Download citation
Download citation
link to html
In the title compound, C25H15NO3, the iso­quinoline moiety is distorted from planarity. In the solid state, the mol­ecules exist as centrosymmetrically N—H...O hydrogen-bonded dimers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801016956/ci6064sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801016956/ci6064Isup2.hkl
Contains datablock I

CCDC reference: 176016

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.074
  • wR factor = 0.195
  • Data-to-parameter ratio = 11.6

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_369 Alert C Long C(sp2)-C(sp2) Bond C(10) - C(19) = 1.53 Ang. PLAT_371 Alert C Long C(sp2)-C(sp1) Bond C(10) - C(11) = 1.42 Ang. PLAT_371 Alert C Long C(sp2)-C(sp1) Bond C(12) - C(13) = 1.43 Ang.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
3 Alert Level C = Please check

Comment top

The photoinduced reaction of isoquinoline-1,3-diones with diphenylacetylenes have been intensively investigated (Zhang et al., 2000). As an extension of the photoreactions of quinoline-1,3-dione derivatives with alkynes, we have synthesized the title compound, (I). An X-ray analysis of (I) was undertaken in order to elucidate its molecular conformation.

The bond lengths and angles in the title compound (Table 1) show normal values (Allen et al., 1987) except those around the C10 atom due to the steric effect of the bulky substituents. The C10—C11 and C12—C13 bond distances are longer than that of the typical Csp2—Csp distance and C10—C19 bond distance is longer than that of the typical Csp2—Csp2 distance. The bond angles around C10 and C10—C11—C12—C13 torsion angle of 145 (3)° indicate that both the bulky benzoyl and phenylethynyl substituents are pushed slightly away from the isoquinoline moiety.

The heterocyclic ring of the isoquinoline moiety is distorted from planarity with QT = 0.184 (3), q2 = 0.176 (3), q3 = 0.055 (3) Å and ϕ2 = -253.2 (10)° (Cremer & Pople, 1975) and the mean plane through that ring forms a dihedral angle of 8.3 (2)° with the benzene ring. The O1 and O2 atoms deviate from the isoquinoline moiety by -0.202 (2) and 0.422 (3) Å, respectively. The phenyl ring of the phenylethynyl substituent is nearly coplanar to the plane through the isoquinoline moiety with a dihedral angle of 5.9 (1)° between them. The dihedral angle between the phenyl rings of the benzoyl and phenylethynyl substituent is 66.5 (2)°. In the crystal, the molecules form centrosymmetrically N—H···O hydrogen bonded dimers (Table 2) which are stacked down the a-cell direction.

Experimental top

The title compound, (I), was prepared by the photolysis of a benzene solution of N-methylisoquinoline-1,3-dione (50 mmol) in an excess amount of 1,4-diphenylbuta-1,3-diyne with light of wavelength longer than 400 nm and under constant nitrogen purging. The slow evaporation of a mixture of petroleum ether–acetone (2:3) solution of the product gave single crystals suitable for X-ray study.

Refinement top

After checking their presence in the difference map, the H atoms were geometrically fixed and allowed to ride on the parent atoms and refined isotropically. Atoms H1A and H21A were freely refined.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. The structure of (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Packing of the molecules viewed down the a axis.
4-[α-benzoyl-α-(2-phenylethynyl)methylene]isoquinoline-1,3-dione top
Crystal data top
C25H15NO3Z = 2
Mr = 377.38F(000) = 392
Triclinic, P1Dx = 1.346 Mg m3
a = 7.5566 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.3679 (7) ÅCell parameters from 3718 reflections
c = 12.7275 (8) Åθ = 1.7–29.6°
α = 102.273 (1)°µ = 0.09 mm1
β = 100.562 (1)°T = 293 K
γ = 100.703 (1)°Block, yellow
V = 931.28 (11) Å30.34 × 0.22 × 0.18 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
3151 independent reflections
Radiation source: fine-focus sealed tube1918 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
Detector resolution: 8.33 pixels mm-1θmax = 25.0°, θmin = 1.7°
ω scansh = 88
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
k = 712
Tmin = 0.970, Tmax = 0.984l = 1515
5135 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.074H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.195 w = 1/[σ2(Fo2) + (0.0735P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.91(Δ/σ)max < 0.001
3151 reflectionsΔρmax = 0.35 e Å3
271 parametersΔρmin = 0.33 e Å3
0 restraintsExtinction correction: SHELXTL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.077 (10)
Crystal data top
C25H15NO3γ = 100.703 (1)°
Mr = 377.38V = 931.28 (11) Å3
Triclinic, P1Z = 2
a = 7.5566 (5) ÅMo Kα radiation
b = 10.3679 (7) ŵ = 0.09 mm1
c = 12.7275 (8) ÅT = 293 K
α = 102.273 (1)°0.34 × 0.22 × 0.18 mm
β = 100.562 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
3151 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
1918 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.984Rint = 0.067
5135 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0740 restraints
wR(F2) = 0.195H atoms treated by a mixture of independent and constrained refinement
S = 0.91Δρmax = 0.35 e Å3
3151 reflectionsΔρmin = 0.33 e Å3
271 parameters
Special details top

Experimental. The data collection covered over a hemisphere of reciprocal space by a combination of three sets of exposures; each set had a different ϕ angle (0,88 and 180°) for the crystal and each exposure of 10 s covered 0.3° in ω. The crystal-to-detector distance was 4 cm and the detector swing angle was -35°. Crystal decay was monitored by repeating fifty initial frames at the end of data collection and analysing the intensity of duplicate reflections, and was found to be negligible.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4918 (3)0.5972 (2)0.13467 (17)0.0542 (7)
O20.2570 (4)0.1525 (2)0.01873 (17)0.0619 (7)
O30.4693 (3)0.1049 (2)0.36443 (18)0.0559 (7)
N10.3748 (4)0.3734 (3)0.0629 (2)0.0414 (7)
H1A0.398 (4)0.377 (3)0.005 (3)0.044 (9)*
C10.2972 (4)0.3435 (3)0.2645 (2)0.0330 (7)
C20.2354 (4)0.3373 (3)0.3609 (2)0.0418 (8)
H2A0.18440.25340.37130.050*
C30.2493 (5)0.4540 (3)0.4405 (3)0.0519 (9)
H3A0.21090.44740.50490.062*
C40.3184 (5)0.5796 (3)0.4270 (3)0.0493 (8)
H4A0.32740.65760.48160.059*
C50.3746 (4)0.5886 (3)0.3310 (3)0.0441 (8)
H5A0.42050.67340.32060.053*
C60.3632 (4)0.4724 (3)0.2500 (2)0.0348 (7)
C70.4167 (4)0.4871 (3)0.1472 (2)0.0393 (7)
C80.3000 (4)0.2426 (3)0.0653 (2)0.0377 (7)
C90.2880 (3)0.2212 (3)0.1776 (2)0.0327 (7)
C100.2815 (4)0.0947 (3)0.1910 (2)0.0343 (7)
C110.2649 (4)0.0218 (3)0.1047 (2)0.0400 (7)
C120.2451 (4)0.1249 (3)0.0370 (3)0.0431 (8)
C130.2161 (4)0.2361 (3)0.0581 (2)0.0384 (7)
C140.2562 (4)0.2101 (3)0.1548 (3)0.0457 (8)
H14A0.30220.12130.15700.055*
C150.2283 (5)0.3147 (4)0.2476 (3)0.0546 (9)
H15A0.25660.29680.31200.065*
C160.1584 (5)0.4462 (4)0.2447 (3)0.0601 (10)
H16A0.13820.51690.30760.072*
C170.1186 (5)0.4736 (4)0.1498 (3)0.0569 (9)
H17A0.07140.56250.14840.068*
C180.1483 (4)0.3694 (3)0.0563 (3)0.0493 (8)
H18A0.12290.38840.00830.059*
C190.3155 (4)0.0618 (3)0.3040 (2)0.0370 (7)
C200.1625 (4)0.0263 (3)0.3304 (2)0.0358 (7)
C210.0167 (4)0.0594 (3)0.2653 (2)0.0439 (8)
H21A0.029 (4)0.011 (3)0.205 (3)0.055 (9)*
C220.1587 (5)0.1403 (3)0.2928 (3)0.0549 (9)
H22A0.27800.16330.24840.066*
C230.1222 (5)0.1872 (3)0.3870 (3)0.0581 (10)
H23A0.21790.24050.40650.070*
C240.0544 (5)0.1552 (3)0.4517 (3)0.0545 (9)
H24A0.07740.18790.51420.065*
C250.1983 (4)0.0754 (3)0.4250 (2)0.0454 (8)
H25A0.31760.05430.46910.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0770 (16)0.0444 (14)0.0475 (14)0.0112 (11)0.0248 (12)0.0191 (11)
O20.0987 (18)0.0518 (15)0.0241 (12)0.0014 (13)0.0105 (12)0.0037 (11)
O30.0535 (13)0.0687 (16)0.0445 (13)0.0110 (11)0.0005 (11)0.0241 (12)
N10.0605 (16)0.0428 (16)0.0249 (14)0.0096 (12)0.0163 (12)0.0140 (12)
C10.0356 (14)0.0417 (17)0.0249 (14)0.0158 (12)0.0077 (12)0.0087 (13)
C20.0551 (18)0.0438 (19)0.0344 (16)0.0168 (14)0.0195 (14)0.0145 (15)
C30.075 (2)0.058 (2)0.0335 (17)0.0259 (18)0.0269 (16)0.0119 (16)
C40.066 (2)0.046 (2)0.0376 (17)0.0238 (16)0.0170 (16)0.0025 (15)
C50.0507 (17)0.0365 (18)0.0468 (19)0.0134 (14)0.0127 (15)0.0103 (15)
C60.0389 (14)0.0383 (17)0.0308 (15)0.0135 (12)0.0114 (13)0.0097 (13)
C70.0477 (16)0.0401 (18)0.0355 (17)0.0128 (13)0.0117 (14)0.0171 (15)
C80.0495 (16)0.0399 (18)0.0259 (16)0.0106 (13)0.0106 (13)0.0111 (14)
C90.0359 (14)0.0381 (17)0.0246 (14)0.0075 (12)0.0098 (12)0.0077 (13)
C100.0390 (14)0.0363 (17)0.0276 (15)0.0081 (12)0.0105 (12)0.0062 (13)
C110.0491 (16)0.0386 (18)0.0356 (17)0.0091 (13)0.0165 (14)0.0117 (15)
C120.0519 (17)0.0401 (18)0.0384 (18)0.0116 (14)0.0170 (15)0.0062 (15)
C130.0426 (15)0.0408 (18)0.0348 (16)0.0165 (13)0.0144 (13)0.0052 (14)
C140.0504 (17)0.0469 (19)0.0438 (18)0.0137 (14)0.0172 (15)0.0129 (16)
C150.063 (2)0.070 (3)0.0366 (18)0.0236 (18)0.0205 (16)0.0113 (18)
C160.064 (2)0.069 (3)0.042 (2)0.0272 (19)0.0144 (17)0.0093 (18)
C170.062 (2)0.041 (2)0.064 (2)0.0104 (15)0.0210 (18)0.0005 (18)
C180.0616 (19)0.047 (2)0.0426 (19)0.0154 (15)0.0215 (16)0.0082 (16)
C190.0521 (17)0.0372 (17)0.0267 (15)0.0172 (13)0.0103 (14)0.0117 (13)
C200.0533 (16)0.0332 (16)0.0268 (15)0.0161 (13)0.0150 (13)0.0100 (13)
C210.0560 (18)0.046 (2)0.0310 (16)0.0110 (14)0.0109 (14)0.0118 (15)
C220.0563 (19)0.058 (2)0.047 (2)0.0031 (16)0.0134 (16)0.0121 (18)
C230.078 (2)0.045 (2)0.059 (2)0.0098 (17)0.035 (2)0.0173 (18)
C240.083 (2)0.052 (2)0.049 (2)0.0301 (18)0.0335 (19)0.0299 (18)
C250.0601 (18)0.0488 (19)0.0373 (17)0.0246 (15)0.0150 (15)0.0185 (15)
Geometric parameters (Å, º) top
O1—C71.233 (3)C13—C141.388 (4)
O2—C81.207 (3)C13—C181.389 (4)
O3—C191.214 (3)C14—C151.377 (4)
N1—C71.356 (4)C14—H14A0.93
N1—C81.378 (4)C15—C161.378 (5)
N1—H1A0.80 (3)C15—H15A0.93
C1—C61.399 (4)C16—C171.371 (5)
C1—C21.401 (4)C16—H16A0.93
C1—C91.476 (4)C17—C181.378 (4)
C2—C31.376 (4)C17—H17A0.93
C2—H2A0.9300C18—H18A0.93
C3—C41.369 (4)C19—C201.472 (4)
C3—H3A0.93C20—C211.391 (4)
C4—C51.379 (4)C20—C251.405 (4)
C4—H4A0.93C21—C221.380 (4)
C5—C61.387 (4)C21—H21A1.00 (3)
C5—H5A0.93C22—C231.389 (4)
C6—C71.468 (4)C22—H22A0.93
C8—C91.508 (4)C23—C241.373 (5)
C9—C101.350 (4)C23—H23A0.93
C10—C111.418 (4)C24—C251.379 (4)
C10—C191.535 (4)C24—H24A0.93
C11—C121.186 (4)C25—H25A0.93
C12—C131.435 (4)
C7—N1—C8127.2 (3)C18—C13—C12121.7 (3)
C7—N1—H1A120 (2)C15—C14—C13120.5 (3)
C8—N1—H1A112 (2)C15—C14—H14A119.7
C6—C1—C2117.4 (3)C13—C14—H14A119.7
C6—C1—C9119.9 (2)C14—C15—C16119.7 (3)
C2—C1—C9122.7 (3)C14—C15—H15A120.2
C3—C2—C1120.7 (3)C16—C15—H15A120.2
C3—C2—H2A119.7C17—C16—C15120.5 (3)
C1—C2—H2A119.7C17—C16—H16A119.8
C4—C3—C2121.5 (3)C15—C16—H16A119.8
C4—C3—H3A119.3C16—C17—C18120.1 (3)
C2—C3—H3A119.3C16—C17—H17A120.0
C3—C4—C5118.9 (3)C18—C17—H17A120.0
C3—C4—H4A120.5C17—C18—C13120.3 (3)
C5—C4—H4A120.5C17—C18—H18A119.9
C4—C5—C6120.7 (3)C13—C18—H18A119.9
C4—C5—H5A119.7O3—C19—C20123.7 (2)
C6—C5—H5A119.7O3—C19—C10118.2 (2)
C5—C6—C1120.8 (3)C20—C19—C10118.0 (2)
C5—C6—C7118.7 (3)C21—C20—C25119.5 (3)
C1—C6—C7120.5 (3)C21—C20—C19121.5 (2)
O1—C7—N1120.2 (3)C25—C20—C19119.0 (3)
O1—C7—C6122.8 (3)C22—C21—C20120.5 (3)
N1—C7—C6117.0 (3)C22—C21—H21A126.5 (17)
O2—C8—N1119.8 (3)C20—C21—H21A112.7 (17)
O2—C8—C9124.1 (3)C21—C22—C23119.6 (3)
N1—C8—C9116.1 (3)C21—C22—H22A120.2
C10—C9—C1126.3 (2)C23—C22—H22A120.2
C10—C9—C8117.4 (3)C24—C23—C22120.3 (3)
C1—C9—C8116.2 (2)C24—C23—H23A119.8
C9—C10—C11124.8 (2)C22—C23—H23A119.8
C9—C10—C19123.9 (2)C23—C24—C25120.9 (3)
C11—C10—C19110.8 (2)C23—C24—H24A119.6
C12—C11—C10175.2 (3)C25—C24—H24A119.6
C11—C12—C13170.3 (3)C24—C25—C20119.2 (3)
C14—C13—C18118.9 (3)C24—C25—H25A120.4
C14—C13—C12119.3 (3)C20—C25—H25A120.4
C6—C1—C2—C33.5 (4)C8—C9—C10—C117.2 (4)
C9—C1—C2—C3179.0 (3)C1—C9—C10—C1910.8 (4)
C1—C2—C3—C41.9 (5)C8—C9—C10—C19164.8 (2)
C2—C3—C4—C50.2 (5)C18—C13—C14—C150.3 (5)
C3—C4—C5—C60.7 (5)C12—C13—C14—C15179.5 (3)
C4—C5—C6—C11.0 (4)C13—C14—C15—C160.6 (5)
C4—C5—C6—C7177.3 (3)C14—C15—C16—C170.8 (5)
C2—C1—C6—C53.0 (4)C15—C16—C17—C180.0 (5)
C9—C1—C6—C5179.4 (2)C16—C17—C18—C131.0 (5)
C2—C1—C6—C7175.2 (3)C14—C13—C18—C171.1 (5)
C9—C1—C6—C72.4 (4)C12—C13—C18—C17178.7 (3)
C8—N1—C7—O1176.4 (3)C9—C10—C19—O365.9 (4)
C8—N1—C7—C65.5 (4)C11—C10—C19—O3107.1 (3)
C5—C6—C7—O18.9 (4)C9—C10—C19—C20117.3 (3)
C1—C6—C7—O1172.9 (3)C11—C10—C19—C2069.8 (3)
C5—C6—C7—N1169.2 (3)O3—C19—C20—C21172.0 (3)
C1—C6—C7—N19.0 (4)C10—C19—C20—C2111.4 (4)
C7—N1—C8—O2174.4 (3)O3—C19—C20—C256.7 (5)
C7—N1—C8—C99.0 (4)C10—C19—C20—C25170.0 (3)
C6—C1—C9—C10159.1 (3)C25—C20—C21—C220.2 (5)
C2—C1—C9—C1023.5 (4)C19—C20—C21—C22178.9 (3)
C6—C1—C9—C816.6 (4)C20—C21—C22—C230.9 (5)
C2—C1—C9—C8160.9 (3)C21—C22—C23—C241.1 (5)
O2—C8—C9—C1019.9 (4)C22—C23—C24—C250.6 (5)
N1—C8—C9—C10156.4 (3)C23—C24—C25—C200.1 (5)
O2—C8—C9—C1164.0 (3)C21—C20—C25—C240.3 (5)
N1—C8—C9—C119.6 (4)C19—C20—C25—C24178.4 (3)
C1—C9—C10—C11177.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.79 (4)2.14 (3)2.928 (3)170 (3)
Symmetry code: (i) x1, y1, z.

Experimental details

Crystal data
Chemical formulaC25H15NO3
Mr377.38
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.5566 (5), 10.3679 (7), 12.7275 (8)
α, β, γ (°)102.273 (1), 100.562 (1), 100.703 (1)
V3)931.28 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.34 × 0.22 × 0.18
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.970, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
5135, 3151, 1918
Rint0.067
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.195, 0.91
No. of reflections3151
No. of parameters271
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.33

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXTL (Sheldrick, 1997), SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Selected geometric parameters (Å, º) top
N1—C71.356 (4)C10—C111.418 (4)
N1—C81.378 (4)C10—C191.535 (4)
C1—C61.399 (4)C11—C121.186 (4)
C1—C91.476 (4)C12—C131.435 (4)
C8—C91.508 (4)C19—C201.472 (4)
C9—C101.350 (4)
C9—C10—C11124.8 (2)C12—C11—C10175.2 (3)
C9—C10—C19123.9 (2)C11—C12—C13170.3 (3)
C11—C10—C19110.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.79 (4)2.14 (3)2.928 (3)170 (3)
Symmetry code: (i) x1, y1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds