Download citation
Download citation
link to html
Positively charged methyl­amine-substituted 15-crown­[5] co-crystallizes with one chloride counter-anion and two water mol­ecules, C11H24NO5+·Cl-·2H2O. A supramolecular array of crown ether dimers, linked via water-chloride clusters, is formed.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801021432/na6117sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801021432/na6117Isup2.hkl
Contains datablock I

CCDC reference: 180557

Key indicators

  • Single-crystal X-ray study
  • T = 120 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.034
  • wR factor = 0.087
  • Data-to-parameter ratio = 18.1

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

The title compound, (I), was the sole crystalline product from an attempted substitution reaction on hexachlorotriphosphazatriene by 2-aminomethyl-15-crown[5] and is shown to be (Fig. 1) the protonated crown ether complexed with a chloride anion and two waters of crystallization.

The bond lengths and angles conform to standard values as observed in the Cambridge Structural Database (Allen & Kennard, 1993). A search of the CSD revealed there to be no such similar monosubstituted 15-crown[5] structures.

The macrocycle adopts a conformation such that the maximum deviation from the mean ring plane is 0.928 (6) Å, with the amine (N1) situated 1.92 (3) Å above this plane. The average cross-ring O···O separation is 2.840 (5) Å, which is of a similar order of magnitudte to that of 2.793 (6) and 2.805 (5) Å of uncoordinated 15-crown[5] found in the CSD (CSD refcodes CIGSAM and DUCNEU, respectively).

Interestingly, the water molecules and chloride ion are not complexed by the crown ether, however an extensive supramolecular array is formed by means of numerous hydrogen bonds (Fig. 2). These intermolecular interactions are detailed in Table 2. The crown ethers associate solely with each other, forming dimers linked by a methylene–oxygen and two amine–oxygen interactions. These dimers are connected together, to form a three-dimensional structure, via clusters of water molecules hydrogen bonded to chloride anions. A total of three water molecules are coordinated by two chloride ions. Each chloride is involved in the formation of four hydrogen bonds (three to H2O and one to the ether). The water molecule of O6 in participates in three, and that of O7 in two, classicalhydrogenH-bonding interactions.

Experimental top

The title compound crystallized as a result of an attempted reaction between 2-aminomethyl-15-crown[5] and N3P3Cl6 in tetrahydrofuran solvent.

Refinement top

All H atoms approximate isotropic behaviour. The H atoms on the crown ether were placed in idealized positions with their displacement parameters riding on the value of the parent atom, whilst the water H atoms were experimentally located and allowed to freely refine.

Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) (50% probability displacement ellipsoids).
[Figure 2] Fig. 2. The supramolecular array formed by (I)
(I) top
Crystal data top
C11H24NO5+·Cl·2H2OF(000) = 1392
Mr = 321.79Dx = 1.356 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 21.4218 (4) ÅCell parameters from 11239 reflections
b = 7.8864 (2) Åθ = 2.9–27.5°
c = 19.7794 (4) ŵ = 0.27 mm1
β = 109.328 (1)°T = 120 K
V = 3153.22 (12) Å3Rod, colourless
Z = 80.24 × 0.1 × 0.04 mm
Data collection top
Nonius KappaCCD
diffractometer
Rint = 0.051
Absorption correction: multi-scan
(Blessing, 1997)
θmax = 27.5°, θmin = 3.1°
Tmin = 0.938, Tmax = 0.989h = 2725
14261 measured reflectionsk = 1010
3595 independent reflectionsl = 2525
3010 reflections with I > 2σ(I)
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0345P)2 + 1.8513P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.034(Δ/σ)max = 0.003
wR(F2) = 0.087Δρmax = 0.27 e Å3
S = 1.04Δρmin = 0.31 e Å3
3595 reflectionsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
199 parametersExtinction coefficient: 0.0021 (4)
0 restraints
Crystal data top
C11H24NO5+·Cl·2H2OV = 3153.22 (12) Å3
Mr = 321.79Z = 8
Monoclinic, C2/cMo Kα radiation
a = 21.4218 (4) ŵ = 0.27 mm1
b = 7.8864 (2) ÅT = 120 K
c = 19.7794 (4) Å0.24 × 0.1 × 0.04 mm
β = 109.328 (1)°
Data collection top
Nonius KappaCCD
diffractometer
3595 independent reflections
Absorption correction: multi-scan
(Blessing, 1997)
3010 reflections with I > 2σ(I)
Tmin = 0.938, Tmax = 0.989Rint = 0.051
14261 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.27 e Å3
3595 reflectionsΔρmin = 0.31 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.30886 (6)0.17509 (16)0.09757 (7)0.0173 (3)
H1A0.34350.11470.13590.021*
H1B0.30380.11730.05160.021*
C20.24415 (6)0.16587 (16)0.11262 (7)0.0170 (3)
H20.25130.20960.16210.02*
C30.14096 (7)0.31623 (18)0.08214 (7)0.0223 (3)
H3A0.1390.44080.08730.027*
H3B0.14570.26450.12920.027*
C40.07758 (7)0.25573 (18)0.02785 (8)0.0247 (3)
H4A0.08070.13290.01910.03*
H4B0.04040.27350.04630.03*
C50.00063 (7)0.3317 (2)0.08588 (9)0.0326 (4)
H5A0.02490.43890.08660.039*
H5B0.02390.23970.06990.039*
C60.00088 (7)0.29333 (18)0.15974 (8)0.0268 (3)
H6A0.0450.28750.19360.032*
H6B0.0240.38620.17550.032*
C70.00547 (7)0.01042 (18)0.16194 (7)0.0226 (3)
H7A0.03930.0250.20980.027*
H7B0.02830.00160.12610.027*
C80.03988 (7)0.16048 (17)0.14426 (7)0.0222 (3)
H8A0.0140.26660.14980.027*
H8B0.06650.16520.17670.027*
C90.13480 (7)0.26121 (16)0.05208 (7)0.0199 (3)
H9A0.16390.24390.08140.024*
H9B0.11690.3780.06030.024*
C100.17320 (7)0.23633 (16)0.02545 (7)0.0199 (3)
H10A0.14310.24390.0540.024*
H10B0.2070.32660.04190.024*
C110.21955 (7)0.01537 (16)0.10792 (7)0.0187 (3)
H11A0.25390.08830.14090.022*
H11B0.17930.02080.1220.022*
N10.33014 (5)0.35389 (13)0.09364 (6)0.0170 (2)
H1C0.310.3950.04870.025*
H1D0.37480.35740.1040.025*
H1E0.31860.41830.12580.025*
O10.19772 (4)0.27369 (11)0.06217 (5)0.0180 (2)
O20.06582 (5)0.34680 (13)0.03706 (5)0.0270 (2)
O30.03378 (4)0.13671 (12)0.16135 (5)0.0205 (2)
O40.08209 (4)0.14146 (11)0.07181 (5)0.0199 (2)
O50.20482 (4)0.07377 (11)0.03598 (5)0.0179 (2)
O60.16461 (5)0.68622 (15)0.20050 (6)0.0262 (2)
O70.39466 (6)0.91279 (16)0.24963 (7)0.0366 (3)
Cl10.310005 (16)0.55870 (4)0.222423 (17)0.02295 (12)
H040.3718 (10)0.995 (3)0.2649 (10)0.048 (5)*
H020.1684 (10)0.783 (3)0.2185 (10)0.042 (5)*
H030.3697 (11)0.820 (3)0.2448 (11)0.055 (6)*
H010.2037 (12)0.654 (3)0.2054 (11)0.054 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0195 (6)0.0152 (6)0.0176 (6)0.0013 (5)0.0065 (5)0.0006 (5)
C20.0194 (6)0.0187 (6)0.0127 (6)0.0012 (5)0.0050 (5)0.0006 (5)
C30.0266 (7)0.0220 (7)0.0238 (7)0.0027 (6)0.0158 (6)0.0001 (5)
C40.0226 (7)0.0192 (7)0.0382 (8)0.0005 (5)0.0181 (6)0.0013 (6)
C50.0158 (7)0.0351 (9)0.0446 (9)0.0029 (6)0.0070 (6)0.0132 (7)
C60.0200 (7)0.0219 (7)0.0328 (8)0.0061 (6)0.0010 (6)0.0024 (6)
C70.0171 (7)0.0238 (7)0.0252 (7)0.0037 (6)0.0049 (5)0.0029 (5)
C80.0227 (7)0.0209 (7)0.0205 (7)0.0034 (5)0.0038 (6)0.0046 (5)
C90.0196 (7)0.0139 (6)0.0264 (7)0.0001 (5)0.0079 (6)0.0021 (5)
C100.0212 (7)0.0138 (6)0.0245 (7)0.0022 (5)0.0073 (6)0.0013 (5)
C110.0206 (6)0.0203 (7)0.0149 (6)0.0029 (5)0.0056 (5)0.0013 (5)
N10.0155 (5)0.0175 (6)0.0183 (6)0.0019 (4)0.0063 (4)0.0007 (4)
O10.0180 (5)0.0199 (5)0.0184 (5)0.0026 (4)0.0092 (4)0.0030 (3)
O20.0189 (5)0.0344 (6)0.0272 (5)0.0060 (4)0.0071 (4)0.0029 (4)
O30.0167 (5)0.0190 (5)0.0247 (5)0.0004 (4)0.0053 (4)0.0004 (4)
O40.0198 (5)0.0183 (5)0.0195 (5)0.0026 (4)0.0037 (4)0.0028 (4)
O50.0226 (5)0.0158 (5)0.0158 (4)0.0054 (4)0.0070 (4)0.0011 (3)
O60.0243 (6)0.0243 (6)0.0300 (6)0.0018 (5)0.0092 (4)0.0008 (4)
O70.0340 (6)0.0276 (6)0.0546 (8)0.0042 (5)0.0233 (6)0.0107 (5)
Cl10.0254 (2)0.02148 (19)0.02452 (19)0.00101 (13)0.01164 (15)0.00376 (12)
Geometric parameters (Å, º) top
C1—N11.4919 (16)C7—H7A0.99
C1—C21.5128 (17)C7—H7B0.99
C1—H1A0.99C8—O41.4269 (16)
C1—H1B0.99C8—H8A0.99
C2—O11.4321 (15)C8—H8B0.99
C2—C111.5156 (18)C9—O41.4239 (16)
C2—H21C9—C101.4939 (19)
C3—O11.4369 (15)C9—H9A0.99
C3—C41.503 (2)C9—H9B0.99
C3—H3A0.99C10—O51.4326 (15)
C3—H3B0.99C10—H10A0.99
C4—O21.4189 (17)C10—H10B0.99
C4—H4A0.99C11—O51.4279 (15)
C4—H4B0.99C11—H11A0.99
C5—O21.4363 (18)C11—H11B0.99
C5—C61.503 (2)N1—H1C0.91
C5—H5A0.99N1—H1D0.91
C5—H5B0.99N1—H1E0.91
C6—O31.4276 (16)O6—H020.84 (2)
C6—H6A0.99O6—H010.85 (2)
C6—H6B0.99O7—H040.92 (2)
C7—O31.4306 (16)O7—H030.89 (2)
C7—C81.497 (2)
N1—C1—C2111.80 (10)C8—C7—H7B110.2
N1—C1—H1A109.3H7A—C7—H7B108.5
C2—C1—H1A109.3O4—C8—C7107.34 (10)
N1—C1—H1B109.3O4—C8—H8A110.2
C2—C1—H1B109.3C7—C8—H8A110.2
H1A—C1—H1B107.9O4—C8—H8B110.2
O1—C2—C1107.74 (9)C7—C8—H8B110.2
O1—C2—C11111.72 (10)H8A—C8—H8B108.5
C1—C2—C11110.85 (11)O4—C9—C10108.15 (10)
O1—C2—H2108.8O4—C9—H9A110.1
C1—C2—H2108.8C10—C9—H9A110.1
C11—C2—H2108.8O4—C9—H9B110.1
O1—C3—C4112.09 (11)C10—C9—H9B110.1
O1—C3—H3A109.2H9A—C9—H9B108.4
C4—C3—H3A109.2O5—C10—C9109.88 (10)
O1—C3—H3B109.2O5—C10—H10A109.7
C4—C3—H3B109.2C9—C10—H10A109.7
H3A—C3—H3B107.9O5—C10—H10B109.7
O2—C4—C3109.49 (11)C9—C10—H10B109.7
O2—C4—H4A109.8H10A—C10—H10B108.2
C3—C4—H4A109.8O5—C11—C2108.84 (10)
O2—C4—H4B109.8O5—C11—H11A109.9
C3—C4—H4B109.8C2—C11—H11A109.9
H4A—C4—H4B108.2O5—C11—H11B109.9
O2—C5—C6109.57 (11)C2—C11—H11B109.9
O2—C5—H5A109.8H11A—C11—H11B108.3
C6—C5—H5A109.8C1—N1—H1C109.5
O2—C5—H5B109.8C1—N1—H1D109.5
C6—C5—H5B109.8H1C—N1—H1D109.5
H5A—C5—H5B108.2C1—N1—H1E109.5
O3—C6—C5111.45 (12)H1C—N1—H1E109.5
O3—C6—H6A109.3H1D—N1—H1E109.5
C5—C6—H6A109.3C2—O1—C3113.76 (9)
O3—C6—H6B109.3C4—O2—C5113.96 (11)
C5—C6—H6B109.3C6—O3—C7114.13 (10)
H6A—C6—H6B108C9—O4—C8112.77 (10)
O3—C7—C8107.77 (11)C11—O5—C10111.80 (9)
O3—C7—H7A110.2H02—O6—H01105.9 (19)
C8—C7—H7A110.2H04—O7—H03104.2 (18)
O3—C7—H7B110.2
N1—C1—C2—O150.97 (13)C4—C3—O1—C2119.12 (12)
N1—C1—C2—C11173.49 (10)C3—C4—O2—C5164.72 (11)
O1—C3—C4—O266.88 (14)C6—C5—O2—C4132.98 (13)
O2—C5—C6—O361.19 (16)C5—C6—O3—C777.79 (14)
O3—C7—C8—O466.68 (13)C8—C7—O3—C6165.35 (11)
O4—C9—C10—O565.84 (13)C10—C9—O4—C8176.75 (10)
O1—C2—C11—O555.69 (13)C7—C8—O4—C9170.19 (10)
C1—C2—C11—O564.49 (13)C2—C11—O5—C10172.40 (10)
C1—C2—O1—C3163.06 (10)C9—C10—O5—C11157.03 (10)
C11—C2—O1—C374.96 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H01···Cl10.85 (2)2.31 (2)3.1633 (12)178 (2)
O6—H02···Cl1i0.84 (2)2.44 (2)3.2711 (12)174.7 (18)
N1—H1C···O1ii0.912.523.1063 (14)122
N1—H1C···O5ii0.912.132.9783 (13)154
N1—H1D···O3ii0.911.912.7772 (14)158
N1—H1D···O4ii0.912.583.0662 (14)114
N1—H1E···Cl10.912.273.1640 (11)168
O7—H03···Cl10.89 (2)2.39 (2)3.2757 (13)172.9 (18)
O7—H04···O6i0.92 (2)1.93 (2)2.8397 (16)171.6 (18)
C1—H1B···O1ii0.992.403.1418 (16)131
C9—H9B···O2iii0.992.543.4810 (19)159
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC11H24NO5+·Cl·2H2O
Mr321.79
Crystal system, space groupMonoclinic, C2/c
Temperature (K)120
a, b, c (Å)21.4218 (4), 7.8864 (2), 19.7794 (4)
β (°) 109.328 (1)
V3)3153.22 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.24 × 0.1 × 0.04
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(Blessing, 1997)
Tmin, Tmax0.938, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
14261, 3595, 3010
Rint0.051
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.087, 1.04
No. of reflections3595
No. of parameters199
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.31

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), DENZO and COLLECT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1990).

Selected geometric parameters (Å, º) top
C1—N11.4919 (16)C7—O31.4306 (16)
C2—O11.4321 (15)C8—O41.4269 (16)
C3—O11.4369 (15)C9—O41.4239 (16)
C4—O21.4189 (17)C10—O51.4326 (15)
C5—O21.4363 (18)C11—O51.4279 (15)
C6—O31.4276 (16)
C2—O1—C3113.76 (9)C9—O4—C8112.77 (10)
C4—O2—C5113.96 (11)C11—O5—C10111.80 (9)
C6—O3—C7114.13 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H01···Cl10.85 (2)2.31 (2)3.1633 (12)178 (2)
O6—H02···Cl1i0.84 (2)2.44 (2)3.2711 (12)174.7 (18)
N1—H1C···O1ii0.912.523.1063 (14)122
N1—H1C···O5ii0.912.132.9783 (13)154
N1—H1D···O3ii0.911.912.7772 (14)158
N1—H1D···O4ii0.912.583.0662 (14)114
N1—H1E···Cl10.912.273.1640 (11)168
O7—H03···Cl10.89 (2)2.39 (2)3.2757 (13)172.9 (18)
O7—H04···O6i0.92 (2)1.93 (2)2.8397 (16)171.6 (18)
C1—H1B···O1ii0.992.403.1418 (16)131
C9—H9B···O2iii0.992.543.4810 (19)159
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z; (iii) x, y1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds