Download citation
Download citation
link to html
In the structure of the title compound, [Cd2(C7H3NO4)2(H2O)6]·2C7H5NO4, a centrosymmetric dinuclear CdII complex and free pyridine-2,6-di­carboxyl­ic acid are present in a 1:2 ratio. Within the dinuclear complex, two Cd2+ ions are bridged by two carboxyl­ate O atoms. Each Cd2+ ion is coordinated by one N and three O atoms of the pyridine-2,6-di­carboxyl­ato ligands and three water O atoms, resulting in a distorted pentagonal bipyramidal coordination. The crystal structure is stabilized by hydrogen bonds involving all the H atoms of the water ligands.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801020888/ob6098sup1.cif
Contains datablocks General, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801020888/ob6098Isup2.hkl
Contains datablock I

CCDC reference: 180520

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.037
  • wR factor = 0.124
  • Data-to-parameter ratio = 10.6

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Red Alert Alert Level A:
PLAT_707 Alert A D...A Calc 3.275(6), Rep 3.117(5), Dev. 26.33 Sigma O10 -O4 1.555 1.555 PLAT_707 Alert A D...A Calc 3.117(6), Rep 2.956(5), Dev. 26.83 Sigma O11 -O4 1.555 1.555 PLAT_725 Alert A D-H Calc 0.95685, Rep 1.05000, Dev. 0.09 Ang. O4 -H5 1.555 1.555
Yellow Alert Alert Level C:
PLAT_354 Alert C Short O-H Bond (0.82A) O(9) - H(10) = 0.70 Ang.
3 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

Pyridine-2,6-dicarboxylic acid (dipicolinic acid) is present in large amounts in bacterial spores (Powell, 1953; Church & Halvorson, 1959). It has been considered that it contributes to the high heat resistance of bacterial spores, in which it forms a metal complex with divalent metal ions, especially with the Ca2+ ion. Many crystal structures of chelate compounds of pyridine-2,6-dicarboxylic acid with divalent ions, such as Ca2+ (Strahs & Dickerson, 1968), Ag2+ (Drew et al., 1970), Ti2+ (Schwarzenbach, 1970), Sr2+ (Palmer et al., 1972), Ni2+ (Quaglieri et al., 1972), Fe2+ (Lainé, Gourdon & Launay, 1995; Lainé, Gourdon, Launay & Tuchagues, 1995), Cu2+, Zn2+ (Okabe & Oya, 2000a) and Mn2+ (Okabe & Oya, 2000b) have been determined. In order to clarify the coordination mode of chelate compounds of pyridine-2,6-dicarboxylic acid with divalent metal ions, we have analyzed the crystal structure of the title compound, (I).

Crystals of (I) were obtained as a 1:2 mixture of the dinuclear metal complex and free pyridine-2,6-dicarboxylic acid. Cd2+ ions are related by center of symmetry to each other. Each Cd2+ ion is coordinated by two O atoms and one N atom of the one ligand molecule, by one carboxylate O atom of the second ligand molecule and by three water O atoms. In the dinuclear complex, the carboxylate group and the N atom form a five-membered chelate ring with the Cd2+ ion (N2/C12/C14/O8/Cd and N2/C8/C13/O6/Cd), and the two Cd2+ ions are bridged by two bifurcated coordination bonds of two carboxylate O atoms [O6 and O6i; symmetry code: (i) -x, -y, 1 - z]. Each Cd2+ ion has seven coordinate bonds, forming a distorted pentagonal bipyramid, in which the N2, O6, O6i, O10 and O8 atoms form the distorted pentagonal plane. The pentagonal bipyramidal coordination of the d3sp3 hybrid orbital of the Cd2+ ion seems to be rare; it usually forms an octahedral d2sp3 hybrid orbital consisting of six coordination bonds. The planar conformation of the free ligand molecules co-crystallized with the chelate complex in (I) resembles the crystal structure of pyridine-2,6-dicarboxylic acid itself (Takusagawa et al., 1973).

Up until now, many crystal structure of chelate compounds of pyridine-2,6-dicarboxylic acid with various metal ions have been determined. In the crystal structure of Ag2+ (Drew et al., 1970), Sr2+ (Palmer et al., 1972), Ni2+ (Quaglieri et al., 1972), Cu2+ and Zn2+ (Okabe & Oya, 2000a), the pyridine-2,6-dicarboxylic acid ligand is coordinated to a mononuclear metal ion and acts as a terdentate ligand, in which the central metal ion is bonded to two N and four O atoms of two ligand molecules. But the Ti2+, Fe2+, Ca2+ and Mn2+ complexes are dinuclear, and the Sr2+ complex is polynuclear. Among these, the structures of Fe2+ (Lainé, Gourdon, Launay & Tuchagues, 1995) and Mn2+ (Okabe & Oya, 2000b) complexes are isomorphous with the Cd2+ complex, which are constituted of the dinuclear metal complex and free ligand molecules in 1:2 ratio. Not only do these structures have the same geometry, but they also have the same space group and similar cell constants. Each metal has three bonds to one ligand molecule, one to the second ligand molecule and three to water molecules. In the crystal structure of the title compound, the complex molecules and free ligand molecules are connected by hydrogen bonds involving all the H atoms of the water ligands.

Experimental top

Colorless plate-shaped crystals of (I) were obtained by slow evaporation from a 70% methanol-water solution of pyridine-2,6-dicarboxylic acid and cadmium chloride in a 1:4 molar ratio at room temperature.

Refinement top

H atoms were located from difference Fourier maps and not refined.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 2000); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: TEXSAN.

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) drawing of the title compound with the atomic numbering scheme. Ellipsoids for non-H atoms correspond to 50% probability.
(I) top
Crystal data top
[Cd2(C7H3NO4)2(H2O)6]·2C7H5NO4F(000) = 992.0
Mr = 997.36Dx = 2.005 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.7107 Å
a = 9.222 (3) ÅCell parameters from 25 reflections
b = 14.768 (3) Åθ = 14.6–15.0°
c = 12.239 (3) ŵ = 1.39 mm1
β = 97.70 (2)°T = 296 K
V = 1651.8 (7) Å3Plate, colorless
Z = 20.20 × 0.20 × 0.05 mm
Data collection top
Rigaku AFC-5R
diffractometer
Rint = 0.026
ω–2θ scansθmax = 27.5°
Absorption correction: ψ scan
(North et al., 1968)
h = 011
Tmin = 0.784, Tmax = 0.933k = 019
4175 measured reflectionsl = 1515
3788 independent reflections3 standard reflections every 150 reflections
2684 reflections with I > 2σ(I) intensity decay: 1.4%
Refinement top
Refinement on F2H-atom parameters not refined
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.07P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.124(Δ/σ)max = 0.001
S = 1.08Δρmax = 0.84 e Å3
2684 reflectionsΔρmin = 1.39 e Å3
253 parameters
Crystal data top
[Cd2(C7H3NO4)2(H2O)6]·2C7H5NO4V = 1651.8 (7) Å3
Mr = 997.36Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.222 (3) ŵ = 1.39 mm1
b = 14.768 (3) ÅT = 296 K
c = 12.239 (3) Å0.20 × 0.20 × 0.05 mm
β = 97.70 (2)°
Data collection top
Rigaku AFC-5R
diffractometer
2684 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.026
Tmin = 0.784, Tmax = 0.9333 standard reflections every 150 reflections
4175 measured reflections intensity decay: 1.4%
3788 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037253 parameters
wR(F2) = 0.124H-atom parameters not refined
S = 1.08Δρmax = 0.84 e Å3
2684 reflectionsΔρmin = 1.39 e Å3
Special details top

Refinement. Refinement using reflections with F2 > -10.0 σ(F2). The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd0.08361 (4)0.08439 (2)0.90199 (3)0.0248 (1)
O10.2982 (5)0.4260 (2)1.0909 (4)0.051 (1)
O20.3019 (5)0.2790 (2)1.1255 (4)0.047 (1)
O30.6280 (5)0.1053 (3)0.7794 (4)0.058 (1)
O40.5744 (4)0.0750 (3)0.9485 (4)0.0434 (10)
O50.2018 (4)0.1432 (2)1.1556 (3)0.0350 (9)
O60.0775 (4)0.0686 (2)1.0389 (3)0.0265 (7)
O70.1386 (4)0.3552 (2)0.7438 (3)0.0325 (8)
O80.1488 (4)0.2076 (2)0.7800 (3)0.0327 (8)
O90.0975 (4)0.0371 (2)0.7650 (3)0.0341 (8)
O100.2573 (4)0.0281 (2)0.8055 (3)0.0380 (9)
O110.2849 (4)0.0946 (2)1.0519 (3)0.0328 (8)
N10.4560 (4)0.2408 (3)0.9631 (4)0.0295 (8)
N20.0157 (4)0.2228 (2)0.9407 (3)0.0220 (8)
C10.4146 (5)0.3278 (3)0.9752 (4)0.029 (1)
C20.4455 (6)0.3972 (3)0.9052 (5)0.036 (1)
C30.5179 (6)0.3772 (4)0.8177 (5)0.043 (1)
C40.5607 (6)0.2891 (4)0.8035 (5)0.040 (1)
C50.5286 (5)0.2235 (3)0.8773 (5)0.031 (1)
C60.3327 (5)0.3493 (3)1.0713 (4)0.029 (1)
C70.5803 (5)0.1272 (4)0.8636 (5)0.037 (1)
C80.0987 (5)0.2277 (3)1.0229 (4)0.0218 (9)
C90.1544 (6)0.3097 (3)1.0537 (4)0.030 (1)
C100.1267 (6)0.3873 (3)0.9991 (5)0.035 (1)
C110.0432 (6)0.3823 (3)0.9143 (5)0.032 (1)
C120.0120 (5)0.2991 (3)0.8874 (4)0.0237 (9)
C130.1290 (5)0.1394 (3)1.0788 (4)0.0235 (9)
C140.1073 (5)0.2878 (3)0.7967 (4)0.0246 (9)
H10.41640.45840.91810.0436*
H20.53880.42460.76830.0513*
H30.61010.27410.74240.0478*
H40.25610.28531.19420.0463*
H50.63630.02310.94740.0463*
H60.21290.31261.11230.0354*
H70.16330.44471.01960.0410*
H80.02450.43560.87460.0383*
H90.17430.05910.76330.0463*
H100.10540.00990.76410.0463*
H110.22190.02780.77290.0463*
H120.33620.01400.87900.0463*
H130.34190.12651.02480.0463*
H140.23400.11111.11680.0463*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd0.0334 (2)0.0146 (2)0.0294 (2)0.0022 (1)0.0153 (1)0.0017 (1)
O10.085 (3)0.023 (2)0.051 (3)0.011 (2)0.035 (2)0.001 (2)
O20.073 (3)0.026 (2)0.052 (3)0.006 (2)0.043 (2)0.001 (2)
O30.067 (3)0.059 (3)0.055 (3)0.022 (2)0.027 (2)0.010 (2)
O40.048 (2)0.034 (2)0.052 (3)0.012 (2)0.017 (2)0.002 (2)
O50.051 (2)0.018 (2)0.042 (2)0.005 (1)0.031 (2)0.003 (1)
O60.041 (2)0.011 (1)0.032 (2)0.005 (1)0.022 (1)0.004 (1)
O70.043 (2)0.018 (2)0.040 (2)0.001 (1)0.019 (2)0.009 (1)
O80.050 (2)0.014 (1)0.040 (2)0.003 (1)0.029 (2)0.004 (1)
O90.043 (2)0.018 (2)0.043 (2)0.005 (1)0.008 (2)0.000 (1)
O100.050 (2)0.024 (2)0.046 (2)0.006 (2)0.026 (2)0.005 (2)
O110.037 (2)0.028 (2)0.036 (2)0.004 (1)0.014 (2)0.002 (2)
N10.028 (2)0.028 (2)0.033 (2)0.001 (2)0.010 (2)0.004 (2)
N20.028 (2)0.016 (2)0.024 (2)0.001 (1)0.011 (2)0.001 (1)
C10.029 (2)0.027 (2)0.031 (3)0.001 (2)0.012 (2)0.000 (2)
C20.046 (3)0.025 (2)0.040 (3)0.005 (2)0.012 (2)0.003 (2)
C30.043 (3)0.048 (3)0.042 (3)0.010 (3)0.018 (3)0.007 (3)
C40.038 (3)0.047 (3)0.037 (3)0.005 (2)0.016 (2)0.007 (3)
C50.026 (2)0.034 (3)0.035 (3)0.001 (2)0.010 (2)0.004 (2)
C60.034 (2)0.026 (2)0.028 (3)0.001 (2)0.010 (2)0.000 (2)
C70.028 (2)0.042 (3)0.042 (3)0.008 (2)0.006 (2)0.009 (3)
C80.027 (2)0.013 (2)0.026 (2)0.002 (2)0.010 (2)0.000 (2)
C90.045 (3)0.019 (2)0.029 (3)0.003 (2)0.018 (2)0.000 (2)
C100.054 (3)0.014 (2)0.039 (3)0.010 (2)0.020 (2)0.001 (2)
C110.048 (3)0.014 (2)0.036 (3)0.003 (2)0.015 (2)0.005 (2)
C120.030 (2)0.018 (2)0.024 (2)0.002 (2)0.007 (2)0.002 (2)
C130.031 (2)0.018 (2)0.024 (2)0.001 (2)0.010 (2)0.003 (2)
C140.031 (2)0.019 (2)0.026 (2)0.001 (2)0.010 (2)0.002 (2)
Geometric parameters (Å, º) top
CD—O62.396 (4)N1—C11.354 (6)
CD—O6i2.376 (3)N1—C51.343 (7)
CD—O82.478 (4)N2—C81.345 (6)
CD—O92.310 (4)N2—C121.342 (6)
CD—O102.271 (4)C1—C21.390 (7)
CD—O112.434 (3)C1—C61.514 (8)
CD—N22.315 (4)C2—C31.368 (9)
O1—C61.209 (6)C2—H10.961
O2—C61.284 (6)C3—C41.378 (9)
O2—H40.994C3—H20.961
O3—C71.216 (8)C4—C51.384 (8)
O4—C71.301 (7)C4—H30.951
O4—H50.958C5—C71.516 (8)
O5—C131.227 (6)C8—C91.388 (6)
O6—C131.271 (5)C8—C131.516 (6)
O7—C141.242 (6)C9—C101.368 (7)
O8—C141.271 (5)C9—H60.954
O9—H90.777C10—C111.374 (8)
O9—H100.698C10—H70.957
O10—H110.955C11—C121.387 (7)
O10—H121.099C11—H80.954
O11—H130.810C12—C141.515 (7)
O11—H141.005
O1···O10ii2.787 (6)O5···C11ii3.327 (6)
O1···C10iii3.293 (6)O5···C12ii3.342 (6)
O1···O8ii3.464 (6)O5···C3viii3.477 (7)
O1···C3iv3.474 (7)O6···O7ii3.191 (5)
O1···C2iv3.518 (7)O7···O9ix2.713 (5)
O1···O3ii3.593 (6)O7···O11vi2.955 (5)
O2···O8ii2.514 (6)O7···C13vi2.973 (5)
O2···O112.867 (5)O7···C23.286 (6)
O2···O7ii2.980 (6)O7···C8vi3.466 (5)
O2···C14ii3.097 (7)O7···C33.509 (7)
O2···C4ii3.172 (7)O7···C13.568 (6)
O2···C5ii3.485 (7)O8···C6vi3.357 (7)
O2···N23.551 (5)O8···N13.404 (5)
O3···O9v2.752 (6)O8···C53.553 (6)
O3···C6vi3.535 (7)O9···C10vi3.417 (7)
O4···O11vii2.821 (5)O9···C9vi3.423 (6)
O4···O4vii2.974 (8)O9···C11x3.535 (7)
O4···O113.117 (6)O10···C73.310 (6)
O4···C13v3.124 (6)O10···C3xi3.518 (7)
O4···O5v3.209 (5)O10···C6vi3.538 (7)
O4···O6v3.254 (5)O11···N12.965 (5)
O4···O103.275 (5)C1···C143.390 (6)
O4···O10vii3.541 (6)C6···C123.546 (6)
O5···O7ii3.180 (5)C7···C13v3.502 (7)
O5···C4viii3.183 (7)C13···C14ii3.385 (6)
O5···C14ii3.290 (6)
O6—CD—O6i69.7 (1)N1—C1—C6117.5 (4)
O6—CD—O8135.7 (1)C2—C1—C6119.3 (4)
O6—CD—O991.3 (1)C1—C2—C3119.0 (5)
O6—CD—O10151.1 (1)C1—C2—H1120.5
O6—CD—O1187.7 (1)C3—C2—H1120.5
O6—CD—N269.1 (1)C2—C3—C4118.8 (6)
O6i—CD—O8154.1 (1)C2—C3—H2119.7
O6i—CD—O983.6 (1)C4—C3—H2121.6
O6i—CD—O1081.8 (1)C3—C4—C5119.2 (6)
O6i—CD—O1182.9 (1)C3—C4—H3119.6
O6i—CD—N2138.7 (1)C5—C4—H3121.2
O8—CD—O989.7 (1)N1—C5—C4123.4 (5)
O8—CD—O1073.2 (1)N1—C5—C7117.6 (5)
O8—CD—O11100.8 (1)C4—C5—C7119.0 (5)
O8—CD—N267.0 (1)O1—C6—O2124.9 (5)
O9—CD—O1090.2 (1)O1—C6—C1121.5 (5)
O9—CD—O11165.9 (1)O2—C6—C1113.6 (4)
O9—CD—N298.5 (1)O3—C7—O4125.3 (6)
O10—CD—O1184.0 (1)O3—C7—C5119.9 (5)
O10—CD—N2139.1 (1)O4—C7—C5114.8 (5)
O11—CD—N294.2 (1)N2—C8—C9121.2 (4)
C6—O2—H4120.7N2—C8—C13116.7 (4)
C7—O4—H5112.0C9—C8—C13122.1 (4)
CD—O6—CDi110.3 (1)C8—C9—C10119.9 (5)
CD—O6—C13119.1 (3)C8—C9—H6120.7
CDi—O6—C13129.8 (3)C10—C9—H6119.4
CD—O8—C14119.1 (3)C9—C10—C11118.9 (5)
CD—O9—H9117.5C9—C10—H7121.1
CD—O9—H10112.1C11—C10—H7119.9
H9—O9—H10108.8C10—C11—C12119.2 (5)
CD—O10—H11108.0C10—C11—H8119.9
CD—O10—H1294.5C12—C11—H8120.9
H11—O10—H12109.2N2—C12—C11121.9 (5)
CD—O11—H13101.4N2—C12—C14115.5 (4)
CD—O11—H14102.7C11—C12—C14122.6 (4)
H13—O11—H14125.5O5—C13—O6127.0 (4)
C1—N1—C5116.3 (4)O5—C13—C8117.3 (4)
CD—N2—C8118.7 (3)O6—C13—C8115.7 (4)
CD—N2—C12122.3 (3)O7—C14—O8124.6 (5)
C8—N2—C12118.9 (4)O7—C14—C12119.5 (4)
N1—C1—C2123.3 (5)O8—C14—C12115.9 (4)
CD—O6—CDi—O6i0.0000 (2)O9—CD—O10—H12151.0
CD—O6—CDi—O8i169.8 (2)O9—CD—O11—H13123.7
CD—O6—CDi—O9i93.7 (1)O9—CD—O11—H14105.6
CD—O6—CDi—O10i175.1 (2)O9—CD—N2—C893.9 (3)
CD—O6—CDi—O11i90.2 (1)O9—CD—N2—C1289.2 (3)
CD—O6—CDi—N2i1.9 (2)O10—CD—O6—C13161.0 (3)
CD—O6—C13—O5173.1 (4)O10—CD—O6i—C13i15.1 (4)
CD—O6—C13—C88.2 (5)O10—CD—O8—C14166.7 (3)
CD—O6i—CDi—O60.0000 (1)O10—CD—O9—H9161.4
CD—O6i—CDi—O8i173.6 (1)O10—CD—O9—H1071.4
CD—O6i—CDi—O9i82.7 (1)O10—CD—O11—H1357.7
CD—O6i—CDi—O10i10.0 (3)O10—CD—O11—H14171.6
CD—O6i—CDi—O11i83.2 (1)O10—CD—N2—C8165.8 (3)
CD—O6i—CDi—N2i178.7 (2)O10—CD—N2—C1211.1 (4)
CD—O6i—C13i—O5i4.1 (7)O11—CD—O6—C1387.7 (3)
CD—O6i—C13i—C8i177.2 (3)O11—CD—O6i—C13i100.0 (4)
CD—O8—C14—O7176.9 (3)O11—CD—O8—C1486.4 (3)
CD—O8—C14—C123.7 (5)O11—CD—O9—H9133.3
CD—N2—C8—C9176.5 (3)O11—CD—O9—H106.1
CD—N2—C8—C134.1 (5)O11—CD—O10—H11128.1
CD—N2—C12—C11177.3 (3)O11—CD—O10—H1216.2
CD—N2—C12—C142.6 (5)O11—CD—N2—C880.1 (3)
O1—C6—O2—H47.3O11—CD—N2—C1296.8 (3)
O1—C6—C1—N1176.4 (5)N1—C1—C2—C31.8 (8)
O1—C6—C1—C22.7 (7)N1—C1—C2—H1178.2
O2—C6—C1—N15.4 (6)N1—C5—C4—C30.5 (8)
O2—C6—C1—C2175.6 (4)N1—C5—C4—H3178.3
O3—C7—O4—H516.8N2—CD—O6—C137.7 (3)
O3—C7—C5—N1169.7 (5)N2—CD—O6i—C13i171.7 (3)
O3—C7—C5—C411.8 (7)N2—CD—O8—C143.6 (3)
O4—C7—C5—N113.0 (6)N2—CD—O9—H921.6
O4—C7—C5—C4165.6 (5)N2—CD—O9—H10148.7
O5—C13—C8—N2178.4 (4)N2—CD—O10—H11142.4
O5—C13—C8—C92.2 (6)N2—CD—O10—H12105.7
O6—CD—O6i—CDi0.02 (18)N2—CD—O11—H1381.2
O6—CD—O6i—C13i169.7 (4)N2—CD—O11—H1449.5
O6—CD—O8—C1411.5 (4)N2—C8—C9—C100.8 (7)
O6—CD—O9—H947.5N2—C8—C9—H6179.8
O6—CD—O9—H1079.6N2—C12—C11—C101.1 (7)
O6—CD—O10—H1154.0N2—C12—C11—H8178.5
O6—CD—O10—H1257.9C1—N1—C5—C40.3 (7)
O6—CD—O11—H13150.1C1—N1—C5—C7178.2 (4)
O6—CD—O11—H1419.3C1—C2—C3—C41.5 (8)
O6—CD—N2—C85.8 (3)C1—C2—C3—H2179.3
O6—CD—N2—C12177.3 (4)C1—C6—O2—H4174.5
O6—CDi—O6i—CD0.0000 (1)C2—C1—N1—C50.9 (7)
O6—CDi—O6i—C13i171.0 (4)C2—C3—C4—C50.5 (8)
O6—CDi—O8i—C14i177.7 (3)C2—C3—C4—H3179.2
O6—CDi—O9i—H9i116.9C3—C2—C1—C6179.2 (5)
O6—CDi—O9i—H10i10.3C3—C4—C5—C7178.0 (5)
O6—CDi—O10i—H11i44.5C4—C3—C2—H1178.5
O6—CDi—O10i—H12i67.4C5—N1—C1—C6179.9 (4)
O6—CDi—O11i—H13i140.1C5—C4—C3—H2179.7
O6—CDi—O11i—H14i89.1C5—C7—O4—H5160.4
O6—CDi—N2i—C8i3.9 (4)C6—C1—C2—H10.8
O6—CDi—N2i—C12i179.2 (3)C7—C5—C4—H33.3
O6—C13—C8—N22.8 (6)C8—N2—C12—C110.4 (6)
O6—C13—C8—C9176.6 (4)C8—N2—C12—C14179.5 (4)
O7—C14—C12—N2179.7 (4)C8—C9—C10—C110.2 (7)
O7—C14—C12—C110.2 (7)C8—C9—C10—H7179.4
O8—CD—O6—C1315.4 (4)C9—C8—N2—C120.6 (6)
O8—CD—O6i—C13i0.0 (5)C9—C10—C11—C120.8 (7)
O8—CD—O9—H988.3C9—C10—C11—H8178.8
O8—CD—O9—H10144.6C10—C9—C8—C13178.5 (4)
O8—CD—O10—H11128.7C10—C11—C12—C14178.8 (4)
O8—CD—O10—H12119.4C11—C10—C9—H6179.5
O8—CD—O11—H1313.8C12—N2—C8—C13178.8 (4)
O8—CD—O11—H14116.9C12—C11—C10—H7178.4
O8—CD—N2—C8180.0 (3)C13—C8—C9—H60.8
O8—CD—N2—C123.1 (3)C14—C12—C11—H81.6
O8—C14—C12—N20.9 (6)H1—C2—C3—H20.7
O8—C14—C12—C11179.2 (4)H2—C3—C4—H31.6
O9—CD—O6—C13106.3 (3)H6—C9—C10—H71.3
O9—CD—O6i—C13i76.0 (4)H7—C10—C11—H82.0
O9—CD—O8—C14103.0 (3)H7—C10—C11—H82.0
O9—CD—O10—H1139.1
Symmetry codes: (i) x, y, z+2; (ii) x, y+1/2, z+1/2; (iii) x, y+1, z+2; (iv) x+1, y+1, z+2; (v) x+1, y, z; (vi) x, y+1/2, z1/2; (vii) x+1, y, z+2; (viii) x1, y+1/2, z+1/2; (ix) x, y+1/2, z+3/2; (x) x, y1/2, z+3/2; (xi) x+1, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H4···O8ii0.991.542.515 (6)165
O4—H5···O11vii1.051.882.821 (5)166
O9—H9···O3xii0.781.982.752 (6)172
O9—H10···O7x0.702.022.713 (5)177
O10—H11···O5i0.961.942.638 (5)128
O10—H12···O41.102.423.117 (5)133
O11—H13···O40.812.572.956 (5)127
O11—H14···O7ii1.011.952.956 (6)179
Symmetry codes: (i) x, y, z+2; (ii) x, y+1/2, z+1/2; (vii) x+1, y, z+2; (x) x, y1/2, z+3/2; (xii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Cd2(C7H3NO4)2(H2O)6]·2C7H5NO4
Mr997.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.222 (3), 14.768 (3), 12.239 (3)
β (°) 97.70 (2)
V3)1651.8 (7)
Z2
Radiation typeMo Kα
µ (mm1)1.39
Crystal size (mm)0.20 × 0.20 × 0.05
Data collection
DiffractometerRigaku AFC-5R
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.784, 0.933
No. of measured, independent and
observed [I > 2σ(I)] reflections
4175, 3788, 2684
Rint0.026
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.124, 1.08
No. of reflections2684
No. of parameters253
No. of restraints?
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.84, 1.39

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation, 2000), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), TEXSAN.

Selected geometric parameters (Å, º) top
CD—O62.396 (4)CD—O102.271 (4)
CD—O6i2.376 (3)CD—O112.434 (3)
CD—O82.478 (4)CD—N22.315 (4)
CD—O92.310 (4)
O6—CD—O6i69.7 (1)O8—CD—O11100.8 (1)
O6—CD—O8135.7 (1)O8—CD—N267.0 (1)
O6—CD—O991.3 (1)O9—CD—O1090.2 (1)
O6—CD—O10151.1 (1)O9—CD—O11165.9 (1)
O6—CD—O1187.7 (1)O9—CD—N298.5 (1)
O6—CD—N269.1 (1)O10—CD—O1184.0 (1)
O8—CD—O989.7 (1)O10—CD—N2139.1 (1)
O8—CD—O1073.2 (1)O11—CD—N294.2 (1)
Symmetry code: (i) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H4···O8ii0.991.542.515 (6)165
O4—H5···O11iii1.051.882.821 (5)166
O9—H9···O3iv0.781.982.752 (6)172
O9—H10···O7v0.702.022.713 (5)177
O10—H11···O5i0.961.942.638 (5)128
O10—H12···O41.102.423.117 (5)133
O11—H13···O40.812.572.956 (5)127
O11—H14···O7ii1.011.952.956 (6)179
Symmetry codes: (i) x, y, z+2; (ii) x, y+1/2, z+1/2; (iii) x+1, y, z+2; (iv) x1, y, z; (v) x, y1/2, z+3/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds