Download citation
Download citation
link to html
In the title compound, C12H20BNO2, the B—N distance is 1.6720 (17) Å. Molecules are linked through intermolecular N—H...O hydrogen bonds to form infinite chains with an N...O distance of 2.8581 (13) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801015136/om6054sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801015136/om6054Isup2.hkl
Contains datablock I

CCDC reference: 175997

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.040
  • wR factor = 0.102
  • Data-to-parameter ratio = 16.7

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

The Diels–Alder (DA) reaction is a powerful method for the selective formation of functionalized cyclohexene derivatives. Dienylboronates have proved to be effective dienes for intermolecular DA reactions with reactive dienophiles (Vaultier et al., 1987; Tailor & Hall, 2000) or intramolecular tethered DA reactions with unreactive dienophiles (Batey et al., 1999). The synthetic utility of these dienes, though, can be limited due to their susceptibility to air and/or moisture. We are interested in developing stable dienylboronates that function as versatile equivalents for hetero-substituted dienes. The title compound, (I), fulfills the above criteria and is also amenable to long-term storage. Previously, it had been shown that compounds that are structurally related to (I) show promise in asymmetric Diels–Alder reactions (Wang, 1991).

The structure of the title compound is similar to that of the compound 4,5,7,8-tetrahydro-2-(2-propenyl)-6H-[1,3,6,2]dioxazaborocine, (II), which we have already determined (Thadani et al., 2001). As in (II), moleclues of (I) are linked by intermolecular N—H···O hydrogen bonds to form infinite chains through glide-plane transformations along the c axis. The N···O distance in (I) is 2.8581 (13) Å for N1.·O1 (see Fig. 2 and Table 2). The B1—N1 distance is 1.6720 (17) Å in (I) and 1.659 (4) Å in (II). A list of references for other dioxazaborocine compounds is included in our paper by Thadani et al. (2001).

Experimental top

To a solution of dicyclohexyl (2-cyclohex-1-enylvinyl)boronate (Batey et al., 1999) in a minimal amount of iPrOH was added diethanolamine (1 equivalent). The reaction mixture was stirred for 2 h at room temperature. The solvent was then removed under reduced pressure and the resulting solid recrystallized from acetonitrile. Compound (I) was obtained in 51% yield as clear colourless needles.

Refinement top

H atoms were included in calculated positions with C—H distances ranging from 0.95 to 0.99 Å and an N—H distance of 0.93 Å.

Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXTL (Sheldrick, 1999); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. View of (I) showing the atom-labelling scheme. Ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. View of the hydrogen bonding in (I) showing the infinite chains in the z direction. Ellipsoids are at the 50% probability level.
2-(2-Cyclohex-1-enylvinyl)-[1,3,6,2]dioxazaborocane top
Crystal data top
C12H20BNO2F(000) = 480
Mr = 221.10Dx = 1.227 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.6372 (3) ÅCell parameters from 11487 reflections
b = 10.4879 (5) Åθ = 4.2–26.4°
c = 9.9749 (4) ŵ = 0.08 mm1
β = 100.657 (3)°T = 100 K
V = 1196.44 (8) Å3Needle, colourless
Z = 40.32 × 0.28 × 0.19 mm
Data collection top
Nonius KappaCCD
diffractometer
2441 independent reflections
Radiation source: fine-focus sealed tube1870 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
Detector resolution: 9 pixels mm-1θmax = 26.4°, θmin = 4.2°
ϕ scans and ω scans with κ offsetsh = 1414
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
k = 1313
Tmin = 0.975, Tmax = 0.985l = 1212
11487 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0485P)2 + 0.168P]
where P = (Fo2 + 2Fc2)/3
2441 reflections(Δ/σ)max = 0.002
146 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C12H20BNO2V = 1196.44 (8) Å3
Mr = 221.10Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.6372 (3) ŵ = 0.08 mm1
b = 10.4879 (5) ÅT = 100 K
c = 9.9749 (4) Å0.32 × 0.28 × 0.19 mm
β = 100.657 (3)°
Data collection top
Nonius KappaCCD
diffractometer
2441 independent reflections
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
1870 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.985Rint = 0.056
11487 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.05Δρmax = 0.21 e Å3
2441 reflectionsΔρmin = 0.16 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.16422 (8)0.23107 (8)0.18954 (8)0.0241 (2)
O20.01799 (8)0.31670 (9)0.24368 (8)0.0265 (2)
N10.11100 (9)0.19011 (10)0.41066 (10)0.0225 (3)
H1B0.14690.22180.49520.027*
C10.17778 (11)0.42592 (12)0.34248 (12)0.0243 (3)
H1A0.14390.48010.40090.029*
C20.27985 (11)0.46122 (13)0.31166 (13)0.0260 (3)
H2A0.31180.40540.25300.031*
C30.34929 (12)0.57572 (13)0.35704 (13)0.0271 (3)
C40.45275 (13)0.59339 (16)0.32027 (15)0.0386 (4)
H4A0.47750.53130.26230.046*
C50.53303 (15)0.70396 (19)0.36368 (18)0.0520 (5)
H5A0.53460.75960.28390.062*
H5B0.61330.67140.39560.062*
C60.49658 (14)0.78183 (16)0.47571 (17)0.0434 (4)
H6A0.53460.86660.47970.052*
H6B0.52330.73890.56440.052*
C70.36482 (13)0.79885 (15)0.45241 (17)0.0399 (4)
H7A0.33830.84450.36530.048*
H7B0.34380.85110.52690.048*
C80.30334 (12)0.67015 (13)0.44774 (14)0.0306 (3)
H8A0.31370.63500.54130.037*
H8B0.21850.68260.41430.037*
C90.15847 (12)0.09742 (12)0.21281 (13)0.0266 (3)
H9A0.21910.05160.17390.032*
H9B0.08070.06330.17140.032*
C100.17994 (11)0.08361 (13)0.36696 (13)0.0261 (3)
H10A0.15180.00010.39410.031*
H10B0.26410.09240.40650.031*
C110.07669 (12)0.27914 (14)0.34981 (13)0.0279 (3)
H11A0.16020.26140.31330.033*
H11B0.07140.34680.41990.033*
C120.01461 (11)0.15944 (13)0.40953 (12)0.0255 (3)
H12A0.02870.14320.50290.031*
H12B0.04000.08420.35170.031*
B10.10880 (13)0.29991 (14)0.28868 (14)0.0232 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0324 (5)0.0202 (5)0.0214 (5)0.0002 (4)0.0095 (4)0.0000 (3)
O20.0287 (5)0.0301 (6)0.0215 (5)0.0024 (4)0.0070 (4)0.0048 (4)
N10.0267 (6)0.0215 (6)0.0196 (5)0.0013 (4)0.0046 (4)0.0001 (4)
C10.0329 (7)0.0220 (7)0.0191 (6)0.0038 (5)0.0077 (5)0.0016 (5)
C20.0302 (7)0.0235 (7)0.0251 (6)0.0031 (6)0.0068 (5)0.0005 (5)
C30.0312 (7)0.0267 (8)0.0235 (7)0.0000 (6)0.0054 (5)0.0027 (5)
C40.0367 (8)0.0434 (10)0.0382 (8)0.0080 (7)0.0136 (6)0.0081 (7)
C50.0448 (10)0.0616 (12)0.0526 (10)0.0225 (9)0.0171 (8)0.0120 (9)
C60.0413 (9)0.0380 (10)0.0470 (9)0.0089 (7)0.0019 (7)0.0036 (7)
C70.0412 (9)0.0298 (9)0.0452 (9)0.0037 (7)0.0009 (7)0.0046 (7)
C80.0348 (8)0.0276 (8)0.0291 (7)0.0009 (6)0.0049 (6)0.0017 (6)
C90.0336 (7)0.0203 (7)0.0276 (7)0.0010 (6)0.0103 (5)0.0014 (5)
C100.0289 (7)0.0210 (7)0.0293 (7)0.0028 (5)0.0076 (5)0.0031 (5)
C110.0293 (7)0.0305 (8)0.0258 (7)0.0002 (6)0.0101 (5)0.0004 (5)
C120.0281 (7)0.0271 (7)0.0224 (6)0.0043 (6)0.0078 (5)0.0001 (5)
B10.0299 (8)0.0230 (8)0.0177 (7)0.0018 (6)0.0074 (5)0.0036 (5)
Geometric parameters (Å, º) top
O1—C91.4243 (16)C5—H5B0.9900
O1—B11.4666 (17)C6—C71.518 (2)
O2—C111.4177 (15)C6—H6A0.9900
O2—B11.4713 (17)C6—H6B0.9900
N1—C101.4868 (16)C7—C81.524 (2)
N1—C121.4947 (16)C7—H7A0.9900
N1—B11.6720 (17)C7—H7B0.9900
N1—H1B0.9300C8—H8A0.9900
C1—C21.3332 (18)C8—H8B0.9900
C1—B11.587 (2)C9—C101.5184 (18)
C1—H1A0.9500C9—H9A0.9900
C2—C31.4713 (19)C9—H9B0.9900
C2—H2A0.9500C10—H10A0.9900
C3—C41.3348 (19)C10—H10B0.9900
C3—C81.5047 (19)C11—C121.5145 (19)
C4—C51.502 (2)C11—H11A0.9900
C4—H4A0.9500C11—H11B0.9900
C5—C61.507 (2)C12—H12A0.9900
C5—H5A0.9900C12—H12B0.9900
C9—O1—B1109.56 (9)H7A—C7—H7B108.1
C11—O2—B1109.48 (9)C3—C8—C7112.59 (12)
C10—N1—C12114.59 (10)C3—C8—H8A109.1
C10—N1—B1103.92 (9)C7—C8—H8A109.1
C12—N1—B1105.04 (9)C3—C8—H8B109.1
C10—N1—H1B111.0C7—C8—H8B109.1
C12—N1—H1B111.0H8A—C8—H8B107.8
B1—N1—H1B111.0O1—C9—C10104.77 (10)
C2—C1—B1124.72 (12)O1—C9—H9A110.8
C2—C1—H1A117.6C10—C9—H9A110.8
B1—C1—H1A117.6O1—C9—H9B110.8
C1—C2—C3128.15 (13)C10—C9—H9B110.8
C1—C2—H2A115.9H9A—C9—H9B108.9
C3—C2—H2A115.9N1—C10—C9103.21 (10)
C4—C3—C2120.05 (13)N1—C10—H10A111.1
C4—C3—C8120.84 (13)C9—C10—H10A111.1
C2—C3—C8119.09 (12)N1—C10—H10B111.1
C3—C4—C5124.93 (15)C9—C10—H10B111.1
C3—C4—H4A117.5H10A—C10—H10B109.1
C5—C4—H4A117.5O2—C11—C12105.28 (10)
C4—C5—C6112.76 (13)O2—C11—H11A110.7
C4—C5—H5A109.0C12—C11—H11A110.7
C6—C5—H5A109.0O2—C11—H11B110.7
C4—C5—H5B109.0C12—C11—H11B110.7
C6—C5—H5B109.0H11A—C11—H11B108.8
H5A—C5—H5B107.8N1—C12—C11102.66 (10)
C5—C6—C7111.40 (13)N1—C12—H12A111.2
C5—C6—H6A109.3C11—C12—H12A111.2
C7—C6—H6A109.3N1—C12—H12B111.2
C5—C6—H6B109.3C11—C12—H12B111.2
C7—C6—H6B109.3H12A—C12—H12B109.1
H6A—C6—H6B108.0O1—B1—O2113.23 (11)
C6—C7—C8110.83 (13)O1—B1—C1112.33 (11)
C6—C7—H7A109.5O2—B1—C1114.79 (11)
C8—C7—H7A109.5O1—B1—N1101.66 (10)
C6—C7—H7B109.5O2—B1—N1100.60 (10)
C8—C7—H7B109.5C1—B1—N1112.87 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O1i0.931.972.8581 (13)158
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H20BNO2
Mr221.10
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)11.6372 (3), 10.4879 (5), 9.9749 (4)
β (°) 100.657 (3)
V3)1196.44 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.32 × 0.28 × 0.19
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
Tmin, Tmax0.975, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
11487, 2441, 1870
Rint0.056
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.102, 1.05
No. of reflections2441
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.16

Computer programs: COLLECT (Nonius, 2001), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN, SHELXTL (Sheldrick, 1999), SHELXTL.

Selected geometric parameters (Å, º) top
O1—B11.4666 (17)N1—B11.6720 (17)
O2—B11.4713 (17)C1—B11.587 (2)
O1—B1—O2113.23 (11)O2—B1—N1100.60 (10)
O1—B1—N1101.66 (10)C1—B1—N1112.87 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O1i0.931.972.8581 (13)157.9
Symmetry code: (i) x, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds