Download citation
Download citation
link to html
The title compound, C12H15NO3S2, is shown to be the exo isomer with a cis arrangement of the S=O group and the methyl group in the thia­zine ring.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801017901/na6104sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801017901/na6104Isup2.hkl
Contains datablock I

CCDC reference: 176037

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.057
  • wR factor = 0.162
  • Data-to-parameter ratio = 10.1

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

REFLT_03 From the CIF: _diffrn_reflns_theta_max 26.94 From the CIF: _reflns_number_total 1669 Count of symmetry unique reflns 1668 Completeness (_total/calc) 100.06% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1 Fraction of Friedel pairs measured 0.001 Are heavy atom types Z>Si present yes WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure

Comment top

Hetero-[4 + 2]-cycloadditions of N-sulfinyl compounds (R—NSO) and dienes provide 1,2-thiazine 1-oxides, which can be further transformed into synthetically useful derivatives, e.g. homoallylic amines or vicinal aminoalcohols (Weinreb, 1988). The title compound, (I), was obtained by a [2 + 4]-cycloaddition of trans-1,3-pentadiene and N-sulfinyl-4-toluenesulfonamide at room temperature in CH2Cl2 (Kresze & Wagner, 1972). The reaction product contained two isomers in the ratio 4:1 with different orientations of the SO bond relative to the methyl group. The exo isomer has the SO bond cis to the methyl group, while the endo isomer has a trans orientation. Here, the structure of the major compound is reported. The major compound was found to be the exo isomer.

The title compound crystallizes in the orthorhombic non-centrosymmetric space group P212121 and is therefore a conglomerate under the applied conditions of crystallization. A molecule with the atomic numbering scheme is shown in Fig. 1. The thiazine part of the molecule is found to be in a half-chair conformation, and one also sees that the SO and the C4—C5 bonds are on the same side of the thiazine ring, giving the exo isomer. Least-squares planes through the phenyl part (atoms C6—C11) and the thiazine part (atoms C1—C4) show an angle of 71.2 (2)° between the two planes. Atoms S1 and N1 are displaced by 0.525 (9) and 0.261 (8) Å, respectively, on opposite sides with respect to the plane through atoms C1–C4. The total puckering amplitude parameter (Cremer & Pople, 1975) QT = 0.499 (3) Å and one notices the presence of a local twofold axis running along the midpoints of the S1—N1 and C2—C3 bonds. Atoms C12 and S2 nearly lie in the phenyl group plane, being displaced by 0.016 (9) and 0.099 (6) Å on the same side with respect to that plane. A selection of bond lengths shows that these are all within the normal range of such bonds (Allen et al., 1987). The S2O2 and S2O3 are both 1.428 (3) Å, while the S1O1 distance is 1.473 (4) Å. The molecules are packed in the crystal through a series of intra- and intermolecular short contacts (Taylor & Kennard, 1982) (see Table 1).

Experimental top

The 1,4-thiazine 1-oxide was dissolved in CH2Cl2 and heptane was added until saturation. Crystals were grown by vapour diffusion of the solvent in the refrigerator.

Computing details top

Data collection: CAD-4-PC Software (Enraf-Nonius, 1992); cell refinement: CELDIM in CAD-4-PC Software; data reduction: XCAD4 (McArdle & Higgins, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: OSCAIL (McArdle, 1993).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 20% probability level.
(I) top
Crystal data top
C12H15NO3S2Dx = 1.427 Mg m3
Mr = 285.37Mo Kα radiation, λ = 0.71069 Å
Orthorhombic, P212121Cell parameters from 25 reflections
a = 8.277 (2) Åθ = 8–14°
b = 9.723 (2) ŵ = 0.40 mm1
c = 16.500 (2) ÅT = 298 K
V = 1327.9 (5) Å3Block, colourless
Z = 40.5 × 0.3 × 0.2 mm
F(000) = 600
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.020
Radiation source: fine-focus sealed tubeθmax = 26.9°, θmin = 2.4°
Graphite monochromatorh = 010
ω–2θ scansk = 312
1710 measured reflectionsl = 621
1669 independent reflections3 standard reflections every 120 min
1386 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.162 w = 1/[σ2(Fo2) + (0.1332P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1669 reflectionsΔρmax = 0.91 e Å3
165 parametersΔρmin = 0.41 e Å3
0 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.12 (19)
Crystal data top
C12H15NO3S2V = 1327.9 (5) Å3
Mr = 285.37Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.277 (2) ŵ = 0.40 mm1
b = 9.723 (2) ÅT = 298 K
c = 16.500 (2) Å0.5 × 0.3 × 0.2 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.020
1710 measured reflections3 standard reflections every 120 min
1669 independent reflections intensity decay: 1%
1386 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.057H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.162Δρmax = 0.91 e Å3
S = 1.06Δρmin = 0.41 e Å3
1669 reflectionsAbsolute structure: Flack (1983)
165 parametersAbsolute structure parameter: 0.12 (19)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

3.4526 (0.0163) x + 5.3390 (0.0161) y - 11.9495 (0.0225) z = 0.9846 (0.0259)

* -0.0051 (0.0031) C6 * 0.0008 (0.0032) C7 * 0.0037 (0.0037) C8 * -0.0037 (0.0037) C9 * -0.0005 (0.0033) C10 * 0.0050 (0.0033) C11 - 0.0161 (0.0091) C12 - 0.0987 (0.0063) S2

Rms deviation of fitted atoms = 0.0036

- 1.4833 (0.0207) x + 5.7272 (0.0287) y + 13.0017 (0.0330) z = 7.6614 (0.0293)

Angle to previous plane (with approximate e.s.d.) = 71.22 (0.17)

* 0.0030 (0.0015) C1 * -0.0071 (0.0035) C2 * 0.0070 (0.0034) C3 * -0.0029 (0.0014) C4 - 0.5248 (0.0091) S1 0.2608 (0.0083) N1 - 1.9755 (0.0088) O1 - 1.2537 (0.0080) C5 1.1633 (0.0120) S2

Rms deviation of fitted atoms = 0.0054

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.74634 (13)0.66531 (11)0.34097 (7)0.0440 (3)
S20.43335 (12)0.76310 (10)0.39203 (7)0.0402 (3)
O20.2908 (4)0.7647 (4)0.3433 (2)0.0624 (11)
O30.4625 (5)0.6472 (3)0.4432 (2)0.0576 (10)
N10.5910 (4)0.7800 (3)0.3331 (2)0.0362 (7)
O10.7622 (5)0.5939 (4)0.2627 (2)0.0640 (10)
C10.9025 (5)0.7917 (6)0.3437 (3)0.0550 (13)
H1A0.91090.82650.39860.072*
H1B1.00410.74720.33070.072*
C20.8808 (7)0.9100 (6)0.2883 (3)0.0563 (13)
H20.97300.96010.27540.073*
C30.7485 (8)0.9504 (5)0.2566 (3)0.0534 (12)
H30.75311.02840.22410.069*
C40.5847 (6)0.8831 (5)0.2667 (2)0.0449 (10)
H40.50950.95530.28390.058*
C50.5206 (8)0.8254 (7)0.1887 (3)0.0687 (16)
H5A0.58380.74690.17310.096*
H5B0.52680.89420.14710.096*
H5C0.41000.79800.19590.096*
C60.4325 (5)0.9148 (4)0.4517 (2)0.0350 (8)
C70.5624 (6)0.9424 (5)0.5011 (2)0.0501 (11)
H70.65200.88470.50100.065*
C80.5584 (7)1.0562 (6)0.5506 (3)0.0592 (14)
H80.64611.07540.58390.077*
C90.4249 (7)1.1427 (5)0.5513 (3)0.0499 (11)
C100.3004 (6)1.1126 (5)0.5015 (3)0.0541 (12)
H100.21071.17020.50150.070*
C110.3002 (6)0.9994 (5)0.4505 (3)0.0472 (11)
H110.21310.98150.41650.061*
C120.4215 (9)1.2674 (7)0.6070 (4)0.0819 (19)
H12A0.36571.24430.65610.115*
H12B0.36661.34180.58050.115*
H12C0.53011.29470.61950.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0320 (5)0.0395 (5)0.0605 (7)0.0075 (5)0.0027 (5)0.0082 (5)
S20.0263 (5)0.0362 (5)0.0579 (6)0.0050 (4)0.0082 (4)0.0070 (4)
O20.0237 (14)0.072 (2)0.092 (3)0.0072 (16)0.0037 (15)0.034 (2)
O30.065 (2)0.0373 (16)0.070 (2)0.0059 (17)0.0250 (19)0.0081 (15)
N10.0285 (16)0.0340 (17)0.0462 (17)0.0025 (15)0.0051 (14)0.0036 (16)
O10.049 (2)0.0509 (18)0.092 (3)0.0104 (19)0.011 (2)0.0201 (18)
C10.027 (2)0.074 (3)0.064 (3)0.010 (2)0.003 (2)0.001 (3)
C20.057 (3)0.051 (3)0.062 (3)0.022 (3)0.009 (3)0.004 (2)
C30.066 (3)0.036 (2)0.057 (3)0.002 (3)0.014 (3)0.0043 (19)
C40.046 (2)0.044 (2)0.045 (2)0.013 (2)0.002 (2)0.0128 (19)
C50.063 (4)0.083 (4)0.061 (3)0.004 (3)0.016 (3)0.006 (3)
C60.0251 (17)0.0352 (17)0.045 (2)0.0008 (17)0.0009 (17)0.0038 (16)
C70.034 (2)0.056 (3)0.059 (3)0.008 (2)0.006 (2)0.007 (2)
C80.051 (3)0.070 (3)0.056 (3)0.004 (3)0.009 (2)0.015 (2)
C90.055 (3)0.048 (2)0.046 (2)0.007 (2)0.006 (2)0.010 (2)
C100.049 (3)0.048 (2)0.065 (3)0.011 (2)0.001 (2)0.009 (2)
C110.035 (2)0.044 (2)0.063 (3)0.005 (2)0.0063 (19)0.009 (2)
C120.078 (4)0.078 (4)0.090 (4)0.011 (4)0.009 (4)0.044 (4)
Geometric parameters (Å, º) top
S1—O11.473 (4)C5—H5A0.9600
S1—N11.707 (3)C5—H5B0.9600
S1—C11.784 (5)C5—H5C0.9600
S2—O21.428 (3)C6—C111.370 (6)
S2—O31.428 (3)C6—C71.376 (6)
S2—N11.635 (3)C7—C81.376 (7)
S2—C61.773 (4)C7—H70.9300
N1—C41.486 (5)C8—C91.389 (8)
C1—C21.479 (7)C8—H80.9300
C1—H1A0.9700C9—C101.350 (7)
C1—H1B0.9700C9—C121.521 (6)
C2—C31.276 (8)C10—C111.386 (7)
C2—H20.9300C10—H100.9300
C3—C41.515 (8)C11—H110.9300
C3—H30.9300C12—H12A0.9600
C4—C51.502 (7)C12—H12B0.9600
C4—H40.9800C12—H12C0.9600
O1—S1—N1108.0 (2)C4—C5—H5A109.5
O1—S1—C1106.4 (3)C4—C5—H5B109.5
N1—S1—C195.6 (2)H5A—C5—H5B109.5
O2—S2—O3118.7 (2)C4—C5—H5C109.5
O2—S2—N1108.89 (18)H5A—C5—H5C109.5
O3—S2—N1107.2 (2)H5B—C5—H5C109.5
O2—S2—C6107.5 (2)C11—C6—C7121.1 (4)
O3—S2—C6109.18 (19)C11—C6—S2119.7 (3)
N1—S2—C6104.44 (19)C7—C6—S2119.2 (3)
C4—N1—S2118.6 (3)C8—C7—C6119.3 (4)
C4—N1—S1121.5 (3)C8—C7—H7120.3
S2—N1—S1119.4 (2)C6—C7—H7120.3
C2—C1—S1115.6 (3)C7—C8—C9120.8 (5)
C2—C1—H1A108.4C7—C8—H8119.6
S1—C1—H1A108.4C9—C8—H8119.6
C2—C1—H1B108.4C10—C9—C8118.1 (4)
S1—C1—H1B108.4C10—C9—C12121.7 (5)
H1A—C1—H1B107.4C8—C9—C12120.2 (5)
C3—C2—C1126.7 (5)C9—C10—C11122.9 (5)
C3—C2—H2116.7C9—C10—H10118.6
C1—C2—H2116.7C11—C10—H10118.6
C2—C3—C4126.2 (4)C6—C11—C10117.9 (4)
C2—C3—H3116.9C6—C11—H11121.1
C4—C3—H3116.9C10—C11—H11121.1
N1—C4—C5113.1 (4)C9—C12—H12A109.5
N1—C4—C3110.0 (4)C9—C12—H12B109.5
C5—C4—C3112.5 (4)H12A—C12—H12B109.5
N1—C4—H4107.0C9—C12—H12C109.5
C5—C4—H4107.0H12A—C12—H12C109.5
C3—C4—H4107.0H12B—C12—H12C109.5
O2—S2—N1—C443.1 (3)C2—C3—C4—N112.1 (7)
O3—S2—N1—C4172.8 (3)C2—C3—C4—C5115.0 (6)
C6—S2—N1—C471.4 (3)O2—S2—C6—C116.4 (4)
O2—S2—N1—S1128.5 (3)O3—S2—C6—C11123.7 (4)
O3—S2—N1—S11.1 (3)N1—S2—C6—C11121.9 (4)
C6—S2—N1—S1116.9 (2)O2—S2—C6—C7176.3 (3)
O1—S1—N1—C453.1 (4)O3—S2—C6—C753.7 (4)
C1—S1—N1—C456.2 (4)N1—S2—C6—C760.7 (4)
O1—S1—N1—S2118.3 (3)C11—C6—C7—C80.6 (7)
C1—S1—N1—S2132.4 (3)S2—C6—C7—C8176.7 (4)
O1—S1—C1—C270.7 (4)C6—C7—C8—C90.2 (8)
N1—S1—C1—C239.9 (4)C7—C8—C9—C100.6 (8)
S1—C1—C2—C320.4 (8)C7—C8—C9—C12179.3 (5)
C1—C2—C3—C41.9 (9)C8—C9—C10—C110.2 (8)
S2—N1—C4—C590.2 (4)C12—C9—C10—C11179.7 (5)
S1—N1—C4—C581.3 (5)C7—C6—C11—C101.0 (7)
S2—N1—C4—C3143.1 (3)S2—C6—C11—C10176.3 (3)
S1—N1—C4—C345.4 (5)C9—C10—C11—C60.6 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···O2i0.972.393.225 (6)144
C11—H11···O20.932.512.888 (6)104
C3—H3···O2ii0.932.583.487 (6)165
C1—H1A···O3iii0.972.663.601 (6)164
C5—H5A···O10.962.563.249 (8)128
C2—H2···O1iv0.932.633.555 (6)178
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1/2, z+1/2; (iii) x+1/2, y+3/2, z+1; (iv) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H15NO3S2
Mr285.37
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)8.277 (2), 9.723 (2), 16.500 (2)
V3)1327.9 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.5 × 0.3 × 0.2
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
1710, 1669, 1386
Rint0.020
(sin θ/λ)max1)0.637
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.162, 1.06
No. of reflections1669
No. of parameters165
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.91, 0.41
Absolute structureFlack (1983)
Absolute structure parameter0.12 (19)

Computer programs: CAD-4-PC Software (Enraf-Nonius, 1992), CELDIM in CAD-4-PC Software, XCAD4 (McArdle & Higgins, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEX (McArdle, 1995), OSCAIL (McArdle, 1993).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···O2i0.972.393.225 (6)144
C11—H11···O20.932.512.888 (6)104
C3—H3···O2ii0.932.583.487 (6)165
C1—H1A···O3iii0.972.663.601 (6)164
C5—H5A···O10.962.563.249 (8)128
C2—H2···O1iv0.932.633.555 (6)178
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1/2, z+1/2; (iii) x+1/2, y+3/2, z+1; (iv) x+2, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds