Download citation
Download citation
link to html
In the crystal structure of the title compound, [Cu4Cl6O(C6H8N2)4], Cu4 tetrahedra are found which are centred by an interstitial O atom. Each edge of the Cu4 tetrahedron is bridged by a chloro ligand. The copper(II) cations are fourfold coordinated by one O atom, two chloro ligands and one N atom of the 2-ethyl­pyrazine ligand within a distorted tetrahedron. The Cu4Cl6O(C6H8N2)4 units are located in general positions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801020438/bt6092sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801020438/bt6092Isup2.hkl
Contains datablock I

CCDC reference: 180512

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.036
  • wR factor = 0.100
  • Data-to-parameter ratio = 21.4

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

This work is a part of a project dealing with the synthesis, structures and properties of coordination polymers based on copper halides and multidentate amino ligands (Näther, Jess & Greve, 2001; Näther & Greve, 2001; Näther & Jess, 2001). Crystals of the title compound, (I), were obtained by the reaction of copper(I) chloride with 2-ethylpyrazine in acetonitrile. In the crystal structure of the title compound, four copper(II) cations form an slightly distorted tetrahedron which is centred by an interstitiel O atom. The Cu—O bond lengths are between 1.895 (2) and 1.907 (2) Å, and the Cu—O—Cu angles between 108.30 (8) and 110.22 (8)°. The edges of the Cu4 tetrahedron are each connected via µ2-chloro ligands. The chlorine ligands are not symmetrically surrounded by the copper(II) cations and the Cu—Cl bond lengths range between 2.3485 (8) and 2.4591 (8) Å. The copper coordination is completed by one additional 2-ethylpyrazine ligand which is coordinated by the N atom which is not adjacent to the ethyl group. The Cu—N bond lengths are between 1.977 (3) and 1.987 (2) Å. Presumably due to steric repulsion the second N atom of the 2-ethylpyrazine ligand is not involved in copper coordination. Bond lengths and angles are comparable to those in other amine-coordinated Cu4Cl6O clusters, like in µ4-oxo-hexakis(µ2-chloro)tetrakis(nicotine-N)tetracopper(II) (Haendler, 1990), µ4-oxo-hexakis(µ2-chloro)tetrakis(acetonitrile-N)tetracopper(II) acetonitrile solvate (Hiller et al., 1990), µ4-oxo-hexakis(µ2-chloro)tetrakis(imidazole-N)tetracopper(II) (Atria et al., 1999) and µ4-oxo-hexakis(µ2-chloro)tris(N-methyl-2- pyrrolidinone-O)aquatetracopper(II) (Churchill & Rotella, 1978).

Experimental top

Copper(I) chloride (98.0 mg, 1 mmol; freshly prepared according to Gmelin, 1958) and 2-ethylpyrazine (216.3 mg, 2 mmol; ACROS) were mixed in 2 ml acetonitrile in a glass container. Direct after mixing a red precipitate of CuCl(2-ethylpyrazine) had formed which transforms two large yellow crystals of the title compound within two days. [Please reword this final sentence as its meaning is not clear]

Refinement top

H atoms were positioned with idealized geometry and refined with fixed isotropic displacement parameters [Uiso(H) = 1.2UeqC(methylene) and C(aromatic) = 1.5UeqO(OH)/C(methyl)] using a riding model.

Computing details top

Data collection: IPDS Program Package (Stoe & Cie, 1998); cell refinement: IPDS Program Package; data reduction: IPDS Program Package; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL (Bruker, 1998); software used to prepare material for publication: CIFTAB in SHELXL97.

Figures top
[Figure 1] Fig. 1. The crystal structure of the title compound with labelling and displacement ellipsoids drawn at the 50% probability level.
Hexa-µ2-chloro-tetrakis(2-ethylpyrazine-N)-µ4-oxo-tetracopper(II) top
Crystal data top
[Cu4Cl6O(C6H8N2)4]F(000) = 1832
Mr = 915.44Dx = 1.739 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.1203 (10) ÅCell parameters from 8000 reflections
b = 13.0461 (7) Åθ = 15–24°
c = 20.7233 (16) ŵ = 2.89 mm1
β = 99.718 (9)°T = 293 K
V = 3496.3 (4) Å3Block, yellow
Z = 40.14 × 0.10 × 0.06 mm
Data collection top
Stoe Imaging Plate Diffraction System
diffractometer
8309 independent reflections
Radiation source: fine-focus sealed tube6876 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ scansθmax = 28.1°, θmin = 2.8°
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 1998)
h = 1717
Tmin = 0.717, Tmax = 0.849k = 1617
30661 measured reflectionsl = 2727
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.066P)2 + 1.0923P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.002
8309 reflectionsΔρmax = 0.57 e Å3
389 parametersΔρmin = 0.56 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0064 (5)
Crystal data top
[Cu4Cl6O(C6H8N2)4]V = 3496.3 (4) Å3
Mr = 915.44Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.1203 (10) ŵ = 2.89 mm1
b = 13.0461 (7) ÅT = 293 K
c = 20.7233 (16) Å0.14 × 0.10 × 0.06 mm
β = 99.718 (9)°
Data collection top
Stoe Imaging Plate Diffraction System
diffractometer
8309 independent reflections
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 1998)
6876 reflections with I > 2σ(I)
Tmin = 0.717, Tmax = 0.849Rint = 0.035
30661 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.57 e Å3
8309 reflectionsΔρmin = 0.56 e Å3
389 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.97673 (2)0.68144 (2)0.640542 (15)0.02778 (9)
Cu20.78367 (3)0.58623 (2)0.556605 (16)0.02861 (9)
Cu30.76909 (3)0.80295 (2)0.615185 (16)0.03001 (10)
Cu40.89305 (3)0.77131 (2)0.502459 (15)0.02815 (9)
Cl10.93912 (6)0.50756 (5)0.61684 (4)0.04550 (19)
Cl20.66697 (6)0.64707 (6)0.62402 (4)0.04377 (19)
Cl30.77018 (7)0.90313 (6)0.52114 (4)0.0471 (2)
Cl41.06317 (5)0.77869 (6)0.56465 (4)0.03844 (16)
Cl50.90440 (6)0.79803 (6)0.71022 (3)0.03663 (15)
Cl60.80582 (6)0.62756 (6)0.44598 (3)0.04104 (17)
O10.85550 (13)0.71076 (12)0.57852 (8)0.0237 (3)
N11.3003 (2)0.6240 (2)0.77794 (14)0.0474 (7)
N21.10898 (18)0.65483 (17)0.70042 (11)0.0302 (5)
C11.2717 (2)0.5695 (2)0.72397 (15)0.0390 (6)
C21.1752 (2)0.5850 (2)0.68524 (14)0.0370 (6)
H21.15660.54560.64770.044*
C31.1372 (3)0.7077 (2)0.75534 (16)0.0410 (7)
H31.09230.75560.76830.049*
C41.2329 (3)0.6917 (3)0.79311 (18)0.0515 (9)
H41.25100.73030.83110.062*
C51.3459 (3)0.4911 (3)0.7067 (2)0.0549 (9)
H5A1.30830.44130.67700.066*
H5B1.37700.45510.74610.066*
C61.4302 (4)0.5376 (5)0.6749 (3)0.0843 (15)
H6A1.47580.48450.66490.126*
H6B1.46860.58610.70430.126*
H6C1.40000.57190.63530.126*
N30.6158 (2)0.2703 (2)0.49142 (17)0.0530 (8)
N40.71094 (19)0.45544 (17)0.53010 (12)0.0326 (5)
C110.5715 (2)0.3375 (2)0.52564 (16)0.0384 (6)
C120.6188 (2)0.4306 (2)0.54473 (15)0.0359 (6)
H120.58540.47670.56830.043*
C130.7564 (3)0.3872 (2)0.49693 (17)0.0433 (7)
H130.82110.40120.48640.052*
C140.7082 (3)0.2953 (3)0.4779 (2)0.0576 (10)
H140.74170.24890.45450.069*
C150.4696 (3)0.3082 (3)0.54448 (19)0.0483 (8)
H15A0.44070.36710.56360.058*
H15B0.42180.28840.50550.058*
C160.4811 (5)0.2222 (5)0.5921 (3)0.104 (2)
H16A0.41480.20550.60300.155*
H16B0.52730.24200.63110.155*
H16C0.50860.16340.57310.155*
N50.5349 (2)1.0215 (2)0.70053 (16)0.0484 (7)
N60.6735 (2)0.89547 (18)0.65139 (12)0.0345 (5)
C210.5017 (3)0.9511 (2)0.65537 (17)0.0435 (7)
C220.5721 (2)0.8872 (2)0.63135 (16)0.0411 (7)
H220.54740.83750.60050.049*
C230.7070 (3)0.9677 (2)0.69517 (16)0.0391 (6)
H230.77750.97660.70950.047*
C240.6365 (3)1.0298 (3)0.71931 (18)0.0476 (8)
H240.66141.07950.75010.057*
C250.3878 (3)0.9388 (3)0.6337 (2)0.0651 (11)
H25A0.35501.00560.63270.078*
H25B0.37500.91120.58960.078*
C260.3407 (4)0.8695 (5)0.6779 (3)0.0922 (17)
H26A0.26770.86390.66230.138*
H26B0.35210.89720.72140.138*
H26C0.37190.80290.67830.138*
N71.0571 (2)0.9156 (2)0.33784 (13)0.0388 (6)
N80.94503 (18)0.83233 (17)0.42692 (11)0.0304 (5)
C311.0478 (2)0.8152 (2)0.34338 (14)0.0351 (6)
C320.9918 (2)0.7729 (2)0.38859 (14)0.0342 (6)
H320.98720.70200.39200.041*
C330.9507 (2)0.9334 (2)0.41990 (14)0.0343 (6)
H330.91680.97660.44500.041*
C341.0071 (3)0.9746 (2)0.37515 (15)0.0400 (7)
H341.01021.04540.37100.048*
C351.1037 (3)0.7484 (3)0.30189 (17)0.0507 (8)
H35A1.10020.77950.25900.061*
H35B1.06980.68220.29610.061*
C361.2153 (4)0.7336 (4)0.3325 (3)0.0730 (13)
H36A1.24880.69080.30470.110*
H36B1.21890.70160.37450.110*
H36C1.24920.79900.33770.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02445 (17)0.02944 (16)0.02865 (16)0.00116 (11)0.00215 (12)0.00022 (11)
Cu20.02686 (18)0.02703 (16)0.03318 (17)0.00399 (11)0.00865 (13)0.00356 (12)
Cu30.02969 (19)0.03035 (16)0.03218 (17)0.00490 (12)0.01158 (14)0.00290 (12)
Cu40.02925 (18)0.03081 (16)0.02599 (16)0.00092 (12)0.00930 (13)0.00284 (11)
Cl10.0415 (4)0.0261 (3)0.0627 (5)0.0023 (3)0.0092 (4)0.0010 (3)
Cl20.0414 (4)0.0389 (3)0.0583 (4)0.0088 (3)0.0293 (4)0.0111 (3)
Cl30.0531 (5)0.0467 (4)0.0465 (4)0.0230 (3)0.0226 (4)0.0160 (3)
Cl40.0250 (3)0.0531 (4)0.0379 (3)0.0038 (3)0.0073 (3)0.0088 (3)
Cl50.0370 (4)0.0436 (3)0.0292 (3)0.0086 (3)0.0052 (3)0.0062 (3)
Cl60.0507 (4)0.0454 (4)0.0281 (3)0.0163 (3)0.0096 (3)0.0064 (3)
O10.0228 (9)0.0242 (8)0.0253 (8)0.0000 (6)0.0074 (7)0.0007 (6)
N10.0358 (15)0.0560 (16)0.0458 (15)0.0089 (12)0.0064 (12)0.0140 (12)
N20.0287 (12)0.0314 (10)0.0296 (10)0.0002 (8)0.0018 (9)0.0009 (8)
C10.0328 (16)0.0422 (15)0.0405 (15)0.0004 (12)0.0021 (12)0.0056 (12)
C20.0336 (16)0.0413 (14)0.0336 (13)0.0030 (11)0.0013 (12)0.0067 (11)
C30.0355 (16)0.0425 (15)0.0419 (16)0.0066 (12)0.0018 (13)0.0130 (12)
C40.0412 (19)0.064 (2)0.0449 (17)0.0095 (15)0.0064 (15)0.0212 (16)
C50.0384 (19)0.060 (2)0.061 (2)0.0137 (15)0.0082 (16)0.0200 (17)
C60.068 (3)0.113 (4)0.078 (3)0.016 (3)0.029 (3)0.023 (3)
N30.0423 (17)0.0449 (15)0.076 (2)0.0123 (12)0.0208 (15)0.0210 (14)
N40.0299 (12)0.0324 (11)0.0369 (12)0.0052 (9)0.0093 (10)0.0034 (9)
C110.0294 (15)0.0382 (14)0.0486 (16)0.0062 (11)0.0092 (13)0.0043 (12)
C120.0301 (15)0.0352 (13)0.0445 (15)0.0032 (11)0.0126 (12)0.0049 (11)
C130.0347 (16)0.0426 (15)0.0571 (19)0.0095 (12)0.0206 (14)0.0178 (14)
C140.044 (2)0.0498 (18)0.086 (3)0.0123 (15)0.029 (2)0.0313 (19)
C150.0319 (17)0.0543 (19)0.061 (2)0.0122 (13)0.0154 (15)0.0084 (16)
C160.071 (3)0.135 (5)0.111 (5)0.014 (3)0.033 (3)0.061 (4)
N50.0467 (17)0.0452 (14)0.0570 (17)0.0123 (12)0.0195 (14)0.0094 (12)
N60.0365 (13)0.0334 (11)0.0365 (12)0.0056 (9)0.0142 (10)0.0020 (9)
C210.0384 (17)0.0407 (15)0.0536 (18)0.0092 (13)0.0141 (14)0.0026 (13)
C220.0370 (17)0.0397 (15)0.0474 (16)0.0069 (12)0.0092 (13)0.0114 (13)
C230.0371 (16)0.0336 (13)0.0480 (16)0.0004 (11)0.0115 (13)0.0086 (12)
C240.051 (2)0.0414 (16)0.0530 (18)0.0055 (14)0.0153 (16)0.0150 (14)
C250.039 (2)0.066 (2)0.089 (3)0.0151 (17)0.008 (2)0.016 (2)
C260.059 (3)0.107 (4)0.116 (5)0.022 (3)0.031 (3)0.018 (4)
N70.0383 (14)0.0430 (13)0.0373 (12)0.0064 (10)0.0123 (11)0.0030 (10)
N80.0300 (12)0.0340 (11)0.0277 (10)0.0016 (9)0.0066 (9)0.0023 (8)
C310.0349 (15)0.0414 (14)0.0301 (13)0.0003 (11)0.0087 (12)0.0034 (11)
C320.0392 (16)0.0322 (13)0.0326 (13)0.0017 (11)0.0105 (12)0.0020 (10)
C330.0392 (16)0.0318 (13)0.0331 (13)0.0039 (11)0.0096 (12)0.0014 (10)
C340.0491 (18)0.0324 (13)0.0400 (15)0.0095 (12)0.0119 (14)0.0008 (11)
C350.062 (2)0.0537 (18)0.0426 (17)0.0075 (16)0.0258 (17)0.0025 (14)
C360.055 (3)0.087 (3)0.084 (3)0.018 (2)0.031 (2)0.001 (2)
Geometric parameters (Å, º) top
Cu1—O11.9073 (18)C12—H120.9300
Cu1—N21.986 (2)C13—C141.381 (4)
Cu1—Cl12.3555 (8)C13—H130.9300
Cu1—Cl52.4005 (7)C14—H140.9300
Cu1—Cl42.4438 (7)C15—C161.486 (6)
Cu2—O11.8946 (17)C15—H15A0.9700
Cu2—N41.987 (2)C15—H15B0.9700
Cu2—Cl22.3765 (7)C16—H16A0.9600
Cu2—Cl62.4199 (8)C16—H16B0.9600
Cu2—Cl12.4314 (9)C16—H16C0.9600
Cu3—O11.8974 (16)N5—C241.329 (5)
Cu3—N61.978 (2)N5—C211.331 (5)
Cu3—Cl32.3485 (8)N6—C221.329 (4)
Cu3—Cl52.4196 (8)N6—C231.331 (4)
Cu3—Cl22.4591 (8)C21—C221.397 (4)
Cu4—O11.9010 (17)C21—C251.494 (5)
Cu4—N81.977 (2)C22—H220.9300
Cu4—Cl42.3835 (8)C23—C241.384 (4)
Cu4—Cl62.3968 (8)C23—H230.9300
Cu4—Cl32.4325 (8)C24—H240.9300
N1—C41.325 (4)C25—C261.493 (7)
N1—C11.325 (4)C25—H25A0.9700
N2—C31.329 (4)C25—H25B0.9700
N2—C21.333 (4)C26—H26A0.9600
C1—C21.394 (4)C26—H26B0.9600
C1—C51.497 (4)C26—H26C0.9600
C2—H20.9300N7—C311.323 (4)
C3—C41.378 (5)N7—C341.339 (4)
C3—H30.9300N8—C331.330 (3)
C4—H40.9300N8—C321.332 (4)
C5—C61.507 (7)C31—C321.398 (4)
C5—H5A0.9700C31—C351.499 (4)
C5—H5B0.9700C32—H320.9300
C6—H6A0.9600C33—C341.389 (4)
C6—H6B0.9600C33—H330.9300
C6—H6C0.9600C34—H340.9300
N3—C111.322 (4)C35—C361.507 (6)
N3—C141.330 (4)C35—H35A0.9700
N4—C131.327 (4)C35—H35B0.9700
N4—C121.335 (4)C36—H36A0.9600
C11—C121.390 (4)C36—H36B0.9600
C11—C151.503 (4)C36—H36C0.9600
O1—Cu1—N2175.83 (8)C13—N4—Cu2118.9 (2)
O1—Cu1—Cl186.05 (5)C12—N4—Cu2123.86 (19)
N2—Cu1—Cl195.29 (7)N3—C11—C12121.0 (3)
O1—Cu1—Cl584.77 (5)N3—C11—C15117.5 (3)
N2—Cu1—Cl597.31 (7)C12—C11—C15121.5 (3)
Cl1—Cu1—Cl5130.20 (3)N4—C12—C11121.7 (3)
O1—Cu1—Cl483.51 (5)N4—C12—H12119.1
N2—Cu1—Cl492.37 (7)C11—C12—H12119.1
Cl1—Cu1—Cl4118.00 (3)N4—C13—C14120.4 (3)
Cl5—Cu1—Cl4109.37 (3)N4—C13—H13119.8
O1—Cu2—N4177.53 (8)C14—C13—H13119.8
O1—Cu2—Cl285.20 (5)N3—C14—C13122.8 (3)
N4—Cu2—Cl297.03 (7)N3—C14—H14118.6
O1—Cu2—Cl684.36 (5)C13—C14—H14118.6
N4—Cu2—Cl693.34 (7)C16—C15—C11111.7 (4)
Cl2—Cu2—Cl6132.44 (3)C16—C15—H15A109.3
O1—Cu2—Cl184.18 (6)C11—C15—H15A109.3
N4—Cu2—Cl195.83 (8)C16—C15—H15B109.3
Cl2—Cu2—Cl1114.02 (3)C11—C15—H15B109.3
Cl6—Cu2—Cl1110.85 (3)H15A—C15—H15B107.9
O1—Cu3—N6177.38 (10)C15—C16—H16A109.5
O1—Cu3—Cl386.14 (5)C15—C16—H16B109.5
N6—Cu3—Cl393.91 (7)H16A—C16—H16B109.5
O1—Cu3—Cl584.44 (6)C15—C16—H16C109.5
N6—Cu3—Cl597.62 (8)H16A—C16—H16C109.5
Cl3—Cu3—Cl5125.72 (3)H16B—C16—H16C109.5
O1—Cu3—Cl282.84 (5)C24—N5—C21117.0 (3)
N6—Cu3—Cl295.05 (7)C22—N6—C23117.9 (2)
Cl3—Cu3—Cl2126.99 (4)C22—N6—Cu3119.8 (2)
Cl5—Cu3—Cl2104.57 (3)C23—N6—Cu3122.3 (2)
O1—Cu4—N8174.92 (9)N5—C21—C22120.3 (3)
O1—Cu4—Cl485.33 (6)N5—C21—C25118.5 (3)
N8—Cu4—Cl489.72 (7)C22—C21—C25121.1 (3)
O1—Cu4—Cl684.87 (5)N6—C22—C21121.8 (3)
N8—Cu4—Cl697.38 (7)N6—C22—H22119.1
Cl4—Cu4—Cl6128.47 (3)C21—C22—H22119.1
O1—Cu4—Cl383.70 (5)N6—C23—C24119.8 (3)
N8—Cu4—Cl399.66 (7)N6—C23—H23120.1
Cl4—Cu4—Cl3118.08 (3)C24—C23—H23120.1
Cl6—Cu4—Cl3110.87 (4)N5—C24—C23123.1 (3)
Cu1—Cl1—Cu280.13 (2)N5—C24—H24118.5
Cu2—Cl2—Cu379.59 (2)C23—C24—H24118.5
Cu3—Cl3—Cu480.54 (2)C26—C25—C21112.2 (4)
Cu4—Cl4—Cu180.39 (2)C26—C25—H25A109.2
Cu1—Cl5—Cu380.64 (2)C21—C25—H25A109.2
Cu4—Cl6—Cu280.53 (2)C26—C25—H25B109.2
Cu2—O1—Cu3109.45 (8)C21—C25—H25B109.2
Cu2—O1—Cu4110.22 (8)H25A—C25—H25B107.9
Cu3—O1—Cu4108.94 (8)C25—C26—H26A109.5
Cu2—O1—Cu1108.30 (8)C25—C26—H26B109.5
Cu3—O1—Cu1110.12 (9)H26A—C26—H26B109.5
Cu4—O1—Cu1109.80 (8)C25—C26—H26C109.5
C4—N1—C1116.9 (3)H26A—C26—H26C109.5
C3—N2—C2117.3 (3)H26B—C26—H26C109.5
C3—N2—Cu1122.2 (2)C31—N7—C34117.2 (2)
C2—N2—Cu1120.52 (19)C33—N8—C32118.2 (2)
N1—C1—C2120.5 (3)C33—N8—Cu4121.25 (19)
N1—C1—C5117.8 (3)C32—N8—Cu4119.54 (19)
C2—C1—C5121.7 (3)N7—C31—C32121.0 (3)
N2—C2—C1121.9 (3)N7—C31—C35117.7 (3)
N2—C2—H2119.0C32—C31—C35121.2 (3)
C1—C2—H2119.0N8—C32—C31121.2 (3)
N2—C3—C4120.2 (3)N8—C32—H32119.4
N2—C3—H3119.9C31—C32—H32119.4
C4—C3—H3119.9N8—C33—C34120.2 (3)
N1—C4—C3123.1 (3)N8—C33—H33119.9
N1—C4—H4118.4C34—C33—H33119.9
C3—C4—H4118.4N7—C34—C33122.1 (3)
C1—C5—C6112.6 (4)N7—C34—H34118.9
C1—C5—H5A109.1C33—C34—H34118.9
C6—C5—H5A109.1C31—C35—C36111.6 (3)
C1—C5—H5B109.1C31—C35—H35A109.3
C6—C5—H5B109.1C36—C35—H35A109.3
H5A—C5—H5B107.8C31—C35—H35B109.3
C5—C6—H6A109.5C36—C35—H35B109.3
C5—C6—H6B109.5H35A—C35—H35B108.0
H6A—C6—H6B109.5C35—C36—H36A109.5
C5—C6—H6C109.5C35—C36—H36B109.5
H6A—C6—H6C109.5H36A—C36—H36B109.5
H6B—C6—H6C109.5C35—C36—H36C109.5
C11—N3—C14116.7 (3)H36A—C36—H36C109.5
C13—N4—C12117.2 (2)H36B—C36—H36C109.5

Experimental details

Crystal data
Chemical formula[Cu4Cl6O(C6H8N2)4]
Mr915.44
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)13.1203 (10), 13.0461 (7), 20.7233 (16)
β (°) 99.718 (9)
V3)3496.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.89
Crystal size (mm)0.14 × 0.10 × 0.06
Data collection
DiffractometerStoe Imaging Plate Diffraction System
diffractometer
Absorption correctionNumerical
(X-SHAPE; Stoe & Cie, 1998)
Tmin, Tmax0.717, 0.849
No. of measured, independent and
observed [I > 2σ(I)] reflections
30661, 8309, 6876
Rint0.035
(sin θ/λ)max1)0.663
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.100, 1.03
No. of reflections8309
No. of parameters389
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.57, 0.56

Computer programs: IPDS Program Package (Stoe & Cie, 1998), IPDS Program Package, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), XP in SHELXTL (Bruker, 1998), CIFTAB in SHELXL97.

Selected geometric parameters (Å, º) top
Cu1—O11.9073 (18)Cu3—O11.8974 (16)
Cu1—N21.986 (2)Cu3—N61.978 (2)
Cu1—Cl12.3555 (8)Cu3—Cl32.3485 (8)
Cu1—Cl52.4005 (7)Cu3—Cl52.4196 (8)
Cu1—Cl42.4438 (7)Cu3—Cl22.4591 (8)
Cu2—O11.8946 (17)Cu4—O11.9010 (17)
Cu2—N41.987 (2)Cu4—N81.977 (2)
Cu2—Cl22.3765 (7)Cu4—Cl42.3835 (8)
Cu2—Cl62.4199 (8)Cu4—Cl62.3968 (8)
Cu2—Cl12.4314 (9)Cu4—Cl32.4325 (8)
O1—Cu1—N2175.83 (8)O1—Cu3—Cl282.84 (5)
O1—Cu1—Cl186.05 (5)N6—Cu3—Cl295.05 (7)
N2—Cu1—Cl195.29 (7)Cl3—Cu3—Cl2126.99 (4)
O1—Cu1—Cl584.77 (5)Cl5—Cu3—Cl2104.57 (3)
N2—Cu1—Cl597.31 (7)O1—Cu4—N8174.92 (9)
Cl1—Cu1—Cl5130.20 (3)O1—Cu4—Cl485.33 (6)
O1—Cu1—Cl483.51 (5)N8—Cu4—Cl489.72 (7)
N2—Cu1—Cl492.37 (7)O1—Cu4—Cl684.87 (5)
Cl1—Cu1—Cl4118.00 (3)N8—Cu4—Cl697.38 (7)
Cl5—Cu1—Cl4109.37 (3)Cl4—Cu4—Cl6128.47 (3)
O1—Cu2—N4177.53 (8)O1—Cu4—Cl383.70 (5)
O1—Cu2—Cl285.20 (5)N8—Cu4—Cl399.66 (7)
N4—Cu2—Cl297.03 (7)Cl4—Cu4—Cl3118.08 (3)
O1—Cu2—Cl684.36 (5)Cl6—Cu4—Cl3110.87 (4)
N4—Cu2—Cl693.34 (7)Cu1—Cl1—Cu280.13 (2)
Cl2—Cu2—Cl6132.44 (3)Cu2—Cl2—Cu379.59 (2)
O1—Cu2—Cl184.18 (6)Cu3—Cl3—Cu480.54 (2)
N4—Cu2—Cl195.83 (8)Cu4—Cl4—Cu180.39 (2)
Cl2—Cu2—Cl1114.02 (3)Cu1—Cl5—Cu380.64 (2)
Cl6—Cu2—Cl1110.85 (3)Cu4—Cl6—Cu280.53 (2)
O1—Cu3—N6177.38 (10)Cu2—O1—Cu3109.45 (8)
O1—Cu3—Cl386.14 (5)Cu2—O1—Cu4110.22 (8)
N6—Cu3—Cl393.91 (7)Cu3—O1—Cu4108.94 (8)
O1—Cu3—Cl584.44 (6)Cu2—O1—Cu1108.30 (8)
N6—Cu3—Cl597.62 (8)Cu3—O1—Cu1110.12 (9)
Cl3—Cu3—Cl5125.72 (3)Cu4—O1—Cu1109.80 (8)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds