Download citation
Download citation
link to html
The title compound [1,2:3,4-(CuBtsa)2-1,4:2,3-(CuMes)2] [Btsa is N(SiMe3)2; Mes is 2,4,6-Me3C6H2] or [Cu4(C9H11)2(C6H18NSi2)2], was obtained as the product of a ligand redistribution between the GeII amide, GeBtsa2, and the CuI aryl, CuMes. It contains an almost planar eight-membered central ring, Cu4C2N2, with two-coordinate Cu atoms (average Cu—C = 1.986 Å; average Cu—N = 1.936 Å; average C—Cu—N = 169.97°).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801015550/ya6061sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801015550/ya6061Isup2.hkl
Contains datablock I

CCDC reference: 175347

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.037
  • wR factor = 0.101
  • Data-to-parameter ratio = 19.7

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
ABSTM_02 Alert C The ratio of expected to reported Tmax/Tmin(RR) is > 1.10 Tmin and Tmax reported: 0.423 0.602 Tmin and Tmax expected: 0.303 0.503 RR = 1.168 Please check that your absorption correction is appropriate. General Notes
ABSTM_02 When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.836 Tmax scaled 0.503 Tmin scaled 0.353
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

The ligand transfer between copper aryls and bis(hypersilyl)tin or bis(hypersilyl)lead [hypersilyl = Hyp = tris(trimethylsilyl)silyl] has recently permitted the isolation of novel types of compounds (Klett et al., 1999). Thus, the reaction of CuDmp (Dmp = 2,6-Mes2C6H3) (Niemeyer, 1998) with SnHyp2 yields the unusual CuI–stannylene complex HypCu—Sn(Dmp)Hyp. In contrast, the ligand exchange with PbHyp2 affords base-free CuHyp, which is trimeric in the solid state, and the heteroleptic plumbylene Pb(Dmp)Hyp. As a continuation of this work, the reaction between the GeII amide, GeBtsa2, and the CuI aryl, CuMes, has now been studied. It has been shown that this reaction produces colorless crystals of the title complex, (I), in moderate yield.

The molecular structure of (I) shows a tetranuclear copper aggregate (Fig. 1) which belongs to the frequently observed planar complexes of the Cu4(µ-X)4 type (Holloway & Melnik, 1995). The two-coordinate Cu atoms are bridged by C (C11 and C21) or N atoms (N1 and N2) of alternating mesityl and bis(trimethylsilyl)amide groups. The almost planar eight-membered Cu4C2N2 ring is slightly puckered with C11 and C21 above [+0.231 (3) and +0.208 (3) Å] and N1 and N2 below [-0.138 (2) and -0.127 (2) Å] the plane defined by the four Cu atoms. The mesityl groups and the Btsa ligands, as defined by their NSi2 fragments, are nearly perpendicular to this central Cu4 plane, the interplanar angles being 83.05 (7) (C11–C16 plane), 86.61 (7) (C21–C26 plane), 83.60 (5) (N1/Si11/Si12 plane) and 89.88 (4)° (N2/Si21/Si22 plane). As can be seen by the minor variations of the Cu—C (1.980–1.998 Å) and Cu—N distances (1.935–1.937 Å), a rather symmetric bonding situation, consistent with the presence of Cu—C—Cu and Cu—N—Cu 2 e–3c bonds, is observed within the Cu4C2N2 ring. There are two different sets of Cu···Cu separations, which are of the same magnitude as previously observed for other oligo-nuclear copper compounds. Thus, shorter Cu1···Cu4 and Cu2···Cu3 distances (average 2.4307 Å) between C-bridged Cu atoms alternate with longer Cu1···Cu2 and Cu3···Cu4 separations (average 2.6111 Å) between N-bridged Cu atoms. It is interesting to compare these distances together with the angles at the ring atoms (average C—Cu—N = 169.97°, average Cu—C—Cu = 75.46°, average Cu—N—Cu = 84.84°) with the corresponding values in the homoleptic compounds [(CuMes)4] (Eriksson & Håkansson, 1997) and [{CuN(SiMe3)2}4] (James et al., 1998), which are, 1.993 Å (average Cu—C), 2.423 Å (average Cu···Cu), 164.9° (average C—Cu—C) and 74.9° (average Cu—C–Cu) for the former and 1.921 Å (average Cu—N), 2.6863 Å (average Cu···Cu), 178.7° (average N—Cu—N) and 88.8° (average Cu—N—Cu) for the latter, respectively.

Experimental top

Under an atmosphere of purified argon, a solution of GeBtsa2 (0,82 g, 2.08 mmol) in 10 ml of n-hexane was added at 273 K to CuMes (0.38 g, 2.08 mmol) in 20 ml of toluene. Stirring of the resulting orange–brown solution was continued for 2 h, whereupon all volatile materials were removed under reduced pressure. The remaining solid was extracted with ca 5 ml of n-hexane and the mixture was filtered over a glass filter frit. Cooling in a 278 K freezer afforded colorless crystals of (I) in 42% yield. M.p.: crystals gradually deepen in color above 418 K and decompose to a black liquid at 465–467 K. 1H NMR (C6D6, 250 MHz): δ 0.42 (s, 18H, SiMe3), 2.08 (s, 3H, p-CH3), 2.27 (s, 6H, o-CH3), 6.66 p.p.m. (s, 2H, m-Mes). In addition, two weaker sets of signals (0.56, 1.99, 2.85, 6.77 and 0.35, 2.02, 2.94, 6.80 p.p.m.) are observed, which are not identical with the chemical shifts of the homoleptic compounds. They indicate the presence of other [(CuBtsa)x(CuMes)y] species in solution.

Refinement top

The H atoms were positioned with idealized geometry and refined in a riding model approximation, including free rotation for methyl groups. For most H atoms, the assigned Uiso was allowed to refine freely. Isotropic displacement parameters being larger than 0.15 Å2 were constrained to 1.5Ueq of the parent atom.

Computing details top

Data collection: P3 (Siemens, 1989); cell refinement: P3; data reduction: XDISK (Siemens, 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1998); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot (at the 30% probability level) of (I). H atoms have been omitted for clarity.
1,4:2,3-bis(µ-2,4,6-trimethylphenyl-C:C)-1,2:3,4-bis[µ- bis(trimethylsilyl)amido-N:N]tetracopper(I) top
Crystal data top
[Cu4(C9H11)2(C6H18NSi2)2]F(000) = 848
Mr = 813.30Dx = 1.383 Mg m3
Triclinic, P1Melting point: 465-467 K K
a = 9.171 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.353 (2) ÅCell parameters from 39 reflections
c = 20.314 (4) Åθ = 10.3–12.2°
α = 101.98 (1)°µ = 2.29 mm1
β = 94.56 (2)°T = 173 K
γ = 107.28 (2)°Block, colorless
V = 1952.9 (7) Å30.60 × 0.45 × 0.30 mm
Z = 2
Data collection top
Rebuild Syntex P21/Siemens P3 four-circle
diffractometer
7199 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 27.0°, θmin = 1.9°
Wyckoff scansh = 011
Absorption correction: ψ scan
(North et al., 1968)
k = 1413
Tmin = 0.423, Tmax = 0.602l = 2525
9068 measured reflections2 standard reflections every 198 reflections
8527 independent reflections intensity decay: 2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101Only H-atom displacement parameters refined
S = 1.07 w = 1/[σ2(Fo2) + (0.0587P)2 + 1.1813P]
where P = (Fo2 + 2Fc2)/3
8527 reflections(Δ/σ)max = 0.001
433 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = 0.95 e Å3
Crystal data top
[Cu4(C9H11)2(C6H18NSi2)2]γ = 107.28 (2)°
Mr = 813.30V = 1952.9 (7) Å3
Triclinic, P1Z = 2
a = 9.171 (2) ÅMo Kα radiation
b = 11.353 (2) ŵ = 2.29 mm1
c = 20.314 (4) ÅT = 173 K
α = 101.98 (1)°0.60 × 0.45 × 0.30 mm
β = 94.56 (2)°
Data collection top
Rebuild Syntex P21/Siemens P3 four-circle
diffractometer
7199 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.025
Tmin = 0.423, Tmax = 0.6022 standard reflections every 198 reflections
9068 measured reflections intensity decay: 2%
8527 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.101Only H-atom displacement parameters refined
S = 1.07Δρmax = 0.74 e Å3
8527 reflectionsΔρmin = 0.95 e Å3
433 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.32745 (4)0.35367 (3)0.328167 (16)0.02401 (9)
Cu20.10413 (4)0.13800 (3)0.285654 (16)0.02295 (9)
Cu30.10169 (4)0.15851 (3)0.168782 (16)0.02346 (9)
Cu40.31363 (4)0.38131 (3)0.212679 (16)0.02400 (9)
N10.2295 (3)0.2237 (2)0.37355 (11)0.0240 (4)
N20.2152 (3)0.2807 (2)0.12219 (11)0.0253 (5)
Si110.34403 (9)0.13235 (7)0.39200 (4)0.02679 (16)
Si120.13183 (9)0.28767 (7)0.43477 (4)0.02869 (17)
Si210.34072 (10)0.21827 (8)0.07715 (4)0.03107 (17)
Si220.09807 (9)0.35098 (7)0.08201 (4)0.02985 (17)
C110.0446 (3)0.0280 (2)0.20408 (13)0.0247 (5)
C120.1908 (3)0.0465 (3)0.20073 (13)0.0262 (5)
C130.3266 (3)0.0559 (3)0.18553 (14)0.0333 (6)
H13A0.42280.04010.18380.030 (8)*
C140.3258 (4)0.1800 (3)0.17292 (15)0.0363 (7)
C150.1839 (4)0.2004 (3)0.17641 (14)0.0347 (7)
H15A0.18160.28530.16850.039 (9)*
C160.0448 (4)0.1007 (3)0.19112 (14)0.0303 (6)
C170.2033 (3)0.1791 (3)0.21281 (16)0.0340 (6)
H17A0.27720.18730.24430.047 (10)*
H17B0.23880.19410.16950.060 (12)*
H17C0.10180.24170.23240.040 (9)*
C180.4730 (4)0.2901 (3)0.15482 (19)0.0544 (10)
H18A0.46150.35740.17610.082*
H18B0.49610.32290.10530.082*
H18C0.55770.26190.17120.082*
C190.1027 (4)0.1332 (3)0.19181 (18)0.0419 (8)
H19A0.10040.19370.22010.087 (16)*
H19B0.19060.05570.21050.068 (13)*
H19C0.11300.17150.14530.073 (14)*
C210.4342 (3)0.5077 (2)0.29772 (13)0.0256 (5)
C220.3784 (3)0.6119 (3)0.31896 (14)0.0279 (6)
C230.4805 (4)0.7359 (3)0.33778 (14)0.0318 (6)
H23A0.44060.80400.35120.045 (10)*
C240.6372 (4)0.7633 (3)0.33762 (14)0.0309 (6)
C250.6937 (3)0.6623 (3)0.31797 (14)0.0301 (6)
H25A0.80160.67940.31800.031 (8)*
C260.5966 (3)0.5375 (3)0.29840 (14)0.0268 (5)
C270.2111 (4)0.5922 (3)0.32395 (18)0.0391 (7)
H27A0.17530.64810.30050.061 (12)*
H27B0.19790.61220.37200.068 (13)*
H27C0.15050.50340.30260.055 (11)*
C280.7445 (4)0.8987 (3)0.35692 (17)0.0419 (8)
H28A0.72040.94460.39890.065 (13)*
H28B0.73120.94030.32020.110 (19)*
H28C0.85160.89920.36420.070 (14)*
C290.6687 (4)0.4347 (3)0.27860 (19)0.0415 (7)
H29A0.74750.46100.25000.087 (16)*
H29B0.58880.35600.25320.061 (12)*
H29C0.71670.42010.31970.078 (15)*
C1110.4772 (5)0.2068 (4)0.47436 (18)0.0530 (9)
H11A0.54790.28930.47230.102 (19)*
H11B0.53680.15120.48270.080 (15)*
H11C0.41680.21890.51140.083 (16)*
C1120.2223 (4)0.0306 (3)0.39538 (19)0.0433 (8)
H11D0.16250.07620.35040.069 (13)*
H11E0.15170.02350.42860.057 (11)*
H11F0.28920.07740.40900.049 (10)*
C1130.4679 (4)0.1143 (3)0.32472 (17)0.0402 (7)
H11G0.54850.19570.32880.062 (12)*
H11H0.40430.08780.27980.093 (17)*
H11I0.51590.04980.33020.084 (15)*
C1210.2607 (5)0.4435 (3)0.4887 (2)0.0518 (9)
H12A0.29440.50300.46000.076 (14)*
H12B0.35120.43150.51190.11 (2)*
H12C0.20430.47800.52260.067 (13)*
C1220.0612 (4)0.1831 (3)0.49310 (16)0.0420 (8)
H12D0.00780.10020.46640.083 (16)*
H12E0.00490.22250.52510.085 (15)*
H12F0.14950.17160.51840.054 (11)*
C1230.0434 (4)0.3105 (4)0.39304 (18)0.0473 (8)
H12G0.01240.36890.36350.068 (13)*
H12H0.09660.34620.42800.071 (13)*
H12I0.11300.22840.36570.104 (19)*
C2110.5213 (4)0.3448 (4)0.0725 (2)0.0574 (10)
H21A0.57380.39100.11870.079 (16)*
H21B0.49540.40410.04850.104 (19)*
H21C0.58960.30590.04790.088 (16)*
C2120.3986 (4)0.1042 (3)0.11940 (17)0.0420 (8)
H21D0.30830.02950.11620.056 (12)*
H21E0.43980.14570.16740.048 (10)*
H21F0.47810.07760.09670.095 (17)*
C2130.2459 (5)0.1254 (4)0.01054 (17)0.0548 (10)
H21G0.15710.05360.00800.12 (2)*
H21H0.32000.09340.03480.085 (16)*
H21I0.21080.18030.03500.092 (17)*
C2210.1995 (4)0.4433 (3)0.02303 (18)0.0434 (8)
H22A0.22750.38590.01310.068 (13)*
H22B0.29310.51000.04860.104 (19)*
H22C0.13070.48210.00280.069 (13)*
C2220.0391 (4)0.4652 (3)0.14580 (18)0.0456 (8)
H22D0.00380.42370.18090.060 (12)*
H22E0.03920.49220.12310.083 (15)*
H22F0.12940.53950.16690.059 (12)*
C2230.0814 (4)0.2305 (3)0.03035 (19)0.0466 (8)
H22G0.13720.17880.05910.076 (14)*
H22H0.05410.17560.00730.086 (16)*
H22I0.14710.27380.01200.087 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02903 (17)0.01992 (16)0.02474 (17)0.00779 (13)0.00697 (13)0.00799 (12)
Cu20.02659 (17)0.02093 (16)0.02201 (16)0.00801 (13)0.00470 (12)0.00578 (12)
Cu30.02776 (17)0.02082 (16)0.02385 (17)0.00819 (13)0.00608 (13)0.00845 (12)
Cu40.02820 (17)0.02112 (16)0.02310 (16)0.00761 (13)0.00467 (13)0.00644 (12)
N10.0289 (11)0.0221 (10)0.0211 (10)0.0070 (9)0.0053 (9)0.0065 (8)
N20.0321 (12)0.0228 (11)0.0213 (10)0.0081 (9)0.0027 (9)0.0078 (9)
Si110.0315 (4)0.0266 (4)0.0254 (4)0.0106 (3)0.0052 (3)0.0110 (3)
Si120.0358 (4)0.0256 (4)0.0252 (4)0.0095 (3)0.0115 (3)0.0052 (3)
Si210.0391 (4)0.0346 (4)0.0249 (4)0.0152 (3)0.0123 (3)0.0112 (3)
Si220.0335 (4)0.0272 (4)0.0303 (4)0.0089 (3)0.0006 (3)0.0131 (3)
C110.0297 (13)0.0203 (12)0.0227 (12)0.0055 (10)0.0046 (10)0.0060 (10)
C120.0311 (14)0.0270 (13)0.0220 (12)0.0086 (11)0.0066 (10)0.0092 (10)
C130.0306 (14)0.0387 (16)0.0283 (14)0.0059 (12)0.0020 (11)0.0116 (12)
C140.0433 (17)0.0315 (15)0.0239 (14)0.0032 (13)0.0006 (12)0.0090 (12)
C150.0539 (19)0.0203 (13)0.0249 (14)0.0051 (13)0.0029 (13)0.0058 (11)
C160.0447 (17)0.0243 (13)0.0235 (13)0.0127 (12)0.0046 (12)0.0071 (10)
C170.0323 (15)0.0315 (15)0.0434 (17)0.0154 (12)0.0102 (13)0.0115 (13)
C180.056 (2)0.0385 (19)0.045 (2)0.0152 (16)0.0073 (17)0.0101 (15)
C190.054 (2)0.0297 (16)0.0469 (19)0.0222 (15)0.0097 (16)0.0066 (14)
C210.0328 (14)0.0212 (12)0.0239 (12)0.0084 (11)0.0069 (10)0.0073 (10)
C220.0340 (15)0.0246 (13)0.0273 (13)0.0109 (11)0.0066 (11)0.0082 (11)
C230.0458 (17)0.0213 (13)0.0284 (14)0.0123 (12)0.0043 (12)0.0043 (11)
C240.0419 (16)0.0204 (13)0.0262 (13)0.0029 (12)0.0002 (12)0.0090 (11)
C250.0302 (14)0.0278 (14)0.0296 (14)0.0045 (11)0.0009 (11)0.0095 (11)
C260.0322 (14)0.0240 (13)0.0256 (13)0.0098 (11)0.0033 (11)0.0085 (10)
C270.0388 (17)0.0319 (16)0.0519 (19)0.0168 (13)0.0138 (14)0.0110 (14)
C280.054 (2)0.0248 (15)0.0364 (17)0.0007 (14)0.0059 (14)0.0065 (13)
C290.0350 (16)0.0297 (16)0.061 (2)0.0121 (13)0.0094 (15)0.0099 (15)
C1110.053 (2)0.060 (2)0.0413 (19)0.0196 (19)0.0129 (17)0.0071 (17)
C1120.055 (2)0.0290 (16)0.055 (2)0.0170 (15)0.0235 (17)0.0193 (15)
C1130.0426 (18)0.0464 (19)0.0466 (19)0.0249 (15)0.0203 (15)0.0230 (15)
C1210.062 (2)0.0316 (17)0.052 (2)0.0093 (16)0.0174 (18)0.0062 (15)
C1220.051 (2)0.0424 (18)0.0326 (16)0.0107 (16)0.0174 (15)0.0109 (14)
C1230.0462 (19)0.063 (2)0.0460 (19)0.0327 (18)0.0184 (16)0.0161 (18)
C2110.048 (2)0.058 (2)0.077 (3)0.0191 (19)0.034 (2)0.029 (2)
C2120.051 (2)0.051 (2)0.0379 (17)0.0297 (17)0.0143 (15)0.0177 (15)
C2130.090 (3)0.054 (2)0.0253 (16)0.034 (2)0.0102 (17)0.0048 (15)
C2210.0469 (19)0.0427 (18)0.0442 (18)0.0086 (15)0.0052 (15)0.0273 (16)
C2220.060 (2)0.0384 (18)0.0484 (19)0.0277 (17)0.0062 (17)0.0157 (15)
C2230.0406 (18)0.0415 (18)0.051 (2)0.0066 (15)0.0085 (15)0.0131 (16)
Geometric parameters (Å, º) top
Cu1—N11.935 (2)C23—C241.378 (4)
Cu1—C211.982 (3)C23—H23A0.9500
Cu2—N11.935 (2)C24—C251.392 (4)
Cu2—C111.984 (3)C24—C281.508 (4)
Cu3—N21.936 (2)C25—C261.385 (4)
Cu3—C111.980 (3)C25—H25A0.9500
Cu4—N21.937 (2)C26—C291.506 (4)
Cu4—C211.998 (3)C27—H27A0.9800
Cu1—Cu42.4291 (6)C27—H27B0.9800
Cu1—Cu22.6071 (9)C27—H27C0.9800
Cu2—Cu32.4322 (6)C28—H28A0.9800
Cu3—Cu42.6150 (9)C28—H28B0.9800
N1—Si121.750 (2)C28—H28C0.9800
N1—Si111.751 (2)C29—H29A0.9800
N2—Si211.746 (2)C29—H29B0.9800
N2—Si221.759 (2)C29—H29C0.9800
Si11—C1131.862 (3)C111—H11A0.9800
Si11—C1111.865 (3)C111—H11B0.9800
Si11—C1121.874 (3)C111—H11C0.9800
Si12—C1211.864 (4)C112—H11D0.9800
Si12—C1221.866 (3)C112—H11E0.9800
Si12—C1231.868 (4)C112—H11F0.9800
Si21—C2131.863 (4)C113—H11G0.9800
Si21—C2111.867 (4)C113—H11H0.9800
Si21—C2121.869 (3)C113—H11I0.9800
Si22—C2231.863 (3)C121—H12A0.9800
Si22—C2221.866 (3)C121—H12B0.9800
Si22—C2211.876 (3)C121—H12C0.9800
C11—C121.417 (4)C122—H12D0.9800
C11—C161.429 (4)C122—H12E0.9800
C12—C131.388 (4)C122—H12F0.9800
C12—C171.514 (4)C123—H12G0.9800
C13—C141.381 (4)C123—H12H0.9800
C13—H13A0.9500C123—H12I0.9800
C14—C151.387 (5)C211—H21A0.9800
C14—C181.499 (4)C211—H21B0.9800
C15—C161.393 (4)C211—H21C0.9800
C15—H15A0.9500C212—H21D0.9800
C16—C191.504 (4)C212—H21E0.9800
C17—H17A0.9800C212—H21F0.9800
C17—H17B0.9800C213—H21G0.9800
C17—H17C0.9800C213—H21H0.9800
C18—H18A0.9800C213—H21I0.9800
C18—H18B0.9800C221—H22A0.9800
C18—H18C0.9800C221—H22B0.9800
C19—H19A0.9800C221—H22C0.9800
C19—H19B0.9800C222—H22D0.9800
C19—H19C0.9800C222—H22E0.9800
C21—C221.424 (4)C222—H22F0.9800
C21—C261.425 (4)C223—H22G0.9800
C22—C231.394 (4)C223—H22H0.9800
C22—C271.499 (4)C223—H22I0.9800
N1—Cu1—C21169.86 (10)C23—C22—C21120.2 (3)
N1—Cu1—Cu4136.71 (7)C23—C22—C27118.0 (3)
C21—Cu1—Cu452.68 (8)C21—C22—C27121.7 (3)
N1—Cu1—Cu247.65 (7)C24—C23—C22122.4 (3)
C21—Cu1—Cu2140.93 (8)C24—C23—H23A118.8
Cu4—Cu1—Cu289.19 (2)C22—C23—H23A118.8
N1—Cu2—C11169.86 (10)C23—C24—C25118.0 (3)
N1—Cu2—Cu3138.01 (7)C23—C24—C28121.2 (3)
C11—Cu2—Cu352.09 (8)C25—C24—C28120.8 (3)
N1—Cu2—Cu147.63 (7)C26—C25—C24121.7 (3)
C11—Cu2—Cu1142.46 (8)C26—C25—H25A119.2
Cu3—Cu2—Cu190.89 (2)C24—C25—H25A119.2
N2—Cu3—C11170.15 (10)C25—C26—C21120.9 (3)
N2—Cu3—Cu2136.37 (7)C25—C26—C29117.8 (3)
C11—Cu3—Cu252.22 (8)C21—C26—C29121.2 (2)
N2—Cu3—Cu447.54 (7)C22—C27—H27A109.5
C11—Cu3—Cu4140.05 (8)C22—C27—H27B109.5
Cu2—Cu3—Cu488.94 (2)H27A—C27—H27B109.5
N2—Cu4—C21170.01 (10)C22—C27—H27C109.5
N2—Cu4—Cu1137.83 (7)H27A—C27—H27C109.5
C21—Cu4—Cu152.09 (8)H27B—C27—H27C109.5
N2—Cu4—Cu347.52 (7)C24—C28—H28A109.5
C21—Cu4—Cu3142.46 (8)C24—C28—H28B109.5
Cu1—Cu4—Cu390.77 (2)H28A—C28—H28B109.5
Si12—N1—Si11121.38 (13)C24—C28—H28C109.5
Si12—N1—Cu1108.56 (11)H28A—C28—H28C109.5
Si11—N1—Cu1114.01 (12)H28B—C28—H28C109.5
Si12—N1—Cu2114.45 (12)C26—C29—H29A109.5
Si11—N1—Cu2107.93 (11)C26—C29—H29B109.5
Cu1—N1—Cu284.72 (9)H29A—C29—H29B109.5
Si21—N2—Si22119.80 (13)C26—C29—H29C109.5
Si21—N2—Cu3109.20 (12)H29A—C29—H29C109.5
Si22—N2—Cu3113.09 (12)H29B—C29—H29C109.5
Si21—N2—Cu4112.01 (12)Si11—C111—H11A109.5
Si22—N2—Cu4112.50 (12)Si11—C111—H11B109.5
Cu3—N2—Cu484.95 (9)H11A—C111—H11B109.5
N1—Si11—C113109.90 (13)Si11—C111—H11C109.5
N1—Si11—C111112.77 (15)H11A—C111—H11C109.5
C113—Si11—C111106.58 (18)H11B—C111—H11C109.5
N1—Si11—C112111.30 (14)Si11—C112—H11D109.5
C113—Si11—C112107.94 (15)Si11—C112—H11E109.5
C111—Si11—C112108.13 (18)H11D—C112—H11E109.5
N1—Si12—C121110.52 (15)Si11—C112—H11F109.5
N1—Si12—C122113.29 (13)H11D—C112—H11F109.5
C121—Si12—C122107.24 (17)H11E—C112—H11F109.5
N1—Si12—C123110.55 (14)Si11—C113—H11G109.5
C121—Si12—C123109.17 (19)Si11—C113—H11H109.5
C122—Si12—C123105.88 (17)H11G—C113—H11H109.5
N2—Si21—C213111.49 (16)Si11—C113—H11I109.5
N2—Si21—C211111.98 (15)H11G—C113—H11I109.5
C213—Si21—C211109.5 (2)H11H—C113—H11I109.5
N2—Si21—C212110.44 (13)Si12—C121—H12A109.5
C213—Si21—C212105.82 (17)Si12—C121—H12B109.5
C211—Si21—C212107.37 (18)H12A—C121—H12B109.5
N2—Si22—C223112.08 (14)Si12—C121—H12C109.5
N2—Si22—C222111.05 (13)H12A—C121—H12C109.5
C223—Si22—C222107.65 (18)H12B—C121—H12C109.5
N2—Si22—C221112.50 (14)Si12—C122—H12D109.5
C223—Si22—C221106.74 (16)Si12—C122—H12E109.5
C222—Si22—C221106.49 (17)H12D—C122—H12E109.5
C12—C11—C16116.6 (2)Si12—C122—H12F109.5
C12—C11—Cu3109.77 (18)H12D—C122—H12F109.5
C16—C11—Cu3122.1 (2)H12E—C122—H12F109.5
C12—C11—Cu2113.87 (19)Si12—C123—H12G109.5
C16—C11—Cu2112.21 (19)Si12—C123—H12H109.5
Cu3—C11—Cu275.69 (10)H12G—C123—H12H109.5
C13—C12—C11121.2 (3)Si12—C123—H12I109.5
C13—C12—C17118.1 (3)H12G—C123—H12I109.5
C11—C12—C17120.7 (2)H12H—C123—H12I109.5
C14—C13—C12121.9 (3)Si21—C211—H21A109.5
C14—C13—H13A119.1Si21—C211—H21B109.5
C12—C13—H13A119.1H21A—C211—H21B109.5
C13—C14—C15118.0 (3)Si21—C211—H21C109.5
C13—C14—C18121.5 (3)H21A—C211—H21C109.5
C15—C14—C18120.5 (3)H21B—C211—H21C109.5
C14—C15—C16122.2 (3)Si21—C212—H21D109.5
C14—C15—H15A118.9Si21—C212—H21E109.5
C16—C15—H15A118.9H21D—C212—H21E109.5
C15—C16—C11120.2 (3)Si21—C212—H21F109.5
C15—C16—C19118.0 (3)H21D—C212—H21F109.5
C11—C16—C19121.8 (3)H21E—C212—H21F109.5
C12—C17—H17A109.5Si21—C213—H21G109.5
C12—C17—H17B109.5Si21—C213—H21H109.5
H17A—C17—H17B109.5H21G—C213—H21H109.5
C12—C17—H17C109.5Si21—C213—H21I109.5
H17A—C17—H17C109.5H21G—C213—H21I109.5
H17B—C17—H17C109.5H21H—C213—H21I109.5
C14—C18—H18A109.5Si22—C221—H22A109.5
C14—C18—H18B109.5Si22—C221—H22B109.5
H18A—C18—H18B109.5H22A—C221—H22B109.5
C14—C18—H18C109.5Si22—C221—H22C109.5
H18A—C18—H18C109.5H22A—C221—H22C109.5
H18B—C18—H18C109.5H22B—C221—H22C109.5
C16—C19—H19A109.5Si22—C222—H22D109.5
C16—C19—H19B109.5Si22—C222—H22E109.5
H19A—C19—H19B109.5H22D—C222—H22E109.5
C16—C19—H19C109.5Si22—C222—H22F109.5
H19A—C19—H19C109.5H22D—C222—H22F109.5
H19B—C19—H19C109.5H22E—C222—H22F109.5
C22—C21—C26116.7 (2)Si22—C223—H22G109.5
C22—C21—Cu1114.24 (19)Si22—C223—H22H109.5
C26—C21—Cu1116.96 (19)H22G—C223—H22H109.5
C22—C21—Cu4114.6 (2)Si22—C223—H22I109.5
C26—C21—Cu4112.28 (19)H22G—C223—H22I109.5
Cu1—C21—Cu475.23 (10)H22H—C223—H22I109.5

Experimental details

Crystal data
Chemical formula[Cu4(C9H11)2(C6H18NSi2)2]
Mr813.30
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)9.171 (2), 11.353 (2), 20.314 (4)
α, β, γ (°)101.98 (1), 94.56 (2), 107.28 (2)
V3)1952.9 (7)
Z2
Radiation typeMo Kα
µ (mm1)2.29
Crystal size (mm)0.60 × 0.45 × 0.30
Data collection
DiffractometerRebuild Syntex P21/Siemens P3 four-circle
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.423, 0.602
No. of measured, independent and
observed [I > 2σ(I)] reflections
9068, 8527, 7199
Rint0.025
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.101, 1.07
No. of reflections8527
No. of parameters433
H-atom treatmentOnly H-atom displacement parameters refined
Δρmax, Δρmin (e Å3)0.74, 0.95

Computer programs: P3 (Siemens, 1989), P3, XDISK (Siemens, 1989), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 1998), SHELXTL.

Selected geometric parameters (Å, º) top
Cu1—N11.935 (2)Cu1—Cu42.4291 (6)
Cu1—C211.982 (3)Cu1—Cu22.6071 (9)
Cu2—N11.935 (2)Cu2—Cu32.4322 (6)
Cu2—C111.984 (3)Cu3—Cu42.6150 (9)
Cu3—N21.936 (2)N1—Si121.750 (2)
Cu3—C111.980 (3)N1—Si111.751 (2)
Cu4—N21.937 (2)N2—Si211.746 (2)
Cu4—C211.998 (3)N2—Si221.759 (2)
N1—Cu1—C21169.86 (10)Cu1—N1—Cu284.72 (9)
N1—Cu2—C11169.86 (10)Si21—N2—Si22119.80 (13)
N2—Cu3—C11170.15 (10)Cu3—N2—Cu484.95 (9)
N2—Cu4—C21170.01 (10)Cu3—C11—Cu275.69 (10)
Si12—N1—Si11121.38 (13)Cu1—C21—Cu475.23 (10)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds