Download citation
Download citation
link to html
The title compound, C23H20O5, is one of a series of soluble precursors to electroluminescent conjugated polymers as well as leading to helical structures. The geometries of the ring systems are within normal limits, as are those of the ethyl esters. There are few close contacts within the mol­ecule, leading one to rationalize the overall geometry arising from pure steric interactions without any attractive forces such as hydrogen bonding.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801020323/na6111sup1.cif
Contains datablocks I, orange

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801020323/na6111Isup2.hkl
Contains datablock I

CCDC reference: 180527

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.064
  • wR factor = 0.219
  • Data-to-parameter ratio = 22.7

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_360 Alert C Short C(sp3)-C(sp3) Bond C(22) - C(23) = 1.40 Ang. PLAT_369 Alert C Long C(sp2)-C(sp2) Bond C(3) - C(4) = 1.53 Ang.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
2 Alert Level C = Please check

Comment top

Cyclopentadienones produced by a condensation reaction are the building blocks used to produce many monomers used for light emitting diodes. These cyclones can participate in Diels-Alder reactions with a large variety of internal and terminal acetylenes to generate a multitude of aromatic compounds.

The title compound, (I), reacts smoothly with alkynes to generate aromatic terephthalic esters having phenyl and alkyl substituents. Reduction of the esters to alcohols and further conversion to the corresponding chloro compounds provides poly(phenylene vinylene) (PPV) monomers. (Feld et al., 1998) Polymeric material produced from these monomers exhibit photoluminescence at 490 nm with an efficiency of 65%. These materials are useful for designing multicolor electroluminescent devices. In addition, the terephthalic esters are a convenient substrate for the generation of substituted 5,8-dioxo-5,8-dihydroindeno[2,1-c]fluorine ring system by reaction with sulfuric acid. (Lorge, 1998)

The cyclopentadienone and phenyl ring systems found are themselves planar, but are not coplanar. The phenyl rings are twisted about the external bond to the five-membered ring by 44.68 (12)° for ring 1 (C31–C36) and 53.91 (12)° for ring 2 (C41–C46). The bond distances and angles around each atom are within accepted values.

Experimental top

The synthesis of 2,5-dicarboethoxy-3,4-diphenylcyclopentadienone can be carried out in a two-step process. Diethyl acetonedicarboxylate is reacted with benzil in sodium ethoxide/ethanol to provide a yellow ionic precipitate. The yellow precipitate is reacted with sulfuric acid in acetic anhydride to produce the title compound as an orange product (Reinhardt, 1973).

Refinement top

H-atom positions were calculated at the begining of each least-squares refinement using geometric considerations and additively constrained. Methyl, methylene, and aromatic H-atom positions used fixed C—H bond lengths of 0.96, 0.97, and 0.93 Å, respectively. In all cases, the H-atom Uiso is 1.3 times the Uiso of the attached atom and were not refined. Atom C23 is observed to have large thermal motion in all directions, which at first was thought to be due to disorder. An extensive effort was made to resolve this situation to an unsuccessful end. Residual electron density is present in the vicinity of C23, however the position of this density does not lend itself to the needed geometry for an alternate C23 atom.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD (McArdle, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: OSCAIL (McArdle, 1995).

Figures top
[Figure 1] Fig. 1. Molecular structure diagram with all non-H atoms shown at 30% probability.
2,5-Dicarboethoxy-3,4-diphenylcyclopentadienone top
Crystal data top
C23H20O5F(000) = 792
Mr = 376.39Dx = 1.263 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 10.697 (3) Åθ = 3.0–12.6°
b = 18.228 (4) ŵ = 0.09 mm1
c = 11.202 (2) ÅT = 293 K
β = 115.02 (2)°Trigonal prism, orange
V = 1979.2 (9) Å30.40 × 0.35 × 0.30 mm
Z = 4
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.016
Radiation source: fine-focus sealed tubeθmax = 30.0°, θmin = 2.1°
Graphite monochromatorh = 1513
ω/2θ scansk = 625
6973 measured reflectionsl = 215
5758 independent reflections3 standard reflections every 120 min
2719 reflections with I > 2σ(I) intensity decay: 1.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.219 w = 1/[σ2(Fo2) + (0.122P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.001
5758 reflectionsΔρmax = 0.40 e Å3
254 parametersΔρmin = 0.30 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.009 (2)
Crystal data top
C23H20O5V = 1979.2 (9) Å3
Mr = 376.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.697 (3) ŵ = 0.09 mm1
b = 18.228 (4) ÅT = 293 K
c = 11.202 (2) Å0.40 × 0.35 × 0.30 mm
β = 115.02 (2)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.016
6973 measured reflections3 standard reflections every 120 min
5758 independent reflections intensity decay: 1.0%
2719 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.219H-atom parameters constrained
S = 0.98Δρmax = 0.40 e Å3
5758 reflectionsΔρmin = 0.30 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.75673 (18)0.89668 (8)0.53580 (15)0.0702 (5)
O210.9292 (2)0.83882 (11)0.82297 (17)0.0969 (7)
O510.5134 (2)0.81968 (12)0.18481 (16)0.0958 (7)
O21A1.05064 (18)0.75724 (12)0.77260 (19)0.0955 (7)
O51A0.44631 (19)0.86856 (10)0.32745 (15)0.0814 (5)
C10.7381 (2)0.83118 (11)0.52632 (18)0.0520 (5)
C20.8206 (2)0.77374 (10)0.62324 (17)0.0503 (5)
C30.77219 (19)0.70738 (10)0.57229 (17)0.0450 (4)
C40.65171 (18)0.71815 (10)0.43731 (16)0.0451 (4)
C50.6335 (2)0.79020 (10)0.41181 (18)0.0507 (4)
C210.9370 (2)0.79372 (12)0.7496 (2)0.0596 (5)
C221.1716 (4)0.7711 (3)0.8975 (4)0.1250 (14)
H22A1.25510.76110.88640.162*
H22B1.17300.82240.92120.162*
C231.1692 (6)0.7274 (3)0.9988 (6)0.217 (4)
H23A1.24870.73781.07910.325*
H23B1.17010.67660.97650.325*
H23C1.08700.73761.01050.325*
C310.82355 (18)0.63537 (10)0.63091 (17)0.0457 (4)
C320.8567 (2)0.62374 (12)0.76381 (19)0.0566 (5)
H320.84280.66100.81370.074*
C330.9104 (2)0.55692 (14)0.8220 (2)0.0698 (6)
H330.93190.54930.91060.091*
C340.9316 (3)0.50236 (13)0.7494 (3)0.0719 (7)
H340.96850.45780.78930.093*
C350.8990 (2)0.51246 (11)0.6179 (2)0.0637 (6)
H350.91340.47490.56900.083*
C360.8444 (2)0.57904 (10)0.5584 (2)0.0539 (5)
H360.82170.58580.46930.070*
C410.56613 (19)0.65799 (10)0.35568 (16)0.0471 (4)
C420.5056 (2)0.60732 (12)0.40744 (19)0.0574 (5)
H420.52240.60990.49590.075*
C430.4208 (2)0.55328 (13)0.3285 (2)0.0703 (6)
H430.37930.52010.36360.091*
C440.3971 (3)0.54810 (15)0.1986 (2)0.0772 (7)
H440.33870.51190.14560.100*
C450.4595 (3)0.59618 (15)0.1467 (2)0.0773 (7)
H450.44580.59160.05940.101*
C460.5428 (2)0.65138 (12)0.22429 (18)0.0618 (6)
H460.58360.68440.18830.080*
C510.5264 (2)0.82703 (11)0.29502 (19)0.0566 (5)
C520.3375 (3)0.90908 (18)0.2210 (3)0.0922 (9)
H52A0.37740.93920.17470.120*
H52B0.27310.87510.15850.120*
C530.2662 (4)0.9550 (2)0.2784 (3)0.1231 (13)
H53A0.19440.98200.20990.185*
H53B0.33050.98870.33960.185*
H53C0.22650.92480.32360.185*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0928 (12)0.0439 (8)0.0624 (9)0.0065 (7)0.0217 (8)0.0000 (6)
O210.1056 (15)0.0908 (13)0.0645 (10)0.0102 (11)0.0072 (10)0.0316 (10)
O510.1232 (17)0.1125 (15)0.0516 (9)0.0380 (13)0.0370 (10)0.0252 (9)
O21A0.0559 (9)0.1252 (17)0.0797 (12)0.0046 (10)0.0038 (8)0.0377 (11)
O51A0.0874 (12)0.0984 (13)0.0474 (8)0.0409 (10)0.0179 (8)0.0163 (8)
C10.0614 (12)0.0478 (11)0.0443 (9)0.0018 (9)0.0199 (9)0.0003 (8)
C20.0548 (11)0.0485 (10)0.0416 (9)0.0037 (8)0.0145 (8)0.0024 (8)
C30.0474 (9)0.0477 (10)0.0368 (8)0.0000 (8)0.0146 (7)0.0006 (7)
C40.0471 (10)0.0468 (10)0.0370 (8)0.0029 (8)0.0133 (7)0.0009 (7)
C50.0567 (11)0.0488 (10)0.0406 (9)0.0006 (9)0.0149 (8)0.0031 (7)
C210.0638 (13)0.0534 (12)0.0492 (10)0.0075 (10)0.0118 (9)0.0082 (9)
C220.0789 (19)0.164 (4)0.085 (2)0.007 (2)0.0116 (17)0.039 (2)
C230.182 (5)0.157 (4)0.152 (4)0.011 (4)0.083 (4)0.014 (4)
C310.0416 (9)0.0455 (10)0.0425 (9)0.0022 (7)0.0106 (7)0.0020 (7)
C320.0560 (12)0.0613 (12)0.0446 (10)0.0051 (9)0.0135 (8)0.0049 (8)
C330.0707 (14)0.0759 (15)0.0533 (12)0.0115 (12)0.0171 (11)0.0195 (11)
C340.0639 (14)0.0606 (14)0.0787 (15)0.0135 (11)0.0179 (12)0.0218 (11)
C350.0621 (13)0.0515 (12)0.0729 (14)0.0074 (10)0.0241 (11)0.0002 (10)
C360.0548 (11)0.0521 (11)0.0501 (10)0.0009 (9)0.0175 (9)0.0018 (8)
C410.0452 (9)0.0506 (10)0.0376 (8)0.0007 (8)0.0099 (7)0.0017 (7)
C420.0618 (12)0.0622 (12)0.0457 (10)0.0088 (10)0.0202 (9)0.0018 (9)
C430.0679 (14)0.0638 (14)0.0723 (14)0.0179 (11)0.0228 (12)0.0032 (11)
C440.0749 (16)0.0743 (16)0.0626 (14)0.0215 (13)0.0098 (12)0.0169 (12)
C450.0868 (17)0.0838 (17)0.0431 (10)0.0100 (14)0.0097 (11)0.0118 (11)
C460.0704 (14)0.0690 (13)0.0410 (9)0.0108 (11)0.0186 (9)0.0038 (9)
C510.0659 (13)0.0523 (11)0.0426 (9)0.0015 (10)0.0141 (9)0.0067 (8)
C520.0868 (18)0.102 (2)0.0631 (14)0.0373 (16)0.0077 (13)0.0232 (14)
C530.103 (3)0.154 (3)0.110 (2)0.067 (2)0.042 (2)0.056 (2)
Geometric parameters (Å, º) top
O1—C11.208 (2)C32—H320.9300
O21—C211.191 (3)C33—C341.363 (4)
O51—C511.190 (2)C33—H330.9300
O21A—C211.312 (3)C34—C351.376 (4)
O21A—C221.472 (3)C34—H340.9300
O51A—C511.305 (3)C35—C361.389 (3)
O51A—C521.466 (3)C35—H350.9300
C1—C51.497 (3)C36—H360.9300
C1—C21.498 (3)C41—C421.388 (3)
C2—C31.344 (3)C41—C461.390 (2)
C2—C211.482 (3)C42—C431.377 (3)
C3—C311.466 (3)C42—H420.9300
C3—C41.529 (2)C43—C441.371 (3)
C4—C51.341 (3)C43—H430.9300
C4—C411.473 (2)C44—C451.371 (4)
C5—C511.486 (3)C44—H440.9300
C22—C231.396 (8)C45—C461.381 (3)
C22—H22A0.9700C45—H450.9300
C22—H22B0.9700C46—H460.9300
C23—H23A0.9600C52—C531.453 (4)
C23—H23B0.9600C52—H52A0.9700
C23—H23C0.9600C52—H52B0.9700
C31—C361.385 (3)C53—H53A0.9600
C31—C321.393 (3)C53—H53B0.9600
C32—C331.386 (3)C53—H53C0.9600
C21—O21A—C22117.9 (2)C33—C34—H34119.6
C51—O51A—C52117.05 (19)C35—C34—H34119.6
O1—C1—C5127.19 (18)C34—C35—C36119.7 (2)
O1—C1—C2127.04 (18)C34—C35—H35120.1
C5—C1—C2105.67 (15)C36—C35—H35120.1
C3—C2—C21130.07 (17)C31—C36—C35120.38 (19)
C3—C2—C1108.55 (16)C31—C36—H36119.8
C21—C2—C1121.34 (17)C35—C36—H36119.8
C2—C3—C31127.68 (16)C42—C41—C46118.55 (18)
C2—C3—C4108.45 (15)C42—C41—C4120.89 (16)
C31—C3—C4123.87 (15)C46—C41—C4120.55 (18)
C5—C4—C41126.93 (17)C43—C42—C41120.32 (19)
C5—C4—C3108.81 (15)C43—C42—H42119.8
C41—C4—C3124.14 (16)C41—C42—H42119.8
C4—C5—C51128.24 (17)C44—C43—C42120.4 (2)
C4—C5—C1108.51 (16)C44—C43—H43119.8
C51—C5—C1123.20 (16)C42—C43—H43119.8
O21—C21—O21A123.0 (2)C43—C44—C45120.1 (2)
O21—C21—C2123.6 (2)C43—C44—H44119.9
O21A—C21—C2113.45 (18)C45—C44—H44119.9
C23—C22—O21A111.3 (4)C44—C45—C46119.9 (2)
C23—C22—H22A109.4C44—C45—H45120.0
O21A—C22—H22A109.4C46—C45—H45120.0
C23—C22—H22B109.4C45—C46—C41120.6 (2)
O21A—C22—H22B109.4C45—C46—H46119.7
H22A—C22—H22B108.0C41—C46—H46119.7
C22—C23—H23A109.5O51—C51—O51A123.5 (2)
C22—C23—H23B109.5O51—C51—C5124.8 (2)
H23A—C23—H23B109.5O51A—C51—C5111.68 (17)
C22—C23—H23C109.5C53—C52—O51A108.4 (2)
H23A—C23—H23C109.5C53—C52—H52A110.0
H23B—C23—H23C109.5O51A—C52—H52A110.0
C36—C31—C32118.87 (18)C53—C52—H52B110.0
C36—C31—C3121.59 (16)O51A—C52—H52B110.0
C32—C31—C3119.51 (17)H52A—C52—H52B108.4
C33—C32—C31120.3 (2)C52—C53—H53A109.5
C33—C32—H32119.9C52—C53—H53B109.5
C31—C32—H32119.9H53A—C53—H53B109.5
C34—C33—C32120.0 (2)C52—C53—H53C109.5
C34—C33—H33120.0H53A—C53—H53C109.5
C32—C33—H33120.0H53B—C53—H53C109.5
C33—C34—C35120.7 (2)
O1—C1—C2—C3176.0 (2)C2—C3—C31—C3243.9 (3)
C5—C1—C2—C30.6 (2)C4—C3—C31—C32137.09 (19)
O1—C1—C2—C212.2 (3)C36—C31—C32—C330.3 (3)
C5—C1—C2—C21178.81 (19)C3—C31—C32—C33177.54 (19)
C21—C2—C3—C310.3 (4)C31—C32—C33—C340.4 (3)
C1—C2—C3—C31178.37 (18)C32—C33—C34—C350.7 (4)
C21—C2—C3—C4178.8 (2)C33—C34—C35—C360.3 (4)
C1—C2—C3—C40.7 (2)C32—C31—C36—C350.7 (3)
C2—C3—C4—C50.7 (2)C3—C31—C36—C35177.09 (19)
C31—C3—C4—C5178.46 (17)C34—C35—C36—C310.4 (3)
C2—C3—C4—C41175.48 (18)C5—C4—C41—C42123.7 (2)
C31—C3—C4—C415.4 (3)C3—C4—C41—C4251.8 (3)
C41—C4—C5—C511.8 (4)C5—C4—C41—C4655.4 (3)
C3—C4—C5—C51177.83 (19)C3—C4—C41—C46129.1 (2)
C41—C4—C5—C1175.72 (18)C46—C41—C42—C432.1 (3)
C3—C4—C5—C10.3 (2)C4—C41—C42—C43177.1 (2)
O1—C1—C5—C4176.5 (2)C41—C42—C43—C441.2 (4)
C2—C1—C5—C40.1 (2)C42—C43—C44—C450.9 (4)
O1—C1—C5—C515.9 (4)C43—C44—C45—C462.1 (4)
C2—C1—C5—C51177.54 (19)C44—C45—C46—C411.2 (4)
C22—O21A—C21—O212.4 (4)C42—C41—C46—C450.9 (3)
C22—O21A—C21—C2178.1 (3)C4—C41—C46—C45178.2 (2)
C3—C2—C21—O21132.6 (3)C52—O51A—C51—O511.5 (4)
C1—C2—C21—O2149.6 (3)C52—O51A—C51—C5179.0 (2)
C3—C2—C21—O21A47.9 (3)C4—C5—C51—O5162.3 (4)
C1—C2—C21—O21A129.9 (2)C1—C5—C51—O51120.6 (3)
C21—O21A—C22—C2386.2 (5)C4—C5—C51—O51A117.2 (2)
C2—C3—C31—C36133.9 (2)C1—C5—C51—O51A59.9 (3)
C4—C3—C31—C3645.1 (3)C51—O51A—C52—C53176.5 (3)

Experimental details

Crystal data
Chemical formulaC23H20O5
Mr376.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.697 (3), 18.228 (4), 11.202 (2)
β (°) 115.02 (2)
V3)1979.2 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.35 × 0.30
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6973, 5758, 2719
Rint0.016
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.219, 0.98
No. of reflections5758
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.30

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, XCAD (McArdle, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEX (McArdle, 1995), OSCAIL (McArdle, 1995).

Selected geometric parameters (Å, º) top
O1—C11.208 (2)C2—C31.344 (3)
O21—C211.191 (3)C2—C211.482 (3)
O51—C511.190 (2)C3—C311.466 (3)
O21A—C211.312 (3)C3—C41.529 (2)
O21A—C221.472 (3)C4—C51.341 (3)
O51A—C511.305 (3)C4—C411.473 (2)
O51A—C521.466 (3)C5—C511.486 (3)
C1—C51.497 (3)C22—C231.396 (8)
C1—C21.498 (3)C52—C531.453 (4)
C21—O21A—C22117.9 (2)C41—C4—C3124.14 (16)
C51—O51A—C52117.05 (19)C4—C5—C51128.24 (17)
O1—C1—C5127.19 (18)C4—C5—C1108.51 (16)
O1—C1—C2127.04 (18)C51—C5—C1123.20 (16)
C5—C1—C2105.67 (15)O21—C21—O21A123.0 (2)
C3—C2—C21130.07 (17)O21—C21—C2123.6 (2)
C3—C2—C1108.55 (16)O21A—C21—C2113.45 (18)
C21—C2—C1121.34 (17)C23—C22—O21A111.3 (4)
C2—C3—C31127.68 (16)O51—C51—O51A123.5 (2)
C2—C3—C4108.45 (15)O51—C51—C5124.8 (2)
C31—C3—C4123.87 (15)O51A—C51—C5111.68 (17)
C5—C4—C41126.93 (17)C53—C52—O51A108.4 (2)
C5—C4—C3108.81 (15)
O1—C1—C5—C515.9 (4)C5—C4—C41—C42123.7 (2)
C22—O21A—C21—C2178.1 (3)C52—O51A—C51—C5179.0 (2)
C3—C2—C21—O21132.6 (3)C4—C5—C51—O5162.3 (4)
C21—O21A—C22—C2386.2 (5)C51—O51A—C52—C53176.5 (3)
C2—C3—C31—C36133.9 (2)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds