017
2931 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.00Δρmax = 0.27 e Å3
2010 reflectionsΔρmin = 0.22 e Å3
165 parameters
Special details top

Experimental. Spectroscopic data: UV (MeOH) λmax(nm): 317, 284 and 202; IR(KBr) νmax/cm-1: 2925, 2372, 1780, 1725, 1618, 1375, 1267, 1208, 1135, 1008, 879, 722, 652 and 608; 1H NMR (300 MHz, CDCl3): δ 1.91 (3H, d, J = 6.7 Hz, C-2'H), 2.34 (3H, s, OCOCH3), 5.26 (1H, q, J = 6.7 Hz, C-1'H), 6.59 (1H, s, C-3H), 7.11 (1H, dd, J = 8.7 Hz, J = 2.2 Hz, C-6H), 7.16 (1H, d, J = 2.2 Hz, C-8H) and 7.75 (1H, d, J = 8.7 Hz, C-5H); 13C NMR (75 MHz, CDCl3): δ 21.52 (C-2'), 23.97 (CH3CO), 51.76 (C-1'), 111.37, 113.24, 118.73 and 125.61 (C-3, C-6, C-8, and C-10), 153.64, 154.16 and 155.03 (C-4, C-5, C-7 and C-9), 160.77 (C-2) and 169.03 (CH3CO); EIMS, m/z (% rel. int.): 267 [M+](10), 224 (24), 196 (11), 189 (18), 161 (100), 149 (4), 139 (4), 131 (16), 115 (14), 103 (32), 89 (15), 77 (37), 63(250 and 51 (31).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.14201 (15)0.53214 (6)0.35411 (5)0.0381 (2)
O10.1272 (4)0.97031 (15)0.23696 (11)0.0313 (4)
O20.0669 (4)1.06399 (17)0.36699 (12)0.0424 (5)
O30.5333 (4)0.79658 (17)0.05180 (11)0.0380 (5)
O40.1831 (6)0.6210 (2)0.10865 (14)0.0648 (7)
C20.0688 (6)0.9766 (2)0.33315 (17)0.0301 (6)
C30.1717 (5)0.8785 (2)0.38602 (17)0.0288 (5)
H3A0.14050.88290.45360.035*
C40.3103 (5)0.7809 (2)0.34296 (16)0.0255 (5)
C50.5160 (5)0.6815 (2)0.18604 (17)0.0307 (6)
H5A0.58290.61360.21700.037*
C60.5667 (6)0.6851 (2)0.08929 (17)0.0324 (6)
H6A0.66600.62050.05360.039*
C70.4696 (6)0.7850 (2)0.04503 (16)0.0321 (6)
C80.3268 (6)0.8801 (2)0.09454 (16)0.0311 (6)
H8A0.26410.94840.06310.037*
C90.2770 (5)0.8737 (2)0.19140 (16)0.0270 (5)
C100.3681 (5)0.7755 (2)0.24028 (16)0.0255 (5)
C110.3726 (6)0.7071 (2)0.12457 (17)0.0355 (6)
C120.4652 (7)0.7363 (3)0.22172 (18)0.0429 (7)
H12A0.42310.65850.26910.064*
H12B0.69900.77010.21660.064*
H12C0.33440.79960.24350.064*
C1'0.4119 (5)0.6784 (2)0.39946 (16)0.0281 (5)
H1'A0.63980.66500.38450.034*
C2'0.4116 (6)0.7044 (2)0.50969 (16)0.0332 (6)
H2'A0.55410.78410.53460.050*
H2'B0.49340.63450.53910.050*
H2'C0.18730.71140.52670.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0396 (4)0.0272 (4)0.0482 (4)0.0074 (3)0.0032 (3)0.0050 (3)
O10.0395 (9)0.0274 (9)0.0290 (10)0.0105 (8)0.0046 (7)0.0050 (7)
O20.0588 (12)0.0343 (11)0.0387 (10)0.0221 (9)0.0111 (9)0.0037 (8)
O30.0516 (11)0.0362 (10)0.0238 (9)0.0028 (8)0.0074 (8)0.0022 (7)
O40.0863 (16)0.0591 (15)0.0378 (12)0.0275 (13)0.0014 (10)0.0054 (10)
C20.0342 (13)0.0251 (13)0.0301 (13)0.0034 (11)0.0034 (10)0.0008 (10)
C30.0308 (12)0.0317 (13)0.0243 (12)0.0050 (11)0.0027 (10)0.0043 (10)
C40.0204 (11)0.0270 (13)0.0283 (12)0.0024 (10)0.0001 (9)0.0032 (10)
C50.0311 (12)0.0294 (14)0.0314 (14)0.0059 (11)0.0005 (10)0.0033 (10)
C60.0349 (13)0.0334 (14)0.0284 (13)0.0062 (11)0.0052 (10)0.0007 (11)
C70.0323 (13)0.0356 (15)0.0256 (13)0.0039 (11)0.0027 (10)0.0016 (11)
C80.0367 (13)0.0268 (13)0.0294 (13)0.0028 (11)0.0001 (10)0.0048 (10)
C90.0262 (12)0.0247 (12)0.0287 (13)0.0035 (10)0.0003 (9)0.0000 (10)
C100.0232 (11)0.0272 (13)0.0252 (12)0.0029 (10)0.0010 (9)0.0028 (10)
C110.0444 (15)0.0304 (15)0.0308 (15)0.0070 (12)0.0022 (11)0.0002 (11)
C120.0577 (17)0.0417 (17)0.0290 (14)0.0082 (14)0.0069 (12)0.0005 (12)
C1'0.0260 (12)0.0299 (13)0.0296 (13)0.0073 (10)0.0028 (10)0.0045 (10)
C2'0.0403 (13)0.0377 (15)0.0249 (13)0.0149 (12)0.0008 (10)0.0083 (11)
Geometric parameters (Å, º) top
Cl1—C1'1.814 (2)C6—C71.386 (4)
O1—C21.365 (3)C6—H6A0.950
O1—C91.378 (3)C7—C81.372 (3)
O2—C21.210 (3)C8—C91.381 (3)
O3—C111.365 (3)C8—H8A0.9500
O3—C71.403 (3)C9—C101.396 (3)
O4—C111.186 (3)C11—C121.486 (3)
C2—C31.444 (3)C12—H12A0.980
C3—C41.346 (3)C12—H12B0.980
C3—H3A0.950C12—H12C0.980
C4—C101.454 (3)C1'—C2'1.515 (3)
C4—C1'1.510 (3)C1'—H1'A1.000
C5—C61.375 (3)C2'—H2'A0.980
C5—C101.405 (3)C2'—H2'B0.980
C5—H5A0.950C2'—H2'C0.980
C2—O1—C9121.49 (18)C8—C9—C10122.7 (2)
C11—O3—C7118.12 (19)C9—C10—C5116.7 (2)
O2—C2—O1117.1 (2)C9—C10—C4117.6 (2)
O2—C2—C3125.3 (2)C5—C10—C4125.7 (2)
O1—C2—C3117.6 (2)O4—C11—O3122.4 (2)
C4—C3—C2122.4 (2)O4—C11—C12127.1 (2)
C4—C3—H3A118.8O3—C11—C12110.5 (2)
C2—C3—H3A118.8C11—C12—H12A109.5
C3—C4—C10119.1 (2)C11—C12—H12B109.5
C3—C4—C1'121.4 (2)H12A—C12—H12B109.5
C10—C4—C1'119.45 (19)C11—C12—H12C109.5
C6—C5—C10121.8 (2)H12A—C12—H12C109.5
C6—C5—H5A119.1H12B—C12—H12C109.5
C10—C5—H5A119.1C4—C1'—C2'116.3 (2)
C5—C6—C7118.5 (2)C4—C1'—Cl1108.00 (15)
C5—C6—H6A120.7C2'—C1'—Cl1109.01 (17)
C7—C6—H6A120.7C4—C1'—H1'A107.7
C8—C7—C6122.2 (2)C2'—C1'—H1'A107.7
C8—C7—O3117.1 (2)Cl1—C1'—H1'A107.7
C6—C7—O3120.5 (2)C1'—C2'—H2'A109.5
C7—C8—C9118.0 (2)C1'—C2'—H2'B109.5
C7—C8—H8A121.0H2'A—C2'—H2'B109.5
C9—C8—H8A121.0C1'—C2'—H2'C109.5
O1—C9—C8115.5 (2)H2'A—C2'—H2'C109.5
O1—C9—C10121.8 (2)H2'B—C2'—H2'C109.5
C9—O1—C2—O2179.3 (2)O1—C9—C10—C5179.36 (19)
C9—O1—C2—C30.4 (3)C8—C9—C10—C50.1 (3)
O2—C2—C3—C4177.4 (2)O1—C9—C10—C42.2 (3)
O1—C2—C3—C42.3 (3)C8—C9—C10—C4178.5 (2)
C2—C3—C4—C101.9 (3)C6—C5—C10—C90.5 (3)
C2—C3—C4—C1'179.2 (2)C6—C5—C10—C4178.8 (2)
C10—C5—C6—C70.3 (4)C3—C4—C10—C90.4 (3)
C5—C6—C7—C80.3 (4)C1'—C4—C10—C9178.62 (19)
C5—C6—C7—O3176.3 (2)C3—C4—C10—C5178.6 (2)
C11—O3—C7—C8116.4 (2)C1'—C4—C10—C50.4 (3)
C11—O3—C7—C667.4 (3)C7—O3—C11—O40.1 (4)
C6—C7—C8—C90.7 (3)C7—O3—C11—C12178.8 (2)
O3—C7—C8—C9176.9 (2)C3—C4—C1'—C2'11.5 (3)
C2—O1—C9—C8178.82 (19)C10—C4—C1'—C2'167.4 (2)
C2—O1—C9—C101.8 (3)C3—C4—C1'—Cl1111.3 (2)
C7—C8—C9—O1178.82 (19)C10—C4—C1'—Cl169.7 (2)
C7—C8—C9—C100.5 (3)

Experimental details

Crystal data
Chemical formulaC13H11ClO4
Mr266.67
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)4.1204 (6), 10.7106 (17), 13.842 (2)
α, β, γ (°)97.450 (4), 94.291 (4), 97.184 (4)
V3)598.39 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.40 × 0.24 × 0.06
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.882, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
2931, 2010, 1570
Rint0.017
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.118, 1.00
No. of reflections2010
No. of parameters165
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.22

Computer programs: SMART (Siemens, 1994), SAINT (Siemens, 1995), SAINT, SHELXTL/PC (Siemens, 1994), SHELXL97 (Sheldrick, 1997), SHELXTL/PC.

Selected torsion angles (º) top
C11—O3—C7—C8116.4 (2)C10—C4—C1'—C2'167.4 (2)
C7—O3—C11—O40.1 (4)C10—C4—C1'—Cl169.7 (2)
C7—O3—C11—C12178.8 (2)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds