Download citation
Download citation
link to html
In the crystals of the title compound, C19H24O8, the mol­ecules adopt a conformation in which the bulky 2,6-di­methoxy­phenoxy and 4-hydroxy-3,5-di­methoxy­phenyl groups are distant from each other. The O(phenoxy)-C-C-C(phenyl) torsion angle between these groups is -177.27 (10)°. The conformation is compared with those of related lignin model compounds. The hydrogen-bonding pattern is discussed in terms of graph-set theory.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801021146/dn6014sup1.cif
Contains datablocks I, n

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801021146/dn6014Isup2.hkl
Contains datablock I

CCDC reference: 180540

Key indicators

  • Single-crystal X-ray study
  • T = 183 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.056
  • wR factor = 0.133
  • Data-to-parameter ratio = 24.6

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_716 Alert C H...A Unknown or Inconsistent Label ........ O1[A] H2 O1[A] PLAT_716 Alert C H...A Unknown or Inconsistent Label ........ O5[B] H2 O5[B] PLAT_716 Alert C H...A Unknown or Inconsistent Label ........ O6[C] H4 O6[C] PLAT_716 Alert C H...A Unknown or Inconsistent Label ........ O7[D] H4 O7[D] PLAT_716 Alert C H...A Unknown or Inconsistent Label ........ O4[E] H5 O4[E] PLAT_717 Alert C D...A Unknown or Inconsistent Label ........ O1[A] O2 O1[A] PLAT_717 Alert C D...A Unknown or Inconsistent Label ........ O5[B] O2 O5[B] PLAT_717 Alert C D...A Unknown or Inconsistent Label ........ O6[C] O4 O6[C] PLAT_717 Alert C D...A Unknown or Inconsistent Label ........ O7[D] O4 O7[D] PLAT_717 Alert C D...A Unknown or Inconsistent Label ........ O4[E] O5 O4[E] PLAT_718 Alert C D-H..A Unknown or Inconsistent label ........ O1[A] O2 H2 O1[A] PLAT_718 Alert C D-H..A Unknown or Inconsistent label ........ O5[B] O2 H2 O5[B] PLAT_718 Alert C D-H..A Unknown or Inconsistent label ........ O6[C] O4 H4 O6[C] PLAT_718 Alert C D-H..A Unknown or Inconsistent label ........ O7[D] O4 H4 O7[D] PLAT_718 Alert C D-H..A Unknown or Inconsistent label ........ O4[E] O5 H5 O4[E]
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
15 Alert Level C = Please check

Comment top

Crystal structures of erythro forms (1) and (2) of model compounds, representative of structural elements in lignin of the syringylglycerol β-syringyl ether type, have been described previously (Stomberg & Lundquist, 1989; Langer & Lundquist, 2001). The conformations of the compounds differed considerably. The torsion angle between the 1-aryl and the 2-aryloxy groups was for instance -71.0 (4)° in (1) and 178.58 (7)° in (2). The conformational differences were attributed to the different hydrogen-bonding patterns (Langer & Lundquist, 2001). To obtain a better basis for judging which factors govern the conformation of syringylglycerol β-syringyl ethers we have now determined the crystal structure of a third model compound representative of such ethers, erythro-2-(2,6-dimethoxyphenoxy)-1-(4-hydroxy-3,5-dimethoxyphenyl)-1,3- propanediol, (3). This compound adopts a conformation in which the bulky aromatic groups are distant from each other. The torsion angle C9–C10–O6–C12 is -75.26 (13)° and the torsion angle C1–C9–C10–O6 is -177.27 (10)°. This leads to a C1—C12 distance of 4.4458 (17) Å. Corresponding data for (2) are -89.24 (9)°, 178.58 (7)° and 4.5030 (13) Å. The angle between the aromatic ring planes is 57.27 (5)° in (3) and 76.00 (3)° in (2). It is obvious that (2) and (3) adopt similar conformations. Nevertheless, the hydrogen-bonding patterns of (2) and (3) are different.

Both structures exhibit intramolecular hydrogen bonds of approximately the same strength, but in (2), they are formed by the hydroxyl H atom in the methylol group and the O atoms in a methoxy group and the phenoxy group (Langer & Lundquist, 2001), while in (3), they are formed by H(O4) and the atoms O6 and O7 (Fig. 1 and Table 1). The phenolic H(O2) atom, which is lacking in (2), forms an intramolecular hydrogen bond with O1 as acceptor. H(O2) also takes part in intermolecular hydrogen bonds. Assignment of the hydrogen-bond descriptors using program PLUTO (Motherwell et al., 1999) in terms of the graph-set theory (Bernstein et al., 1995) has been carried out. For this purpose, we use symbols of type Xa,d(n), where X is the pattern descriptor, a is the number of acceptors, d is the number of donors and n is the number of atoms comprising the pattern. For (3), there are on the first-level of intermolecular contacts a chain C1,1(6) formed by hydrogen bonds of type [e] (Fig. 2 and Table 1) and a ring R2,2(20), formed by hydrogen bonds of type [b] (Fig. 3). On the second-level of graph-set descriptors, chains C2,2(10) and C2,2(16) were identified, both formed by hydrogen bonds of [b] and [e] type. The structure of (2) exhibits (apart from intramolecular contacts) just one first-level descriptor, a chain C1,1(6) with the benzylic oxygen as donor and the oxygen in the methylol groups as acceptor (Langer & Lundquist, 2001).

Experimental top

erythro-(2,6-Dimethoxyphenoxy)-1-(4-hydroxy-3,5-dimethoxyphenyl)-1,3- propanediol was synthesized following the method described by Li et al. (2000). M.p. 390–391 K (from ethyl acetate).

Refinement top

H atoms were refined isotropically and were constrained to the ideal geometry using an appropriate riding model. For hydroxyl groups, the O—H distances (0.84 Å) and C–O–H angles (109.5°) were kept fixed, the torsion angle was chosen to maximize the electron density. For methyl groups, the C—H distances (0.98 Å) and C—C—H angles (109.5°) were kept fixed, while the torsion angles were allowed to refine with the starting position based on the threefold averaged circular Fourier synthesis.

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT and SADABS (Sheldrick, 2001); program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The numbering scheme for the title compound. Displacement ellipsoids are shown at the 50% probability level. Intramolecular contacts are shown by broken lines. For hydrogen bond codes, see Table 1.
[Figure 2] Fig. 2. The hydrogen-bond network showing the C1,1(6) chain of molecules. Methoxy groups and carbon-bonded H atoms have been omitted for clarity. For hydrogen bond codes, see Table 1.
[Figure 3] Fig. 3. The hydrogen-bond network showing the R2,2(20) ring together with chains C2,2(10) and C2,2(16). Methoxy groups and carbon-bonded H atoms have been omitted for clarity. For hydrogen bond codes, see Table 1.
erythro-2-(2,6-Dimethoxyphenoxy)-1-(4-hydroxy-3,5-dimethoxyphenyl)-1,3- propanediol top
Crystal data top
C19H24O8Dx = 1.344 Mg m3
Mr = 380.38Melting point: 490–491 K K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.9064 (5) ÅCell parameters from 6618 reflections
b = 15.6222 (6) Åθ = 2.1–33.0°
c = 9.9140 (4) ŵ = 0.11 mm1
β = 109.837 (1)°T = 183 K
V = 1880.31 (13) Å3Plate, colorless
Z = 40.24 × 0.12 × 0.05 mm
F(000) = 808
Data collection top
Siemens SMART CCD
diffractometer
6775 independent reflections
Radiation source: fine-focus sealed tube4740 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ω scansθmax = 33.0°, θmin = 2.1°
Absorption correction: empirical (using intensity measurements)
(SADABS: Sheldrick, 2001)
h = 1919
Tmin = 0.975, Tmax = 0.995k = 2323
30831 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.048P)2 + 0.7831P]
where P = (Fo2 + 2Fc2)/3
6775 reflections(Δ/σ)max < 0.001
275 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C19H24O8V = 1880.31 (13) Å3
Mr = 380.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.9064 (5) ŵ = 0.11 mm1
b = 15.6222 (6) ÅT = 183 K
c = 9.9140 (4) Å0.24 × 0.12 × 0.05 mm
β = 109.837 (1)°
Data collection top
Siemens SMART CCD
diffractometer
6775 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS: Sheldrick, 2001)
4740 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.995Rint = 0.047
30831 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.34 e Å3
6775 reflectionsΔρmin = 0.24 e Å3
275 parameters
Special details top

Experimental. Data were collected at 183 K using a Siemens SMART CCD diffractometer equipped with a Siemens LT-2 A low temperature device. A full sphere of reciprocal space was scanned by 0.3° steps in ω with a crystal–to–detector distance of 3.97 cm, 30 s per frame. Preliminary orientation matrix was obtained from the first 100 frames using SMART (Siemens, 1995). The collected frames were integrated using the preliminary orientation matrix which was updated every 100 frames. Final cell parameters were obtained by refinement on the position of 8192 reflections with I>10σ(I) after integration of all the frames data using SAINT (Siemens, 1995). The data were empirically corrected for absorption and other effects using SADABS (Sheldrick, 2001) based on the method of Blessing (1995).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.54877 (8)0.63827 (7)0.06729 (12)0.0330 (2)
O20.40664 (8)0.57723 (7)0.19306 (12)0.0345 (2)
H20.40330.62320.14770.058 (6)*
O30.45442 (8)0.44457 (7)0.36346 (12)0.0317 (2)
O40.83034 (8)0.34278 (7)0.40170 (11)0.0294 (2)
H40.88970.31680.41360.052 (6)*
O50.67744 (8)0.27491 (6)0.04899 (11)0.0281 (2)
H50.73130.25100.06280.060 (6)*
O60.89866 (7)0.30589 (6)0.16481 (10)0.02377 (19)
O71.05699 (8)0.32620 (7)0.41792 (12)0.0364 (2)
O80.92194 (9)0.36156 (7)0.07989 (12)0.0362 (2)
C10.70832 (10)0.45476 (8)0.27173 (14)0.0226 (2)
C20.68233 (10)0.52561 (8)0.18031 (15)0.0242 (3)
H2A0.73270.54480.13580.030 (4)*
C30.58251 (11)0.56810 (8)0.15436 (14)0.0244 (3)
C40.50696 (10)0.54012 (9)0.21778 (15)0.0253 (3)
C50.53411 (11)0.46956 (9)0.30919 (15)0.0253 (3)
C60.63431 (10)0.42749 (8)0.33715 (15)0.0248 (3)
H60.65220.38010.40100.029 (4)*
C70.61448 (13)0.66333 (10)0.01568 (18)0.0350 (3)
H7A0.68580.68440.04810.037 (5)*
H7B0.57690.70890.08230.039 (5)*
H7C0.62610.61400.07000.043 (5)*
C80.47904 (13)0.37127 (10)0.45494 (19)0.0382 (4)
H8A0.48970.32140.40110.036 (5)*
H8B0.41780.36030.49000.057 (6)*
H8C0.54640.38180.53650.046 (5)*
C90.81179 (10)0.40376 (8)0.28820 (14)0.0233 (2)
H90.87590.44390.31290.023 (4)*
C100.80185 (10)0.35801 (8)0.14716 (14)0.0212 (2)
H100.79400.40150.07030.018 (3)*
C110.70577 (10)0.29601 (9)0.09901 (14)0.0243 (3)
H11A0.72530.24310.15700.028 (4)*
H11B0.64120.32200.11570.031 (4)*
C120.99308 (10)0.34949 (8)0.16955 (16)0.0267 (3)
C131.07755 (11)0.35936 (9)0.30110 (17)0.0311 (3)
C141.17538 (12)0.40017 (11)0.3073 (2)0.0430 (4)
H141.23260.40820.39660.048 (5)*
C151.18779 (13)0.42878 (12)0.1817 (2)0.0483 (5)
H151.25390.45720.18600.058 (6)*
C161.10646 (14)0.41698 (11)0.0503 (2)0.0423 (4)
H161.11740.43600.03490.050 (6)*
C171.00784 (12)0.37690 (9)0.04312 (17)0.0313 (3)
C181.14074 (15)0.33374 (14)0.5546 (2)0.0509 (5)
H18A1.20790.30550.55230.074 (7)*
H18B1.11600.30650.62740.074 (8)*
H18C1.15600.39440.57820.067 (7)*
C190.93714 (19)0.38356 (11)0.2123 (2)0.0476 (5)
H19A0.95690.44420.21080.050 (5)*
H19B0.86860.37300.29220.055 (6)*
H19C0.99630.34850.22450.062 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0306 (5)0.0316 (5)0.0434 (6)0.0078 (4)0.0212 (5)0.0123 (4)
O20.0243 (5)0.0377 (6)0.0470 (7)0.0112 (4)0.0192 (5)0.0151 (5)
O30.0247 (5)0.0343 (5)0.0436 (6)0.0061 (4)0.0212 (4)0.0122 (4)
O40.0218 (5)0.0389 (6)0.0289 (5)0.0080 (4)0.0104 (4)0.0073 (4)
O50.0219 (4)0.0298 (5)0.0322 (5)0.0001 (4)0.0086 (4)0.0058 (4)
O60.0168 (4)0.0214 (4)0.0363 (5)0.0008 (3)0.0130 (4)0.0007 (4)
O70.0225 (5)0.0444 (6)0.0390 (6)0.0016 (4)0.0060 (4)0.0017 (5)
O80.0414 (6)0.0373 (6)0.0372 (6)0.0066 (5)0.0228 (5)0.0021 (5)
C10.0178 (5)0.0251 (6)0.0256 (6)0.0000 (4)0.0082 (5)0.0029 (5)
C20.0197 (5)0.0251 (6)0.0305 (7)0.0010 (5)0.0121 (5)0.0008 (5)
C30.0230 (6)0.0237 (6)0.0283 (7)0.0015 (5)0.0110 (5)0.0019 (5)
C40.0199 (6)0.0275 (6)0.0307 (7)0.0036 (5)0.0115 (5)0.0021 (5)
C50.0217 (6)0.0279 (6)0.0304 (7)0.0007 (5)0.0139 (5)0.0017 (5)
C60.0218 (6)0.0257 (6)0.0286 (7)0.0028 (5)0.0107 (5)0.0029 (5)
C70.0372 (8)0.0339 (7)0.0413 (9)0.0034 (6)0.0230 (7)0.0087 (6)
C80.0356 (8)0.0379 (8)0.0519 (10)0.0099 (6)0.0289 (8)0.0164 (7)
C90.0173 (5)0.0262 (6)0.0271 (6)0.0004 (4)0.0086 (5)0.0001 (5)
C100.0158 (5)0.0223 (5)0.0274 (6)0.0007 (4)0.0097 (5)0.0007 (5)
C110.0180 (5)0.0277 (6)0.0285 (7)0.0035 (5)0.0097 (5)0.0011 (5)
C120.0179 (5)0.0231 (6)0.0436 (8)0.0010 (4)0.0164 (6)0.0031 (5)
C130.0193 (6)0.0301 (7)0.0459 (9)0.0004 (5)0.0136 (6)0.0044 (6)
C140.0187 (6)0.0431 (9)0.0659 (12)0.0052 (6)0.0126 (7)0.0069 (8)
C150.0248 (7)0.0441 (9)0.0845 (14)0.0081 (7)0.0296 (9)0.0044 (9)
C160.0359 (8)0.0385 (8)0.0676 (12)0.0045 (6)0.0373 (9)0.0011 (8)
C170.0278 (7)0.0273 (7)0.0470 (9)0.0012 (5)0.0233 (6)0.0047 (6)
C180.0358 (9)0.0674 (13)0.0417 (10)0.0054 (8)0.0029 (8)0.0111 (9)
C190.0769 (13)0.0346 (8)0.0451 (10)0.0089 (8)0.0387 (10)0.0033 (7)
Geometric parameters (Å, º) top
O1—C31.3717 (16)C7—H7B0.9800
O1—C71.4222 (17)C7—H7C0.9800
O2—C41.3628 (15)C8—H8A0.9800
O2—H20.8400C8—H8B0.9800
O3—C51.3694 (15)C8—H8C0.9800
O3—C81.4281 (18)C9—C101.5364 (18)
O4—C91.4312 (16)C9—H91.0000
O4—H40.8400C10—C111.5172 (17)
O5—C111.4252 (16)C10—H101.0000
O5—H50.8400C11—H11A0.9900
O6—C121.3829 (15)C11—H11B0.9900
O6—C101.4514 (14)C12—C131.396 (2)
O7—C131.3742 (19)C12—C171.398 (2)
O7—C181.423 (2)C13—C141.397 (2)
O8—C171.3624 (19)C14—C151.382 (3)
O8—C191.4334 (19)C14—H140.9500
C1—C61.3911 (17)C15—C161.380 (3)
C1—C21.3973 (19)C15—H150.9500
C1—C91.5156 (17)C16—C171.398 (2)
C2—C31.3935 (18)C16—H160.9500
C2—H2A0.9500C18—H18A0.9800
C3—C41.3975 (18)C18—H18B0.9800
C4—C51.3942 (19)C18—H18C0.9800
C5—C61.3920 (18)C19—H19A0.9800
C6—H60.9500C19—H19B0.9800
C7—H7A0.9800C19—H19C0.9800
C3—O1—C7117.37 (11)C10—C9—H9108.8
C4—O2—H2109.5O6—C10—C11104.95 (10)
C5—O3—C8116.31 (10)O6—C10—C9110.40 (10)
C9—O4—H4109.5C11—C10—C9112.97 (10)
C11—O5—H5109.5O6—C10—H10109.5
C12—O6—C10116.14 (9)C11—C10—H10109.5
C13—O7—C18118.03 (13)C9—C10—H10109.5
C17—O8—C19117.06 (13)O5—C11—C10111.61 (10)
C6—C1—C2119.56 (11)O5—C11—H11A109.3
C6—C1—C9120.54 (12)C10—C11—H11A109.3
C2—C1—C9119.67 (11)O5—C11—H11B109.3
C3—C2—C1120.03 (12)C10—C11—H11B109.3
C3—C2—H2A120.0H11A—C11—H11B108.0
C1—C2—H2A120.0O6—C12—C13119.08 (13)
O1—C3—C2124.96 (12)O6—C12—C17120.48 (13)
O1—C3—C4114.34 (11)C13—C12—C17120.22 (12)
C2—C3—C4120.70 (12)O7—C13—C14124.42 (15)
O2—C4—C3123.46 (12)O7—C13—C12115.65 (12)
O2—C4—C5117.85 (11)C14—C13—C12119.93 (15)
C3—C4—C5118.68 (12)C15—C14—C13119.17 (16)
O3—C5—C6123.92 (12)C15—C14—H14120.4
O3—C5—C4115.09 (11)C13—C14—H14120.4
C6—C5—C4120.95 (12)C14—C15—C16121.56 (14)
C5—C6—C1120.07 (12)C14—C15—H15119.2
C5—C6—H6120.0C16—C15—H15119.2
C1—C6—H6120.0C17—C16—C15119.70 (16)
O1—C7—H7A109.5C17—C16—H16120.2
O1—C7—H7B109.5C15—C16—H16120.2
H7A—C7—H7B109.5O8—C17—C12115.58 (12)
O1—C7—H7C109.5O8—C17—C16125.06 (15)
H7A—C7—H7C109.5C12—C17—C16119.36 (15)
H7B—C7—H7C109.5O7—C18—H18A109.5
O3—C8—H8A109.5O7—C18—H18B109.5
O3—C8—H8B109.5H18A—C18—H18B109.5
H8A—C8—H8B109.5O7—C18—H18C109.5
O3—C8—H8C109.5H18A—C18—H18C109.5
H8A—C8—H8C109.5H18B—C18—H18C109.5
H8B—C8—H8C109.5O8—C19—H19A109.5
O4—C9—C1109.92 (10)O8—C19—H19B109.5
O4—C9—C10110.24 (10)H19A—C19—H19B109.5
C1—C9—C10110.37 (10)O8—C19—H19C109.5
O4—C9—H9108.8H19A—C19—H19C109.5
C1—C9—H9108.8H19B—C19—H19C109.5
C6—C1—C2—C30.5 (2)O4—C9—C10—O655.65 (12)
C9—C1—C2—C3174.11 (12)C1—C9—C10—O6177.27 (10)
C7—O1—C3—C27.8 (2)O4—C9—C10—C1161.52 (13)
C7—O1—C3—C4171.80 (13)C1—C9—C10—C1160.10 (14)
C1—C2—C3—O1179.75 (13)O6—C10—C11—O577.72 (13)
C1—C2—C3—C40.7 (2)C9—C10—C11—O5161.94 (10)
O1—C3—C4—O21.8 (2)C10—O6—C12—C13105.07 (14)
C2—C3—C4—O2177.84 (13)C10—O6—C12—C1780.35 (15)
O1—C3—C4—C5179.48 (12)C18—O7—C13—C140.0 (2)
C2—C3—C4—C50.9 (2)C18—O7—C13—C12179.40 (14)
C8—O3—C5—C60.7 (2)O6—C12—C13—O72.05 (18)
C8—O3—C5—C4178.66 (13)C17—C12—C13—O7176.63 (12)
O2—C4—C5—O30.73 (19)O6—C12—C13—C14177.42 (13)
C3—C4—C5—O3178.07 (12)C17—C12—C13—C142.8 (2)
O2—C4—C5—C6178.79 (13)O7—C13—C14—C15178.14 (15)
C3—C4—C5—C60.0 (2)C12—C13—C14—C151.3 (2)
O3—C5—C6—C1176.78 (13)C13—C14—C15—C160.9 (3)
C4—C5—C6—C11.1 (2)C14—C15—C16—C171.4 (3)
C2—C1—C6—C51.3 (2)C19—O8—C17—C12175.89 (13)
C9—C1—C6—C5173.20 (12)C19—O8—C17—C164.1 (2)
C6—C1—C9—O414.03 (17)O6—C12—C17—O83.22 (18)
C2—C1—C9—O4171.45 (11)C13—C12—C17—O8177.73 (12)
C6—C1—C9—C10107.78 (14)O6—C12—C17—C16176.75 (12)
C2—C1—C9—C1066.74 (15)C13—C12—C17—C162.2 (2)
C12—O6—C10—C11162.71 (11)C15—C16—C17—O8179.85 (15)
C12—O6—C10—C975.26 (13)C15—C16—C17—C120.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1[a]0.842.292.7168 (14)112
O2—H2···O5[b]i0.841.972.7388 (14)152
O4—H4···O6[c]0.842.512.8339 (13)104
O4—H4···O7[d]0.842.152.8863 (14)146
O5—H5···O4[e]ii0.842.052.8580 (14)161
C6—H6···O40.952.372.7319 (16)102
C6—H6···O5iii0.952.473.3401 (16)152
C11—H11B···O1i0.992.583.2998 (16)129
C15—H15···O3iv0.952.603.308 (2)132
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1/2, z1/2; (iii) x, y+1/2, z+1/2; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC19H24O8
Mr380.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)183
a, b, c (Å)12.9064 (5), 15.6222 (6), 9.9140 (4)
β (°) 109.837 (1)
V3)1880.31 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.24 × 0.12 × 0.05
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS: Sheldrick, 2001)
Tmin, Tmax0.975, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
30831, 6775, 4740
Rint0.047
(sin θ/λ)max1)0.767
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.133, 1.04
No. of reflections6775
No. of parameters275
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.24

Computer programs: SMART (Siemens, 1995), SAINT (Siemens, 1995), SAINT and SADABS (Sheldrick, 2001), SHELXTL (Bruker, 1997), SHELXTL, DIAMOND (Brandenburg, 2000).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1[a]0.842.292.7168 (14)112.0
O2—H2···O5[b]i0.841.972.7388 (14)151.5
O4—H4···O6[c]0.842.512.8339 (13)103.8
O4—H4···O7[d]0.842.152.8863 (14)146.3
O5—H5···O4[e]ii0.842.052.8580 (14)160.7
C6—H6···O40.952.372.7319 (16)102.1
C6—H6···O5iii0.952.473.3401 (16)152.0
C11—H11B···O1i0.992.583.2998 (16)129.3
C15—H15···O3iv0.952.603.308 (2)131.9
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1/2, z1/2; (iii) x, y+1/2, z+1/2; (iv) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds