Download citation
Download citation
link to html
The title compound, C26H16Cl2N7O12P3.C2H3N, consists of a non-planar trimeric phosphazene ring and two bulky 2,2′-methyl­enebis(4-nitro­phenoxy) side groups, two cis-Cl atoms, and an aceto­nitrile mol­ecule as solvent. With respect to the corresponding values in the reference compound N3P3Cl6, the endocyclic angles around the P atoms are slightly changed, while two of the exocyclic angles are increased and the remaining one is decreased. This situation is different from that in other reported phosphazene derivatives.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801020463/wn6072sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801020463/wn6072Isup2.hkl
Contains datablock I

CCDC reference: 180532

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.067
  • wR factor = 0.194
  • Data-to-parameter ratio = 13.7

checkCIF results

No syntax errors found

GLOBAL _publ field problems



Red Alert Alert Level A:
ATOM_001 Alert A _atom_type_scat_source is missing Reference to scattering factors applied. ADDSYM reports no extra symmetry
Yellow Alert Alert Level C:
PLAT_161 Alert C Missing or Zero su (esd) on x-coordinate for . N8 PLAT_161 Alert C Missing or Zero su (esd) on x-coordinate for . C27 PLAT_161 Alert C Missing or Zero su (esd) on x-coordinate for . C28 PLAT_162 Alert C Missing or Zero su (esd) on y-coordinate for . N8 PLAT_162 Alert C Missing or Zero su (esd) on y-coordinate for . C27 PLAT_162 Alert C Missing or Zero su (esd) on y-coordinate for . C28 PLAT_163 Alert C Missing or Zero su (esd) on z-coordinate for . N8 PLAT_163 Alert C Missing or Zero su (esd) on z-coordinate for . C27 PLAT_163 Alert C Missing or Zero su (esd) on z-coordinate for . C28
1 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
9 Alert Level C = Please check

Comment top

We have previously investigated the reactions of sodium 2,2'-methylenebis(4-nitrophenoxide) and hexachlorocyclotriphosphazatriene, N3P3Cl6. When equal amounts of these compounds were reacted, the reaction yielded two different products, namely the cis-ansa and spiro isomers (Hökelek, Akduran, Yıldız et al., 2000). On the other hand, when one equivalent of N3P3Cl6 and two equivalents of phenoxide were reacted, two different products, namely the cis-(ansa-spiro), (I), and dispiro, (II), isomers were isolated. The title compound, (I), was separated from the reaction mixture by column chromatography. Although, in the literature a series of spiro and ansa cyclophosphazene derivatives have been reported, there is only a very limited number of spiro-ansa cyclophosphazene derivatives (Labarre & Labarre, 1993). The title compound, (I), is the first cis-(ansa-spiro) cyclophosphazene derivative to be reported.

The investigation of cyclic phosphazenes has attracted great interest in their synthetic, spectroscopic and unusual structural properties and dramatic advances have been observed in this area during the past decade of the millenium (Allcock, 1985; Shaw, 1980; Fincham et al., 1986; Krishnamurty & Woods, 1987). The bulky phenoxy derivatives of hexachlorocyclo-2λ5,4λ5,6λ5-triphosphazatriene (N3P3Cl6) and octachlorocyclo-2λ5,4λ5,6λ5, 8λ5-tetraphosphazatetraene (N4P4Cl8), have potential use in the synthesis of new, small-molecule organocyclophosphazenes with inorganic backbones and aryloxy side groups which have many different uses (Allcock, 1985; Allcock et al., 1987; Olshavsky & Allcock, 1995; Hökelek & Kılıç, 1990; Hökelek et al., 1996). The small-molecule organocyclophosphazenes are also small-molecule models for the corresponding linear organo-polyphosphazenes (Allcock, Dembek et al., 1992; Allen, 1994). Some of the aminophosphazenes are thought to be useful as cancer chemotherapeutic agents (Chernov et al., 1959; Huizen, 1984).

The structures of the organic, inorganic or organometallic side groups are highly effective in determining the specific physical or chemical properties of phosphazene derivatives (Allcock et al., 1996). The organophosphazene derivatives are used in polymer synthesis and the resulting polymers are expected to have unique physical properties (Allcock, 1972; Allcock et al., 1987).

N3P3Cl6 is a standard compound for trimeric phosphazene derivatives. The crystal structures of N3P3Cl6 (Bullen, 1971) and only a few of its derivatives with bulky phenoxy groups, such as [Cl5N3P3(OC6H2O-2,4,6-Me)], (III) (Hökelek, Akduran, Kılıç et al., 2000), [Cl5N3P3(OC6H2-2,6-tBu2-4-Me)], (IV) (Hökelek et al., 1999), [Cl7N4P4(OC6H2-2,6-tBu2-4-Me)], (V) (Hökelek et al., 1996), Cl4N3P3[(OC6H3)(NO)2)CH2(OC6H3)(NO2)], (VI) (Hökelek, Akduran, Yıldız et al., 2000), Cl2N3P3[(OC6H3)(NO2)CH2(OC6H3(NO2)](Ph)2, (VII) (Hökelek et al., 2001), [Cl5N3P3(OC6H2-2,4,6-tBu3)], (VIII) (Kılıç et al., 1996), [N3P3(OC6H4OCH2Ph-4)6], (IX) (Allcock et al., 1996), [Cl5N3P3—P3N3Cl4(OC6H3-2,6-tBu2)], (X) (Hökelek et al., 1994), [N3P3Cl4(OC6H3Cl2-o)2], (XI), and [N3P3Cl4(OC6H3Me2-o)2], (XII) (Allcock, Ngo et al., 1992), have been reported.

The study of (I) was undertaken in order to understand the influence of the highly hindered 2,2'-methylenebis(4-nitrophenoxy) side groups on the structure of the cyclic trimeric phosphazene ring (Fig. 1). The structure consists of a non-planar trimeric phosphazene ring with 2,2'-methylenebis(4-nitrophenoxy) groups attached to atoms P3, P2 and P1, respectively, and an acetonitrile molecule which is used as a solvent in the synthesis. The phenyl ring A(C1–C6) is planar while B(C7–C12), C(C13–C18) and D(C19–C24) are nearly planar, with the largest displacements from the least-squares planes -0.014 (7) Å for C12, -0.014 (4) Å for C18 and -0.019 (5) Å for C24.

The dihedral angles between the phenyl ring planes are A/B = 65.5 (2), A/C = 70.7 (2), A/D = 28.2 (1), B/C = 81.2 (1), B/D = 87.9 (1) and C/D = 82.8 (2)°. The three N atoms are displaced on opposite sides (+ and -) with respect to the plane through the P atoms as follows: N3 - 0.168 (4), N4 - 0.298 (4) and N5 + 0.104 (4) Å.

The P—N—P bond angles range from 118.6 (3) to 121.8 (2)°. In addition, the variation in the N—P—N bond angles, ranging from 117.4 (2) to 118.7 (2)°, is small. The endocyclic N3—P1—N5 angle [118.7 (2)°] is a little increased and N4—P2—N5 [117.5 (2)°] and N3—P3—N4 [117.4 (2)°] angles are a little decreased, while the exocyclic O6—P3—Cl2 [104.1 (1)°] and O7—P1—O8 [104.9 (2) °] angles are increased and O5—P2—Cl1 angle [97.4 (1)°] is decreased with the variations in the electron supply and the repulsion of the substituents with respect to the values [118.3 (2) and 101.2 (1)°, respectively] in the standard compound, N3P3Cl6 (Bullen, 1971).

In trimeric phosphazenes, it has been observed that endocyclic N—P—N angles about P decrease while exocyclic R—P—Cl angles increase (Contractor et al., 1985; Fincham et al., 1986; Hökelek et al., 1994; Kılıç et al., 1996); these results are different from the findings in the tetrameric phosphazenes containing bulky phenoxy groups (Allcock et al., 1995; Allcock, Dembek et al., 1992; Hökelek et al., 1996; Hökelek & Kılıç, 1990). In (I), the N—P—N angles are larger and the O—P—Cl angles are smaller than the corresponding ones in N3P3Cl5(NPPh3), (XIII) [114.4 (1) and 107.2 (1)°; Fincham et al., 1986], N3P3Cl4(NPPh3)2, (XIV) [109.2 (4) and 110.9 (4)°; Fincham et al., 1986], N3P3Cl4Ph(PPh2), (XV) [114.5 (2) and 106.7 (1)°; Allcock et al., 1990] and (IV) [115.1 (1) and 106.79 (9)°; Hökelek et al., 1999] which implies less electron donation to the N3P3 ring.

The O6—P3—N3 [106.1 (2)°] and O5—P2—N5 [109.5 (2)°] angles have different values, while O6—P3—N4 [111.6 (2)°] and O5—P2—N4 [110.4 (2)°] and O8—P1—N3 [110.6 (2)°] and O7—P1—N3 [109.1 (2)°] have nearly the same values. The P1—N3—P3, P2—N4—P3 and P1—N5—P2 angles [119.3 (2), 118.6 (2) and 121.8 (2)°, respectively] may be compared with the corresponding value [121.4 (3) °] in N3P3Cl6 (Bullen, 1971).

In the benzene ring, the endocyclic angles are also decreased when the substituents are electron-releasing and increased when the substituents are electron-withdrawing groups (Table 1). As in the benzene ring, the changes in the bond angles are more reliable guides to electronic shifts than the changes in bond lengths (Fincham et al., 1986; Contractor et al., 1985).

In trimeric phosphazenes, the P—N bond lengths may be correlated with the orbital electronegativities of groups of atoms, as in the tetrameric phosphazenes (Bullen & Tucker, 1972). In such structures, the lengths of the P—N bonds depend on the electronegativities of the substituents. In the present structure, the Cl atoms and 2,2'-methylenebis(4-nitrophenoxy) groups seem to be slightly electron withdrawing. Thus, the P—-Cl and P–O bonds are not seen to change substantially. In a given N3P3R6 structure, the lengths of the P—N bonds are generally equal, provided all the substituents (R) are the same. If R is a difunctional bulky substituent (Kubono et al., 1994) or the ring contains different substituents, the P—N bonds may show significant variations (Fincham et al., 1986; Contractor et al., 1985).

When electron-donating groups are present, different P—N distances in the cyclotri(phosphazene) ring could be expected, but there is no clear difference in the present structure between the electronegativities of the atoms attached to the P atoms; the P—N bond distances vary from 1.570 (3) to 1.588 (4) Å.

In related compounds, the corresponding mean bond lengths are: 1.576 (3) Å in (VI) (Hökelek, Akduran, Yıldız et al., 2000), 1.573 (3) Å in (IV) (Hökelek et al., 1999), 1.58 (1) Å in (VIII) (Kılıç et al., 1996), 1.576 (5) Å in (X) (Hökelek et al., 1994), 1.572 (3) Å in [N3P3Cl4Ph(PPh2)], (XVI) (Allcock et al., 1990) and 1.581 (3) Å in (N3P3Cl6) (Bullen, 1971). These values for P—N bonds are considerably smaller than the P—N single-bond length of 1.683 (5) Å (Allen et al., 1987). The short bonds in the ring have appreciable double-bond character; this is generally observed for phosphazene derivatives (Wagner & Vos, 1968).

In the acetonitrile solvent molecule the bond lengths and angles (Table 1) are in accordance with the conventional values (Allen et al., 1987).

Experimental top

2,2'-Methylenebis(4-nitrophenol) (10.00 g, 34.4 mmol) in tetrahydrofuran (THF, 100 ml) was added slowly over a period of 30 min to NaH (1.65 g, 6.88 mmol) in THF (50 ml) with stirring at 298 K, with argon being passed over the reaction mixture. The solvent was removed under reduced pressure and the residue was dried. The sodium phenoxide (2.00 g, 5.98 mmol) was dissolved in CH3CN (100 ml). To this mixture, N3P3Cl6 (0.96 g, 2.76 mmol) in CH3CN (100 ml) was added slowly and the resulting solution allowed to come to ambient temperature with constant stirring. After the mixture had been vigorously stirred and boiled under reflux for 15 h, the precipitated salt (NaCl) was filtered off and the solvent removed in vacuo. The products cis-(ansa-spiro), (I), and dispiro, (II), were separated by column chromatography. The isomer (I) was crystallized from CH2Cl2/n-hexane (3:2) [m.p. 553 K (decomposition)].

Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 (Farrugia, 1997) drawing of the title molecule with the atom-numbering scheme. The displacement ellipsoids are drawn at the 30% probability level.
(I) top
Crystal data top
C26H16Cl2N7O12P3·C2H3NZ = 2
Mr = 823.32F(000) = 836
Triclinic, P1Dx = 1.565 Mg m3
a = 11.5487 (10) ÅCu Kα radiation, λ = 1.54180 Å
b = 11.857 (1) ÅCell parameters from 25 reflections
c = 15.0238 (10) Åθ = 16–42°
α = 97.493 (10)°µ = 3.63 mm1
β = 109.989 (10)°T = 293 K
γ = 109.776 (10)°Block-like, colorless
V = 1747.5 (2) Å30.30 × 0.25 × 0.20 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
4690 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 74.2°, θmin = 4.7°
non–profiled ω scansh = 014
Absorption correction: ψ scans
(MolEN; Fair, 1990)
k = 1413
Tmin = 0.388, Tmax = 0.484l = 1817
7549 measured reflections3 standard reflections every 120 min
7127 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.194H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.1313p)2]
where p = (Fo2 + 2Fc2)/3
6411 reflections(Δ/σ)max < 0.001
469 parametersΔρmax = 1.10 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
C26H16Cl2N7O12P3·C2H3Nγ = 109.776 (10)°
Mr = 823.32V = 1747.5 (2) Å3
Triclinic, P1Z = 2
a = 11.5487 (10) ÅCu Kα radiation
b = 11.857 (1) ŵ = 3.63 mm1
c = 15.0238 (10) ÅT = 293 K
α = 97.493 (10)°0.30 × 0.25 × 0.20 mm
β = 109.989 (10)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
4690 reflections with I > 2σ(I)
Absorption correction: ψ scans
(MolEN; Fair, 1990)
Rint = 0.034
Tmin = 0.388, Tmax = 0.4843 standard reflections every 120 min
7549 measured reflections intensity decay: 1%
7127 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.194H-atom parameters constrained
S = 1.04Δρmax = 1.10 e Å3
6411 reflectionsΔρmin = 0.56 e Å3
469 parameters
Special details top

Geometry. all e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. the cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. an approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of f2 against all reflections. the weighted r-factor wr and goodness of fit s are based on f2, conventional r-factors r are based on f, with f set to zero for negative f2. the threshold expression of f2 > σ(f2) is used only for calculating r-factors(gt) etc. and is not relevant to the choice of reflections for refinement. r-factors based on f2 are statistically about twice as large as those based on f, and r- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.38604 (11)0.39128 (12)0.12688 (10)0.0663 (3)
Cl20.05091 (13)0.01764 (10)0.18778 (9)0.0629 (3)
P10.23329 (10)0.37485 (9)0.34729 (7)0.0429 (2)
P20.22987 (10)0.35779 (10)0.16229 (7)0.0444 (2)
P30.07247 (10)0.15802 (9)0.20110 (7)0.0415 (2)
O10.3052 (5)0.1841 (8)0.5044 (4)0.139 (3)
O20.1369 (5)0.2403 (6)0.6450 (3)0.1167 (19)
O30.4528 (6)0.2162 (6)0.8156 (4)0.1103 (17)
O40.6033 (7)0.1940 (7)0.7763 (5)0.143 (3)
O50.1505 (3)0.4154 (3)0.08541 (19)0.0465 (6)
O60.0775 (3)0.1477 (3)0.16026 (19)0.0452 (6)
O70.1616 (3)0.4505 (3)0.3864 (2)0.0535 (7)
O80.3681 (3)0.4060 (3)0.43821 (19)0.0486 (6)
O90.2763 (5)0.5725 (5)0.1651 (4)0.1044 (15)
O100.4080 (4)0.4197 (4)0.0331 (3)0.0747 (10)
O110.5220 (5)0.1790 (5)0.2590 (3)0.124 (2)
O120.6250 (4)0.2502 (4)0.1685 (3)0.1060 (17)
N10.1838 (5)0.2374 (6)0.5581 (4)0.0864 (15)
N20.5041 (6)0.2158 (6)0.7582 (4)0.0884 (16)
N30.1395 (3)0.2308 (3)0.3135 (2)0.0438 (7)
N40.1467 (3)0.2113 (3)0.1350 (2)0.0476 (7)
N50.2750 (4)0.4364 (3)0.2704 (2)0.0508 (8)
N60.2968 (5)0.4867 (4)0.0970 (3)0.0622 (10)
N70.5288 (5)0.1789 (5)0.1780 (4)0.0811 (14)
N80.14490.02370.52400.0991 (18)
C10.0922 (5)0.2940 (5)0.5149 (4)0.0643 (12)
C20.1475 (5)0.2862 (5)0.4148 (4)0.0664 (13)
C30.0604 (5)0.3379 (5)0.3727 (4)0.0633 (12)
C40.0770 (4)0.3962 (4)0.4308 (3)0.0508 (9)
C50.1336 (4)0.4060 (4)0.5319 (3)0.0495 (9)
C60.0446 (4)0.3516 (5)0.5726 (3)0.0567 (10)
C70.4565 (5)0.2571 (5)0.6707 (4)0.0634 (12)
C80.3884 (4)0.3322 (4)0.6710 (3)0.0534 (10)
C90.3533 (4)0.3814 (4)0.5919 (3)0.0454 (8)
C100.3881 (4)0.3491 (4)0.5147 (3)0.0456 (8)
C110.4540 (5)0.2732 (5)0.5150 (4)0.0600 (11)
C120.4916 (6)0.2277 (6)0.5945 (4)0.0704 (14)
C130.0367 (4)0.4283 (3)0.0916 (3)0.0403 (7)
C140.0577 (4)0.5385 (4)0.1510 (3)0.0497 (9)
C150.0527 (5)0.5581 (4)0.1535 (3)0.0551 (10)
C160.1783 (4)0.4669 (4)0.0964 (3)0.0495 (9)
C170.2018 (4)0.3544 (4)0.0369 (3)0.0463 (8)
C180.0912 (4)0.3328 (3)0.0352 (3)0.0404 (8)
C190.3202 (4)0.0118 (4)0.0991 (3)0.0511 (9)
C200.4117 (4)0.0928 (4)0.0894 (3)0.0589 (11)
C210.3940 (5)0.1169 (5)0.0005 (4)0.0627 (12)
C220.2792 (5)0.0352 (4)0.0822 (3)0.0581 (11)
C230.1878 (4)0.0667 (4)0.0725 (3)0.0442 (8)
C240.2067 (4)0.0963 (3)0.0170 (3)0.0420 (8)
C250.2836 (5)0.4696 (4)0.5924 (3)0.0541 (10)
C260.1128 (4)0.2119 (4)0.0297 (3)0.0435 (8)
C270.11370.05600.64070.167 (6)
C280.03320.00740.56980.230 (10)
H20.24040.24730.37750.080*
H30.09390.33360.30600.076*
H60.07760.35400.63890.068*
H80.36610.34980.72350.064*
H110.47340.25230.46160.072*
H120.53960.17810.59710.085*
H140.14490.59890.18890.060*
H150.04150.63150.19320.066*
H170.28950.29490.00110.056*
H190.33520.02510.16100.061*
H210.45730.18590.00610.075*
H220.26380.04940.14380.070*
H2510.30080.50570.65980.065*
H2520.32210.53710.56690.065*
H2610.02600.20790.01510.052*
H2620.14980.21240.09810.052*
H2710.15710.01230.61510.251*
H2720.11950.04300.70350.251*
H2730.15770.14360.64830.251*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0490 (6)0.0807 (8)0.0802 (8)0.0236 (5)0.0380 (5)0.0347 (6)
Cl20.0820 (8)0.0465 (5)0.0696 (7)0.0258 (5)0.0402 (6)0.0222 (5)
P10.0399 (5)0.0446 (5)0.0358 (4)0.0115 (4)0.0105 (4)0.0154 (4)
P20.0384 (5)0.0503 (5)0.0416 (5)0.0120 (4)0.0172 (4)0.0197 (4)
P30.0431 (5)0.0412 (5)0.0382 (5)0.0134 (4)0.0172 (4)0.0148 (4)
O10.053 (2)0.235 (7)0.101 (4)0.027 (3)0.040 (3)0.023 (4)
O20.085 (3)0.160 (5)0.068 (3)0.007 (3)0.043 (2)0.003 (3)
O30.119 (4)0.152 (5)0.078 (3)0.056 (4)0.047 (3)0.072 (3)
O40.171 (6)0.210 (7)0.135 (5)0.137 (6)0.077 (5)0.121 (5)
O50.0453 (14)0.0516 (15)0.0414 (13)0.0120 (12)0.0214 (12)0.0212 (11)
O60.0406 (13)0.0491 (14)0.0376 (12)0.0114 (11)0.0145 (11)0.0097 (11)
O70.0564 (16)0.0548 (16)0.0491 (15)0.0253 (14)0.0166 (13)0.0215 (13)
O80.0370 (13)0.0590 (16)0.0390 (13)0.0111 (12)0.0093 (11)0.0209 (12)
O90.099 (3)0.115 (4)0.103 (3)0.052 (3)0.053 (3)0.008 (3)
O100.064 (2)0.082 (2)0.095 (3)0.039 (2)0.041 (2)0.031 (2)
O110.099 (3)0.119 (4)0.057 (2)0.024 (3)0.004 (2)0.014 (2)
O120.061 (2)0.096 (3)0.087 (3)0.023 (2)0.003 (2)0.036 (2)
N10.059 (3)0.122 (4)0.069 (3)0.032 (3)0.032 (2)0.002 (3)
N20.097 (4)0.124 (4)0.078 (3)0.068 (4)0.040 (3)0.062 (3)
N30.0408 (16)0.0454 (17)0.0360 (15)0.0094 (13)0.0121 (13)0.0156 (13)
N40.0469 (17)0.0527 (18)0.0435 (17)0.0160 (15)0.0227 (14)0.0156 (14)
N50.0525 (19)0.0458 (17)0.0381 (16)0.0072 (15)0.0122 (14)0.0152 (14)
N60.072 (3)0.067 (2)0.065 (2)0.033 (2)0.041 (2)0.025 (2)
N70.060 (2)0.071 (3)0.065 (3)0.000 (2)0.003 (2)0.026 (2)
N80.097 (4)0.067 (3)0.100 (4)0.001 (3)0.037 (3)0.025 (3)
C10.055 (3)0.077 (3)0.063 (3)0.032 (2)0.027 (2)0.004 (2)
C20.046 (2)0.089 (4)0.058 (3)0.032 (2)0.014 (2)0.008 (2)
C30.052 (2)0.081 (3)0.053 (2)0.034 (2)0.013 (2)0.012 (2)
C40.048 (2)0.058 (2)0.046 (2)0.0269 (19)0.0144 (17)0.0118 (18)
C50.049 (2)0.055 (2)0.043 (2)0.0262 (19)0.0156 (17)0.0092 (17)
C60.053 (2)0.069 (3)0.047 (2)0.028 (2)0.0205 (19)0.005 (2)
C70.056 (3)0.086 (3)0.056 (3)0.031 (2)0.023 (2)0.038 (2)
C80.043 (2)0.067 (3)0.043 (2)0.0149 (19)0.0167 (17)0.0189 (19)
C90.0358 (18)0.051 (2)0.0395 (18)0.0117 (16)0.0109 (15)0.0117 (15)
C100.0346 (17)0.053 (2)0.0411 (19)0.0129 (16)0.0094 (15)0.0198 (16)
C110.059 (3)0.090 (3)0.056 (2)0.044 (3)0.034 (2)0.034 (2)
C120.071 (3)0.098 (4)0.074 (3)0.057 (3)0.037 (3)0.045 (3)
C130.0411 (18)0.0410 (18)0.0368 (17)0.0117 (15)0.0167 (15)0.0166 (14)
C140.055 (2)0.045 (2)0.0420 (19)0.0126 (17)0.0190 (17)0.0141 (16)
C150.072 (3)0.056 (2)0.045 (2)0.028 (2)0.029 (2)0.0173 (18)
C160.056 (2)0.057 (2)0.044 (2)0.0246 (19)0.0268 (18)0.0215 (18)
C170.047 (2)0.051 (2)0.0418 (19)0.0169 (17)0.0195 (16)0.0194 (16)
C180.0426 (18)0.0417 (18)0.0362 (17)0.0123 (15)0.0184 (15)0.0169 (14)
C190.044 (2)0.052 (2)0.044 (2)0.0122 (17)0.0086 (17)0.0178 (17)
C200.048 (2)0.050 (2)0.054 (2)0.0081 (19)0.0036 (19)0.0162 (19)
C210.047 (2)0.056 (2)0.063 (3)0.0027 (19)0.014 (2)0.024 (2)
C220.052 (2)0.059 (3)0.049 (2)0.007 (2)0.0177 (19)0.0204 (19)
C230.0409 (19)0.049 (2)0.0374 (17)0.0129 (16)0.0153 (15)0.0128 (15)
C240.0409 (18)0.0415 (18)0.0392 (18)0.0137 (15)0.0141 (15)0.0136 (15)
C250.058 (2)0.055 (2)0.041 (2)0.020 (2)0.0159 (18)0.0078 (17)
C260.0443 (19)0.0451 (19)0.0393 (18)0.0143 (16)0.0183 (15)0.0142 (15)
C270.074 (4)0.250 (13)0.105 (6)0.021 (6)0.029 (4)0.086 (8)
C280.239 (16)0.45 (3)0.138 (10)0.21 (2)0.130 (12)0.195 (16)
Geometric parameters (Å, º) top
P2—N51.573 (4)O10—N61.213 (6)
P2—N41.588 (4)C5—C61.389 (6)
P2—O51.596 (3)C5—C41.405 (6)
P2—Cl11.9799 (14)C5—C251.502 (6)
P1—O81.566 (3)C20—C211.378 (6)
P1—N51.570 (3)C20—N71.458 (6)
P1—N31.580 (3)N6—O91.240 (6)
P1—O71.592 (3)N6—C161.468 (6)
Cl2—P31.9864 (15)C17—C161.389 (6)
O7—C41.395 (5)C17—H170.9300
O5—C131.406 (5)C6—C11.376 (7)
O8—C101.399 (4)C6—H60.9300
N4—P31.581 (3)C16—C151.362 (6)
N3—P31.571 (3)C15—H150.9300
C28—N81.1298 (2)C22—C211.382 (6)
C28—C271.5125 (3)C22—H220.9300
C27—H2710.9600C11—C121.371 (6)
C27—H2720.9600C11—H110.9300
C27—H2730.9600C8—C71.373 (7)
P3—O61.581 (3)C8—H80.9300
O6—C231.406 (4)C25—H2510.9700
C14—C131.376 (6)C25—H2520.9700
C14—C151.382 (6)C1—C21.394 (7)
C14—H140.9300C1—N11.448 (7)
C9—C81.389 (5)C21—H210.9300
C9—C101.399 (6)N7—O121.214 (6)
C9—C251.522 (6)N7—O111.245 (7)
C18—C131.395 (5)C7—C121.379 (7)
C18—C171.393 (6)C7—N21.458 (6)
C18—C261.515 (5)C12—H120.9300
C10—C111.361 (6)O3—N21.202 (7)
C19—C241.388 (5)C4—C31.382 (6)
C19—C201.393 (6)O1—N11.228 (7)
C19—H190.9300C3—C21.380 (7)
C23—C221.372 (6)C3—H30.9300
C23—C241.398 (5)N1—O21.221 (7)
C26—C241.515 (5)C2—H20.9300
C26—H2610.9700O4—N21.209 (7)
C26—H2620.9700
N5—P2—N4117.47 (17)C4—C5—C25121.4 (4)
N5—P2—O5109.49 (18)C21—C20—C19122.1 (4)
N4—P2—O5110.35 (17)C21—C20—N7119.7 (4)
N5—P2—Cl1111.03 (15)C19—C20—N7118.2 (4)
N4—P2—Cl1109.24 (14)O10—N6—O9123.4 (5)
O5—P2—Cl197.43 (11)O10—N6—C16119.7 (4)
O8—P1—N5106.24 (17)O9—N6—C16116.9 (5)
O8—P1—N3110.62 (16)C16—C17—C18118.5 (4)
N5—P1—N3118.67 (18)C16—C17—H17120.8
O8—P1—O7104.85 (16)C18—C17—H17120.8
N5—P1—O7106.49 (18)C1—C6—C5120.1 (4)
N3—P1—O7109.05 (17)C1—C6—H6119.9
C4—O7—P1119.6 (3)C5—C6—H6119.9
C13—O5—P2118.7 (2)C15—C16—C17123.8 (4)
C10—O8—P1128.1 (2)C15—C16—N6118.9 (4)
P1—N5—P2121.8 (2)C17—C16—N6117.3 (4)
P3—N4—P2118.6 (2)C16—C15—C14118.1 (4)
P3—N3—P1119.28 (19)C16—C15—H15120.9
N8—C28—C27173.445 (1)C14—C15—H15120.9
C28—C27—H271109.5C23—C22—C21120.2 (4)
C28—C27—H272109.5C23—C22—H22119.9
H271—C27—H272109.5C21—C22—H22119.9
C28—C27—H273109.5C10—C11—C12119.6 (4)
H271—C27—H273109.5C10—C11—H11120.2
H272—C27—H273109.5C12—C11—H11120.2
N3—P3—N4117.38 (18)C7—C8—C9119.1 (4)
N3—P3—O6106.06 (16)C7—C8—H8120.4
N4—P3—O6111.59 (16)C9—C8—H8120.4
N3—P3—Cl2109.30 (13)C5—C25—C9112.8 (4)
N4—P3—Cl2107.66 (14)C5—C25—H251109.0
O6—P3—Cl2104.05 (12)C9—C25—H251109.0
C23—O6—P3128.1 (3)C5—C25—H252109.0
C13—C14—C15119.1 (4)C9—C25—H252109.0
C13—C14—H14120.4H251—C25—H252107.8
C15—C14—H14120.4C6—C1—C2122.6 (5)
C8—C9—C10117.3 (4)C6—C1—N1119.6 (5)
C8—C9—C25120.3 (4)C2—C1—N1117.9 (4)
C10—C9—C25122.4 (3)C20—C21—C22117.8 (4)
C13—C18—C17117.2 (4)C20—C21—H21121.1
C13—C18—C26122.6 (3)C22—C21—H21121.1
C17—C18—C26120.1 (3)O12—N7—O11123.7 (5)
C14—C13—C18123.2 (4)O12—N7—C20118.2 (5)
C14—C13—O5117.5 (3)O11—N7—C20118.0 (4)
C18—C13—O5119.3 (3)C8—C7—C12122.7 (4)
C11—C10—C9122.8 (4)C8—C7—N2118.5 (5)
C11—C10—O8117.1 (4)C12—C7—N2118.5 (5)
C9—C10—O8119.7 (4)C11—C12—C7118.4 (4)
C24—C19—C20120.4 (4)C11—C12—H12120.8
C24—C19—H19119.8C7—C12—H12120.8
C20—C19—H19119.8C3—C4—O7117.7 (4)
C22—C23—C24123.0 (4)C3—C4—C5123.0 (4)
C22—C23—O6116.1 (3)O7—C4—C5119.2 (4)
C24—C23—O6120.6 (3)C2—C3—C4119.3 (4)
C18—C26—C24113.7 (3)C2—C3—H3120.3
C18—C26—H261108.8C4—C3—H3120.3
C24—C26—H261108.8O2—N1—O1123.0 (5)
C18—C26—H262108.8O2—N1—C1118.7 (5)
C24—C26—H262108.8O1—N1—C1118.2 (5)
H261—C26—H262107.7C3—C2—C1118.1 (4)
C19—C24—C23116.3 (3)C3—C2—H2120.9
C19—C24—C26118.8 (3)C1—C2—H2120.9
C23—C24—C26124.8 (3)O3—N2—O4121.3 (5)
C6—C5—C4116.8 (4)O3—N2—C7119.6 (5)
C6—C5—C25121.7 (4)O4—N2—C7118.7 (5)
O8—P1—O7—C487.7 (3)C24—C19—C20—N7179.7 (5)
N5—P1—O7—C4159.9 (3)C13—C18—C17—C162.1 (5)
N3—P1—O7—C430.8 (3)C26—C18—C17—C16179.2 (3)
N5—P2—O5—C1356.1 (3)C4—C5—C6—C11.4 (7)
N4—P2—O5—C1374.7 (3)C25—C5—C6—C1179.9 (4)
Cl1—P2—O5—C13171.5 (2)C18—C17—C16—C150.1 (6)
N5—P1—O8—C10163.2 (3)C18—C17—C16—N6179.6 (3)
N3—P1—O8—C1033.1 (4)O10—N6—C16—C15165.1 (4)
O7—P1—O8—C1084.3 (4)O9—N6—C16—C1515.5 (6)
O8—P1—N5—P2123.3 (3)O10—N6—C16—C1715.1 (6)
N3—P1—N5—P22.0 (4)O9—N6—C16—C17164.3 (4)
O7—P1—N5—P2125.3 (3)C17—C16—C15—C141.1 (6)
N4—P2—N5—P13.4 (4)N6—C16—C15—C14179.2 (4)
O5—P2—N5—P1123.5 (2)C13—C14—C15—C160.3 (6)
Cl1—P2—N5—P1130.1 (2)C24—C23—C22—C212.3 (7)
N5—P2—N4—P320.2 (3)O6—C23—C22—C21177.1 (4)
O5—P2—N4—P3106.3 (2)C9—C10—C11—C121.5 (8)
Cl1—P2—N4—P3147.73 (18)O8—C10—C11—C12171.7 (5)
O8—P1—N3—P3132.6 (2)C10—C9—C8—C71.1 (6)
N5—P1—N3—P39.5 (3)C25—C9—C8—C7177.2 (4)
O7—P1—N3—P3112.5 (2)C6—C5—C25—C990.1 (5)
P1—N3—P3—N426.1 (3)C4—C5—C25—C988.3 (5)
P1—N3—P3—O699.3 (2)C8—C9—C25—C5100.3 (4)
P1—N3—P3—Cl2149.06 (18)C10—C9—C25—C581.6 (5)
P2—N4—P3—N331.6 (3)C5—C6—C1—C20.7 (8)
P2—N4—P3—O691.1 (2)C5—C6—C1—N1179.9 (5)
P2—N4—P3—Cl2155.36 (18)C19—C20—C21—C221.7 (8)
N3—P3—O6—C23162.8 (3)N7—C20—C21—C22177.8 (5)
N4—P3—O6—C2368.2 (3)C23—C22—C21—C200.7 (8)
Cl2—P3—O6—C2347.6 (3)C21—C20—N7—O1219.3 (8)
C15—C14—C13—C181.8 (6)C19—C20—N7—O12161.2 (5)
C15—C14—C13—O5175.5 (3)C21—C20—N7—O11157.4 (6)
C17—C18—C13—C143.0 (5)C19—C20—N7—O1122.1 (8)
C26—C18—C13—C14179.9 (3)C9—C8—C7—C120.2 (8)
C17—C18—C13—O5174.3 (3)C9—C8—C7—N2174.2 (5)
C26—C18—C13—O52.8 (5)C10—C11—C12—C72.4 (9)
P2—O5—C13—C1489.8 (4)C8—C7—C12—C111.5 (9)
P2—O5—C13—C1892.8 (3)N2—C7—C12—C11176.0 (5)
C8—C9—C10—C110.2 (6)P1—O7—C4—C396.5 (4)
C25—C9—C10—C11178.0 (4)P1—O7—C4—C585.4 (4)
C8—C9—C10—O8173.3 (3)C6—C5—C4—C31.2 (7)
C25—C9—C10—O84.9 (6)C25—C5—C4—C3179.7 (4)
P1—O8—C10—C11107.2 (4)C6—C5—C4—O7179.2 (4)
P1—O8—C10—C979.4 (5)C25—C5—C4—O72.3 (6)
P3—O6—C23—C22101.8 (4)O7—C4—C3—C2178.2 (4)
P3—O6—C23—C2483.3 (4)C5—C4—C3—C20.1 (7)
C13—C18—C26—C24132.1 (3)C6—C1—N1—O21.3 (8)
C17—C18—C26—C2450.9 (4)C2—C1—N1—O2178.0 (6)
C20—C19—C24—C233.0 (6)C6—C1—N1—O1178.3 (6)
C20—C19—C24—C26177.2 (4)C2—C1—N1—O10.9 (9)
C22—C23—C24—C194.1 (6)C4—C3—C2—C10.7 (8)
O6—C23—C24—C19178.6 (4)C6—C1—C2—C30.4 (8)
C22—C23—C24—C26176.1 (4)N1—C1—C2—C3178.8 (5)
O6—C23—C24—C261.6 (6)C8—C7—N2—O321.1 (9)
C18—C26—C24—C19123.8 (4)C12—C7—N2—O3164.2 (6)
C18—C26—C24—C2356.5 (5)C8—C7—N2—O4151.5 (7)
C24—C19—C20—C210.2 (8)C12—C7—N2—O423.2 (10)

Experimental details

Crystal data
Chemical formulaC26H16Cl2N7O12P3·C2H3N
Mr823.32
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)11.5487 (10), 11.857 (1), 15.0238 (10)
α, β, γ (°)97.493 (10), 109.989 (10), 109.776 (10)
V3)1747.5 (2)
Z2
Radiation typeCu Kα
µ (mm1)3.63
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ scans
(MolEN; Fair, 1990)
Tmin, Tmax0.388, 0.484
No. of measured, independent and
observed [I > 2σ(I)] reflections
7549, 7127, 4690
Rint0.034
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.194, 1.04
No. of reflections6411
No. of parameters469
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.10, 0.56

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
P2—N51.573 (4)P1—O71.592 (3)
P2—N41.588 (4)Cl2—P31.9864 (15)
P2—O51.596 (3)N4—P31.581 (3)
P2—Cl11.9799 (14)N3—P31.571 (3)
P1—O81.566 (3)C28—N81.1298 (2)
P1—N51.570 (3)C28—C271.5125 (3)
P1—N31.580 (3)P3—O61.581 (3)
N5—P2—N4117.47 (17)N3—P1—O7109.05 (17)
N5—P2—O5109.49 (18)P1—N5—P2121.8 (2)
N4—P2—O5110.35 (17)P3—N4—P2118.6 (2)
N5—P2—Cl1111.03 (15)P3—N3—P1119.28 (19)
N4—P2—Cl1109.24 (14)N8—C28—C27173.445 (1)
O5—P2—Cl197.43 (11)N3—P3—N4117.38 (18)
O8—P1—N5106.24 (17)N3—P3—O6106.06 (16)
O8—P1—N3110.62 (16)N4—P3—O6111.59 (16)
N5—P1—N3118.67 (18)N3—P3—Cl2109.30 (13)
O8—P1—O7104.85 (16)N4—P3—Cl2107.66 (14)
N5—P1—O7106.49 (18)O6—P3—Cl2104.05 (12)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds