Download citation
Download citation
link to html
The title compound, C22H21N3O4S2, is the product of the nucleophilic attack on a tosyl chloride by 2-amino-1-methyl­benz­imidazole. The compound contains two tosyl groups, one directly attached to an imidazole ring nitro­gen and the other to the exocyclic N atom. The exocyclic N atom is bonded to the imidazole ring through a double bond [1.297 (3) Å]. The compound was also characterized by 1H NMR spectroscopy.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801016075/ci6059sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801016075/ci6059Isup2.hkl
Contains datablock I

CCDC reference: 176020

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.048
  • wR factor = 0.127
  • Data-to-parameter ratio = 16.4

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
REFLT_03 From the CIF: _diffrn_reflns_theta_max 28.02 From the CIF: _reflns_number_total 4641 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 5151 Completeness (_total/calc) 90.10% Alert C: < 95% complete
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

Our research group is interested in the synthesis and characterization of metal complexes of sulfonamides (Cabaleiro et al., 2000). These ligands are easily obtained by direct reaction of the corresponding amine and tosyl chloride. However, in the course of the reaction between tosylchloride and 2-amino-1-methylbenzimidazole, the title compound, (I), was obtained as the result of a double-tosylation on the amine group and on the nitrogen of the imidazole ring.

The 2-amino-1-methylbenzimidazole is usually considered to be an aromatic bicycle with an exocyclic amine group. However, the substitution of an amine hydrogen by an electron-withdrawing group causes the lack of aromaticity and the tautomeric displacement towards the imine form. Under these conditions, the substitution will be on the H atom of the imidazole ring nitrogen. The exocyclic nitrogen is bonded to the imidazole ring through a double bond, with a length of 1.297 (3) Å. This distance is shorter than those found in compounds with this skeleton, either organic (Benvenuti et al., 1995), or coordination compounds (Garnovskii et al., 1996). The imidazole ring is not aromatic, but its planarity is maintained due the sp2 character of all five atoms (r.m.s. = 0.0151 Å). The exocyclic S2 and N1 atoms deviate from the best plane of the imidazole ring by 0.210 (1) and 0.086 (2) Å, respectively.

The two tosyl groups present in the compound are not equal, and the main difference lies on the sulfur environment. Focusing on the S—N bond, one of them has a bond distance of 1.6900 (19) Å, but the other one presents a value of 1.5896 (18) Å. The value expected for this kind of bond is around 1.64 Å (Allen et al., 1987). The shorter one corresponds to the tosyl group bonded to the exocyclic N and the conjugation probably plays an important role in the shortening of this bond. Indeed, assuming a value for a single N—S bond of 1.71 Å (Allen et al., 1987), the bond order could be calculated as 1.58 using the Pauling (1947) method (dn-d = -0.60logn, where dn is the bond length for bond order n, and d is the length of the single bond).

Although the H atoms have been included in their idealized positions, some of them are situated close to the sulfonyl O atoms, providing evidence for C—H···O hydrogen bonds (Taylor & Kennard, 1982) (Table 2). Similarly, some interactions between C—H groups and the π clouds of the rings are present in the compound. In Table 2, this interactions are set out, where Cg1 stands for the centroid of the imidazole ring, Cg2 for the centroid of the benzene ring C2–C7, Cg3 for the centroid of the phenyl ring C9–C14 and Cg4 for the centroid of the benzene ring C29–C214. The intramolecular interactions might be due to geometrical constraints, but intermolecular ones may be assumed to play a significant role in the packing arrangement.

Experimental top

The title compound was prepared by reaction of 2-amino-1-methylbenzimidazole (0.5 g, 3.4 mmol) and 4-methylphenylsulfonyl chloride (1.3 g, 6.8 mmol) in a 1:2 ratio in dichloromethane. A dilute aqueous solution of K2CO3 was added to the mixture until pH 10 was attained and the resultant white product collected by filtration of the organic phase and dried in vacuo. The product was recrystallized from CH3CN/(CH3)2CO (1:1) to give crystals suitable for X-ray diffraction studies. The solid was identified by elemental analysis as the title compound. Found: C 57.5, H 4.9, N 9.3, S 14.0\5; calculated for C22H21N3O4S2: C 58.0, H 4.6, N 9.2, S 14.1%. The 1H NMR spectrum of the compound was recorded on a Bruker ARX-400 MHz s pectrophotometer in CDCl3 solution against TMS as an internal reference. The spectrum shows three peaks as singlets at δ 2.35, 2.50 and 3.93 p.p.m. corresponding to the three methyl groups, whose C atoms were labeled as C15, C215 and C1, respectively. The signals corresponding to the aromatic rings appear between δ 6.95 and 8.25 p.p.m.

Refinement top

All H atoms in the molecule were refined using a riding model (HFIX 43 for aromatic and HFIX 137 for methyl groups).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT and SADABS (Sheldrick, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1998); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are shown at the 50% probability level (Farrugia, 1998).
1-Methyl-3-(4-methylphenylsulfonyl)-2-(4-methylphenylsulfonylimino)benzimidazole top
Crystal data top
C22H21N3O4S2Z = 2
Mr = 455.54F(000) = 476
Triclinic, P1Dx = 1.425 Mg m3
a = 7.9692 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.1288 (11) ÅCell parameters from 57 reflections
c = 13.5622 (13) Åθ = 3–27°
α = 107.529 (2)°µ = 0.29 mm1
β = 104.567 (2)°T = 293 K
γ = 101.135 (2)°Block, colourless
V = 1061.92 (18) Å30.53 × 0.28 × 0.16 mm
Data collection top
CCD area detector
diffractometer
4641 independent reflections
Radiation source: fine-focus sealed tube3401 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 28.0°, θmin = 1.7°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 109
Tmin = 0.777, Tmax = 0.956k = 1413
6648 measured reflectionsl = 017
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0685P)2]
where P = (Fo2 + 2Fc2)/3
4641 reflections(Δ/σ)max = 0.004
283 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C22H21N3O4S2γ = 101.135 (2)°
Mr = 455.54V = 1061.92 (18) Å3
Triclinic, P1Z = 2
a = 7.9692 (8) ÅMo Kα radiation
b = 11.1288 (11) ŵ = 0.29 mm1
c = 13.5622 (13) ÅT = 293 K
α = 107.529 (2)°0.53 × 0.28 × 0.16 mm
β = 104.567 (2)°
Data collection top
CCD area detector
diffractometer
4641 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
3401 reflections with I > 2σ(I)
Tmin = 0.777, Tmax = 0.956Rint = 0.031
6648 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.00Δρmax = 0.33 e Å3
4641 reflectionsΔρmin = 0.35 e Å3
283 parameters
Special details top

Experimental. We have measured to theta(max) = 28.02° with 90.1% completeness, but the data are virtually 95% complete to 25°

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.12729 (7)0.25990 (5)0.57943 (4)0.03998 (16)
S20.05559 (8)0.12341 (6)0.82726 (5)0.04310 (17)
N10.0689 (3)0.1812 (2)0.65154 (15)0.0476 (5)
N20.2770 (2)0.04984 (16)0.67270 (13)0.0372 (4)
N30.0881 (2)0.06266 (17)0.76769 (14)0.0390 (4)
O10.3164 (2)0.32984 (17)0.62160 (14)0.0564 (5)
O110.2011 (2)0.12635 (17)0.74388 (13)0.0523 (4)
O220.0881 (2)0.04561 (17)0.89057 (14)0.0590 (5)
O20.0564 (2)0.17681 (16)0.46560 (12)0.0566 (5)
C10.3574 (3)0.0488 (2)0.58711 (19)0.0488 (6)
H1A0.26440.03380.52030.073*
H1B0.41490.02010.57570.073*
H1C0.44590.13220.60900.073*
C20.3140 (3)0.0210 (2)0.74101 (17)0.0412 (5)
C30.4389 (3)0.0902 (2)0.7524 (2)0.0548 (6)
H30.51330.09820.70940.066*
C40.4491 (4)0.1468 (3)0.8297 (2)0.0673 (8)
H40.53220.19410.83940.081*
C50.3379 (4)0.1349 (3)0.8937 (2)0.0629 (7)
H50.34970.17330.94620.075*
C60.2105 (4)0.0681 (2)0.88192 (19)0.0526 (6)
H60.13540.06120.92460.063*
C70.1995 (3)0.0115 (2)0.80293 (17)0.0406 (5)
C80.1440 (3)0.1038 (2)0.68986 (16)0.0364 (5)
C90.0074 (3)0.3769 (2)0.60305 (16)0.0391 (5)
C100.0957 (3)0.5088 (2)0.63734 (18)0.0459 (5)
H100.21910.53650.64860.055*
C110.0000 (4)0.6002 (2)0.65505 (19)0.0526 (6)
H110.06080.68910.67760.063*
C120.1818 (4)0.5635 (3)0.64023 (19)0.0518 (6)
C130.2687 (4)0.4298 (3)0.6058 (2)0.0607 (7)
H130.39170.40220.59570.073*
C140.1767 (3)0.3372 (3)0.5863 (2)0.0571 (7)
H140.23800.24820.56200.069*
C150.2841 (4)0.6631 (3)0.6611 (3)0.0739 (9)
H15A0.22050.73080.73210.111*
H15B0.40300.62070.65850.111*
H15C0.29440.70150.60610.111*
C290.0756 (3)0.2835 (2)0.91432 (17)0.0408 (5)
C2100.0734 (3)0.3863 (2)0.87804 (18)0.0467 (6)
H2100.00410.37240.80910.056*
C2110.1888 (3)0.5111 (2)0.94575 (19)0.0515 (6)
H2110.18760.58100.92180.062*
C2120.3054 (3)0.5329 (2)1.04829 (18)0.0499 (6)
C2130.3018 (4)0.4289 (3)1.0832 (2)0.0607 (7)
H2130.37730.44311.15280.073*
C2140.1887 (4)0.3037 (3)1.01752 (19)0.0553 (6)
H2140.18860.23421.04220.066*
C2150.4326 (4)0.6677 (3)1.1211 (2)0.0684 (8)
H21A0.41870.72801.08390.103*
H21B0.55520.66341.13810.103*
H21C0.40480.69751.18760.103*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0411 (3)0.0418 (3)0.0393 (3)0.0101 (2)0.0151 (2)0.0177 (2)
S20.0419 (3)0.0475 (3)0.0440 (3)0.0120 (3)0.0209 (3)0.0176 (3)
N10.0546 (12)0.0560 (12)0.0535 (11)0.0275 (10)0.0296 (10)0.0324 (10)
N20.0369 (10)0.0357 (9)0.0383 (9)0.0108 (8)0.0134 (8)0.0116 (8)
N30.0469 (11)0.0378 (10)0.0388 (9)0.0158 (8)0.0202 (8)0.0159 (8)
O10.0401 (10)0.0558 (10)0.0732 (11)0.0116 (8)0.0210 (8)0.0233 (9)
O110.0395 (9)0.0613 (11)0.0534 (10)0.0113 (8)0.0147 (8)0.0200 (8)
O220.0650 (12)0.0643 (11)0.0630 (11)0.0162 (9)0.0377 (9)0.0321 (9)
O20.0758 (12)0.0524 (10)0.0387 (9)0.0216 (9)0.0166 (8)0.0130 (8)
C10.0505 (14)0.0525 (14)0.0495 (13)0.0189 (12)0.0258 (12)0.0171 (11)
C20.0392 (12)0.0352 (11)0.0431 (12)0.0078 (10)0.0079 (10)0.0127 (10)
C30.0432 (14)0.0536 (15)0.0683 (16)0.0185 (12)0.0158 (12)0.0230 (13)
C40.0634 (18)0.0614 (17)0.0789 (19)0.0290 (14)0.0092 (16)0.0334 (15)
C50.0718 (19)0.0551 (16)0.0600 (16)0.0182 (14)0.0056 (14)0.0324 (13)
C60.0643 (17)0.0456 (14)0.0476 (13)0.0129 (12)0.0158 (12)0.0209 (11)
C70.0458 (13)0.0335 (11)0.0369 (11)0.0092 (10)0.0090 (10)0.0106 (9)
C80.0396 (12)0.0349 (11)0.0326 (10)0.0087 (9)0.0128 (9)0.0103 (9)
C90.0415 (12)0.0397 (12)0.0351 (11)0.0086 (10)0.0112 (9)0.0154 (9)
C100.0418 (13)0.0427 (13)0.0494 (13)0.0058 (10)0.0123 (11)0.0181 (11)
C110.0601 (17)0.0434 (13)0.0525 (14)0.0141 (12)0.0169 (12)0.0173 (11)
C120.0645 (17)0.0616 (16)0.0451 (13)0.0305 (14)0.0260 (12)0.0271 (12)
C130.0412 (14)0.0703 (18)0.0787 (18)0.0177 (13)0.0233 (13)0.0347 (15)
C140.0457 (15)0.0462 (14)0.0745 (17)0.0066 (12)0.0170 (13)0.0222 (13)
C150.093 (2)0.086 (2)0.081 (2)0.0560 (19)0.0522 (18)0.0454 (18)
C290.0436 (13)0.0453 (12)0.0361 (11)0.0173 (10)0.0185 (10)0.0113 (10)
C2100.0513 (14)0.0513 (14)0.0365 (11)0.0193 (11)0.0140 (10)0.0124 (10)
C2110.0611 (16)0.0455 (13)0.0473 (13)0.0177 (12)0.0191 (12)0.0139 (11)
C2120.0485 (14)0.0537 (15)0.0405 (12)0.0179 (12)0.0160 (11)0.0048 (11)
C2130.0669 (18)0.0661 (17)0.0379 (13)0.0226 (14)0.0061 (12)0.0113 (12)
C2140.0662 (17)0.0590 (16)0.0422 (13)0.0246 (13)0.0147 (12)0.0196 (12)
C2150.0605 (18)0.0615 (18)0.0592 (16)0.0120 (14)0.0111 (14)0.0001 (14)
Geometric parameters (Å, º) top
S1—O11.4319 (16)C9—C141.386 (3)
S1—O21.4342 (16)C10—C111.385 (3)
S1—N11.5896 (18)C10—H100.93
S1—C91.759 (2)C11—C121.372 (3)
S2—O111.4148 (16)C11—H110.93
S2—O221.4238 (17)C12—C131.390 (4)
S2—N31.6900 (19)C12—C151.500 (4)
S2—C291.747 (2)C13—C141.375 (4)
N1—C81.297 (3)C13—H130.93
N2—C81.351 (3)C14—H140.93
N2—C21.399 (3)C15—H15A0.96
N2—C11.458 (3)C15—H15B0.96
N3—C81.404 (3)C15—H15C0.96
N3—C71.416 (3)C29—C2101.376 (3)
C1—H1A0.96C29—C2141.386 (3)
C1—H1B0.96C210—C2111.389 (3)
C1—H1C0.96C210—H2100.93
C2—C31.378 (3)C211—C2121.384 (3)
C2—C71.385 (3)C211—H2110.93
C3—C41.370 (4)C212—C2131.375 (4)
C3—H30.93C212—C2151.506 (3)
C4—C51.385 (4)C213—C2141.382 (4)
C4—H40.93C213—H2130.93
C5—C61.374 (4)C214—H2140.93
C5—H50.93C215—H21A0.96
C6—C71.390 (3)C215—H21B0.96
C6—H60.93C215—H21C0.96
C9—C101.376 (3)
O1—S1—O2116.39 (11)C10—C9—S1120.09 (18)
O1—S1—N1112.76 (10)C14—C9—S1120.49 (18)
O2—S1—N1110.34 (11)C9—C10—C11119.7 (2)
O1—S1—C9107.62 (10)C9—C10—H10120.1
O2—S1—C9108.91 (10)C11—C10—H10120.1
N1—S1—C999.34 (10)C12—C11—C10121.9 (2)
O11—S2—O22120.35 (11)C12—C11—H11119.0
O11—S2—N3107.70 (9)C10—C11—H11119.0
O22—S2—N3104.02 (10)C11—C12—C13117.5 (2)
O11—S2—C29110.36 (11)C11—C12—C15121.7 (3)
O22—S2—C29109.66 (11)C13—C12—C15120.8 (3)
N3—S2—C29103.17 (10)C14—C13—C12121.5 (2)
C8—N1—S1129.56 (17)C14—C13—H13119.3
C8—N2—C2110.05 (18)C12—C13—H13119.3
C8—N2—C1126.40 (18)C13—C14—C9119.9 (2)
C2—N2—C1123.12 (19)C13—C14—H14120.0
C8—N3—C7108.79 (18)C9—C14—H14120.0
C8—N3—S2123.26 (15)C12—C15—H15A109.5
C7—N3—S2126.58 (15)C12—C15—H15B109.5
N2—C1—H1A109.5H15A—C15—H15B109.5
N2—C1—H1B109.5C12—C15—H15C109.5
H1A—C1—H1B109.5H15A—C15—H15C109.5
N2—C1—H1C109.5H15B—C15—H15C109.5
H1A—C1—H1C109.5C210—C29—C214120.8 (2)
H1B—C1—H1C109.5C210—C29—S2120.10 (17)
C3—C2—C7121.6 (2)C214—C29—S2118.98 (19)
C3—C2—N2130.3 (2)C29—C210—C211119.1 (2)
C7—C2—N2108.1 (2)C29—C210—H210120.5
C4—C3—C2117.4 (3)C211—C210—H210120.5
C4—C3—H3121.3C212—C211—C210121.0 (2)
C2—C3—H3121.3C212—C211—H211119.5
C3—C4—C5121.2 (3)C210—C211—H211119.5
C3—C4—H4119.4C213—C212—C211118.5 (2)
C5—C4—H4119.4C213—C212—C215120.4 (2)
C6—C5—C4122.1 (2)C211—C212—C215121.1 (2)
C6—C5—H5119.0C212—C213—C214121.7 (2)
C4—C5—H5119.0C212—C213—H213119.2
C5—C6—C7116.6 (3)C214—C213—H213119.2
C5—C6—H6121.7C213—C214—C29118.8 (2)
C7—C6—H6121.7C213—C214—H214120.6
C2—C7—C6121.1 (2)C29—C214—H214120.6
C2—C7—N3106.10 (18)C212—C215—H21A109.5
C6—C7—N3132.8 (2)C212—C215—H21B109.5
N1—C8—N2133.5 (2)H21A—C215—H21B109.5
N1—C8—N3119.6 (2)C212—C215—H21C109.5
N2—C8—N3106.85 (17)H21A—C215—H21C109.5
C10—C9—C14119.4 (2)H21B—C215—H21C109.5
O1—S1—N1—C847.6 (2)S2—N3—C8—N17.8 (3)
O2—S1—N1—C884.4 (2)C7—N3—C8—N23.7 (2)
C9—S1—N1—C8161.3 (2)S2—N3—C8—N2171.15 (14)
O11—S2—N3—C845.53 (19)O1—S1—C9—C1010.7 (2)
O22—S2—N3—C8174.32 (16)O2—S1—C9—C10116.29 (18)
C29—S2—N3—C871.19 (18)N1—S1—C9—C10128.33 (19)
O11—S2—N3—C7149.34 (17)O1—S1—C9—C14169.92 (18)
O22—S2—N3—C720.5 (2)O2—S1—C9—C1463.1 (2)
C29—S2—N3—C793.94 (19)N1—S1—C9—C1452.3 (2)
C8—N2—C2—C3179.2 (2)C14—C9—C10—C110.2 (3)
C1—N2—C2—C37.8 (4)S1—C9—C10—C11179.57 (17)
C8—N2—C2—C70.2 (2)C9—C10—C11—C120.5 (4)
C1—N2—C2—C7172.69 (19)C10—C11—C12—C130.4 (4)
C7—C2—C3—C41.7 (4)C10—C11—C12—C15179.1 (2)
N2—C2—C3—C4177.7 (2)C11—C12—C13—C140.5 (4)
C2—C3—C4—C50.1 (4)C15—C12—C13—C14180.0 (2)
C3—C4—C5—C61.1 (4)C12—C13—C14—C91.2 (4)
C4—C5—C6—C70.6 (4)C10—C9—C14—C131.1 (4)
C3—C2—C7—C62.2 (3)S1—C9—C14—C13179.6 (2)
N2—C2—C7—C6177.4 (2)O11—S2—C29—C21022.8 (2)
C3—C2—C7—N3178.4 (2)O22—S2—C29—C210157.65 (19)
N2—C2—C7—N32.0 (2)N3—S2—C29—C21092.0 (2)
C5—C6—C7—C21.0 (3)O11—S2—C29—C214160.82 (18)
C5—C6—C7—N3179.8 (2)O22—S2—C29—C21426.0 (2)
C8—N3—C7—C23.6 (2)N3—S2—C29—C21484.4 (2)
S2—N3—C7—C2170.45 (15)C214—C29—C210—C2111.0 (4)
C8—N3—C7—C6175.7 (2)S2—C29—C210—C211175.29 (18)
S2—N3—C7—C68.8 (4)C29—C210—C211—C2120.3 (4)
S1—N1—C8—N29.8 (4)C210—C211—C212—C2131.6 (4)
S1—N1—C8—N3168.85 (16)C210—C211—C212—C215179.0 (2)
C2—N2—C8—N1176.3 (2)C211—C212—C213—C2141.7 (4)
C1—N2—C8—N111.0 (4)C215—C212—C213—C214178.9 (2)
C2—N2—C8—N32.4 (2)C212—C213—C214—C290.5 (4)
C1—N2—C8—N3170.20 (19)C210—C29—C214—C2130.9 (4)
C7—N3—C8—N1175.25 (19)S2—C29—C214—C213175.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1C···O10.962.583.114 (3)115
C6—H6···O220.932.352.914 (3)119
C10—H10···O10.932.522.897 (3)105
C6—H6···O22i0.932.593.417 (3)149
C13—H13···O1ii0.932.463.361 (3)164
C210—H210···Cg30.933.033.844 (3)147
C11—H11···Cg2iii0.932.763.624 (3)154
C215—H21B···Cg1iv0.963.193.551 (3)104
C215—H21B···Cg4iv0.962.983.756 (3)138
Symmetry codes: (i) x, y, z+2; (ii) x1, y, z; (iii) x, y+1, z; (iv) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC22H21N3O4S2
Mr455.54
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.9692 (8), 11.1288 (11), 13.5622 (13)
α, β, γ (°)107.529 (2), 104.567 (2), 101.135 (2)
V3)1061.92 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.53 × 0.28 × 0.16
Data collection
DiffractometerCCD area detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.777, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
6648, 4641, 3401
Rint0.031
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.127, 1.00
No. of reflections4641
No. of parameters283
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.35

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT and SADABS (Sheldrick, 1996), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1998), SHELXL97.

Selected geometric parameters (Å, º) top
S1—O11.4319 (16)N1—C81.297 (3)
S1—O21.4342 (16)N2—C81.351 (3)
S1—N11.5896 (18)N2—C21.399 (3)
S1—C91.759 (2)N2—C11.458 (3)
S2—O111.4148 (16)N3—C81.404 (3)
S2—O221.4238 (17)N3—C71.416 (3)
S2—N31.6900 (19)C2—C71.385 (3)
S2—C291.747 (2)
N1—S1—C999.34 (10)C7—C2—N2108.1 (2)
N3—S2—C29103.17 (10)C2—C7—N3106.10 (18)
C8—N1—S1129.56 (17)N1—C8—N2133.5 (2)
C8—N2—C2110.05 (18)N1—C8—N3119.6 (2)
C8—N3—C7108.79 (18)N2—C8—N3106.85 (17)
C8—N3—S2123.26 (15)
S2—N3—C7—C2170.45 (15)C7—N3—C8—N1175.25 (19)
C2—N2—C8—N1176.3 (2)S2—N3—C8—N2171.15 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1C···O10.962.583.114 (3)115.1
C6—H6···O220.932.352.914 (3)118.6
C10—H10···O10.932.522.897 (3)104.6
C6—H6···O22i0.932.593.417 (3)148.9
C13—H13···O1ii0.932.463.361 (3)163.8
C210—H210···Cg30.933.033.844 (3)147.2
C11—H11···Cg2iii0.932.763.624 (3)154.3
C215—H21B···Cg1iv0.963.193.551 (3)104.3
C215—H21B···Cg4iv0.962.983.756 (3)138.2
Symmetry codes: (i) x, y, z+2; (ii) x1, y, z; (iii) x, y+1, z; (iv) x+1, y+1, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds