Download citation
Download citation
link to html
In the crystal structure of 2,4,6-tri­methoxy­benzoic acid, C10H12O5, the mol­ecules form hydrogen-bonded chains. The carboxyl group is in a syn conformation. The lone pair of electrons acting as the hydrogen bond acceptor is in an anti orientation.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801016610/dn6005sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801016610/dn6005Isup2.hkl
Contains datablock I

CCDC reference: 176022

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.046
  • wR factor = 0.150
  • Data-to-parameter ratio = 22.0

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

Ortho-alkoxy benzoic acids are a class of acids which crystallize with different packing modes. The singularity of 2-ethoxybenzoic acid which forms monomers is due to the formation of an intramolecular hydrogen bond (Gopalakrishna & Cartz, 1972). 2,3-Dimethoxybenzoic acid forms the normal acid dimer pattern (Bryan & White, 1982a). 2,6-Dimethoxybenzoic acid (Bryan & White, 1982b) and 2,6-dimethoxy-3-nitrobenzoic acid (Frankenbach et al., 1991) form catemers. The carboxyl group of 2,6-dimethoxybenzoic acid exists in an anti conformation, the carboxyl group of 2,6-dimethoxy-3-nitrobenzoic acid in a syn conformation. In 2,4,6-trimethoxybenzoic acid, (I), the three methoxy groups are nearly coplanar with the benzene ring (C5—C6—O61—C61 = 7.7°, C5—C4—O41—C41 = -7.0° and C3—C2—O21—C21 = 4.2°). As observed in 2,6-dimethoxybenzoic acid or 2,6-dimethoxy-3-nitrobenzoic acid, the hydrogen interaction from the hydroxyl O11 of one molecule to the remote carbonyl O12 of a neighbour (Table 2) form catemers. The torsion angle between the plane of the acid group and the benzene ring (C6—C1—C11—O12) is 54.1 (1)°, quite similar to the one found in 2,6-dimethoxybenzoic acid. However, in 2,4,6-trimethoxybenzoic acid, we find a syn-anti hydrogen-bond mode and in 2,6-dimethoxybenzoic acid an anti-anti hydrogen-bond mode. So the hypothesis (Frankenbach et al., 1991) of the stabilization of the anti-anti mode by an intramolecular hydrogen bond has to be rejected. More subtle packing effects in the environment of the hydroxyl group have to be considered to give a rational explanation.

Experimental top

2,4,6-Trimethoxybenzoic acid was purchased from Lancaster Chemicals. Crystals suitable for X-ray study were obtained from an ethanol solution by slow evaporation

Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLUTON93 (Spek, 1993); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1.  
2,4,6-trimethoxybenzoic acid top
Crystal data top
C10H12O5F(000) = 448
Mr = 212.20Dx = 1.382 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.602 (3) ÅCell parameters from 25 reflections
b = 7.288 (1) Åθ = 2.4–30.4°
c = 13.224 (8) ŵ = 0.11 mm1
β = 93.80 (2)°T = 293 K
V = 1019.6 Å3Prismatic, white
Z = 40.67 × 0.35 × 0.22 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
2256 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.047
Graphite monochromatorθmax = 30.4°, θmin = 2.4°
ω/2θ scansh = 015
Absorption correction: ψ scan
(North et al., 1968)
k = 010
Tmin = 0.907, Tmax = 0.976l = 1818
3231 measured reflections3 standard reflections every 0 reflections
3083 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.1033P)2]
where P = (Fo2 + 2Fc2)/3
3083 reflections(Δ/σ)max = 0.025
140 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C10H12O5V = 1019.6 Å3
Mr = 212.20Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.602 (3) ŵ = 0.11 mm1
b = 7.288 (1) ÅT = 293 K
c = 13.224 (8) Å0.67 × 0.35 × 0.22 mm
β = 93.80 (2)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
2256 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.047
Tmin = 0.907, Tmax = 0.9763 standard reflections every 0 reflections
3231 measured reflections intensity decay: none
3083 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.45 e Å3
3083 reflectionsΔρmin = 0.23 e Å3
140 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.73315 (9)0.36377 (13)0.07968 (7)0.0266 (2)
C20.82274 (10)0.36144 (14)0.00349 (8)0.0303 (2)
C30.82491 (11)0.49953 (16)0.07552 (9)0.0354 (3)
H30.88480.49830.13020.042*
C40.73623 (11)0.64025 (15)0.06498 (9)0.0341 (2)
C50.64563 (10)0.64555 (14)0.01513 (8)0.0316 (2)
H50.58620.73950.02040.038*
C60.64542 (10)0.50757 (14)0.08744 (8)0.0271 (2)
C110.73508 (10)0.22603 (13)0.16205 (8)0.0276 (2)
C210.99718 (14)0.2084 (2)0.08982 (12)0.0533 (4)
H21A1.04870.31690.09310.080*
H21B1.04970.10270.08210.080*
H21C0.95410.19710.15110.080*
C410.66646 (18)0.9259 (2)0.13002 (12)0.0566 (4)
H41A0.67710.98320.06580.085*
H41B0.68921.01100.18360.085*
H41C0.57980.88980.13380.085*
C610.47554 (12)0.64856 (19)0.18568 (11)0.0441 (3)
H61A0.41950.65600.13170.066*
H61B0.42710.63090.24890.066*
H61C0.52320.76020.18840.066*
O110.72402 (11)0.05480 (11)0.13116 (6)0.0433 (2)
H110.73680.01530.17790.065*
O120.74446 (9)0.26453 (11)0.25016 (6)0.0407 (2)
O210.90670 (9)0.22110 (13)0.00537 (7)0.0452 (3)
O410.74551 (10)0.76822 (13)0.14033 (7)0.0506 (3)
O610.55990 (8)0.49783 (12)0.16796 (6)0.0368 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0304 (5)0.0209 (4)0.0279 (4)0.0036 (3)0.0018 (4)0.0007 (3)
C20.0318 (5)0.0262 (5)0.0322 (5)0.0069 (4)0.0034 (4)0.0003 (4)
C30.0369 (6)0.0345 (5)0.0333 (5)0.0053 (4)0.0085 (4)0.0054 (4)
C40.0391 (6)0.0295 (5)0.0331 (5)0.0021 (4)0.0012 (4)0.0076 (4)
C50.0330 (5)0.0254 (5)0.0358 (5)0.0079 (4)0.0010 (4)0.0039 (4)
C60.0270 (4)0.0244 (4)0.0294 (4)0.0026 (4)0.0023 (3)0.0001 (4)
C110.0311 (5)0.0203 (4)0.0311 (5)0.0035 (3)0.0010 (4)0.0003 (3)
C210.0524 (8)0.0506 (8)0.0540 (8)0.0206 (7)0.0194 (6)0.0012 (6)
C410.0777 (10)0.0409 (7)0.0503 (8)0.0190 (7)0.0020 (7)0.0183 (6)
C610.0372 (6)0.0395 (6)0.0538 (7)0.0137 (5)0.0109 (5)0.0025 (5)
O110.0761 (6)0.0195 (4)0.0344 (4)0.0005 (4)0.0053 (4)0.0002 (3)
O120.0667 (6)0.0261 (4)0.0298 (4)0.0062 (4)0.0063 (4)0.0009 (3)
O210.0450 (5)0.0399 (5)0.0482 (5)0.0212 (4)0.0162 (4)0.0086 (4)
O410.0632 (6)0.0424 (5)0.0440 (5)0.0143 (5)0.0134 (4)0.0212 (4)
O610.0360 (4)0.0328 (4)0.0396 (4)0.0101 (3)0.0131 (3)0.0057 (3)
Geometric parameters (Å, º) top
C1—C61.4005 (13)C5—C61.3876 (14)
C1—C21.4050 (13)C6—O611.3538 (12)
C1—C111.4824 (14)C11—O121.2089 (13)
C2—O211.3551 (13)C11—O111.3207 (12)
C2—C31.3848 (15)C21—O211.4262 (15)
C3—C41.3921 (16)C41—O411.4234 (16)
C4—O411.3636 (13)C61—O611.4261 (14)
C4—C51.3826 (15)
C6—C1—C2118.54 (9)C4—C5—C6118.50 (9)
C6—C1—C11119.63 (8)O61—C6—C5123.39 (9)
C2—C1—C11121.70 (9)O61—C6—C1115.17 (9)
O21—C2—C3123.71 (9)C5—C6—C1121.41 (9)
O21—C2—C1115.64 (9)O12—C11—O11122.14 (9)
C3—C2—C1120.61 (9)O12—C11—C1123.85 (9)
C2—C3—C4119.09 (10)O11—C11—C1114.01 (9)
O41—C4—C5123.62 (10)C2—O21—C21118.05 (10)
O41—C4—C3114.52 (10)C4—O41—C41117.94 (10)
C5—C4—C3121.85 (10)C6—O61—C61117.96 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11···O12i0.821.882.6683 (12)160
Symmetry code: (i) x+3/2, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC10H12O5
Mr212.20
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.602 (3), 7.288 (1), 13.224 (8)
β (°) 93.80 (2)
V3)1019.6
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.67 × 0.35 × 0.22
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.907, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
3231, 3083, 2256
Rint0.047
(sin θ/λ)max1)0.712
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.150, 1.08
No. of reflections3083
No. of parameters140
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.23

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLUTON93 (Spek, 1993), SHELXL97.

Selected geometric parameters (Å, º) top
C1—C61.4005 (13)C5—C61.3876 (14)
C1—C21.4050 (13)C6—O611.3538 (12)
C1—C111.4824 (14)C11—O121.2089 (13)
C2—O211.3551 (13)C11—O111.3207 (12)
C2—C31.3848 (15)C21—O211.4262 (15)
C3—C41.3921 (16)C41—O411.4234 (16)
C4—O411.3636 (13)C61—O611.4261 (14)
C4—C51.3826 (15)
C6—C1—C2118.54 (9)C4—C5—C6118.50 (9)
C6—C1—C11119.63 (8)O61—C6—C5123.39 (9)
C2—C1—C11121.70 (9)O61—C6—C1115.17 (9)
O21—C2—C3123.71 (9)C5—C6—C1121.41 (9)
O21—C2—C1115.64 (9)O12—C11—O11122.14 (9)
C3—C2—C1120.61 (9)O12—C11—C1123.85 (9)
C2—C3—C4119.09 (10)O11—C11—C1114.01 (9)
O41—C4—C5123.62 (10)C2—O21—C21118.05 (10)
O41—C4—C3114.52 (10)C4—O41—C41117.94 (10)
C5—C4—C3121.85 (10)C6—O61—C61117.96 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11···O12i0.821.882.6683 (12)160.1
Symmetry code: (i) x+3/2, y1/2, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds