Download citation
Download citation
link to html
The title compound, [Re2{μ-S2NC(Et2)}(μ-PCy2)(CO)8] or [Re2(C5H10NS2)(C12H22P)(CO)8], is the first structurally characterized rhenium complex with a bridging di­thio­carbamate ligand. The Re...Re distance is non-bonding.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802003094/cf6151sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802003094/cf6151Isup2.hkl
Contains datablock I

CCDC reference: 182586

Key indicators

  • Single-crystal X-ray study
  • T = 203 K
  • Mean [sigma](C-C) = 0.018 Å
  • R factor = 0.051
  • wR factor = 0.149
  • Data-to-parameter ratio = 19.7

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
ABSTM_02 Alert C The ratio of expected to reported Tmax/Tmin(RR) is > 1.10 Tmin and Tmax reported: 0.121 0.187 Tmin and Tmax expected: 0.101 0.196 RR = 1.249 Please check that your absorption correction is appropriate.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

The bromo bridge in Re2(µ-Br)(µ-PCy2)(CO)8 is easily substituted by thiolate ligands giving phosphido-thiolato-bridged dirhenium complexes of the general formula Re2(µ-PCy2)(µ-SR)(CO)8 (Egold et al., 2001). We expected the former complex to react in a completely analogous manner with sodium diethyldithiocarbamate. However, this reaction gave the title compound, (I), in which, surprisingly, the dithiocarbamate ligand coordinates in a µ-η1-η1-mode. The molecular structure of (I) shows a Re2 unit which is doubly bridged by a µ-PCy2 group and the dithiocarbamate ligand. Each Re atom is additionally attached to four terminal CO ligands and attains thus a slightly distorted octahedral coordination. Carbonyl groups 4 and 7, which are both in trans-position to the Re—P bonds, show ecliptic arrangement along the Re···Re vector with a C—Re···Re—C torsion angle of -1.6 (11)°, but the remaining CO ligands are staggered with torsion angles in the range from 39.0 (5)–51.4 (6)°. The clearly non-bonding Re···Re distance of 4.368 (1) Å is bridged by the S2C(9)NEt2 ligand, with an S···S bite distance of 3.048 (4) Å. The accompanying S—C—S angle is 123.1 (7)° and the S—Re···Re—S torsion angle of 57.8 (1)° shows the molecule to be twisted along the C9···P vector. The S2CN group itself is planar and forms a dihedral angle of 47.3 (2)° with the Re2P plane. The µ-P bridge is symmetric with equal Re—P bond lengths of 2.562 (3) and 2.561 (3) Å, whereas the two Re—S bonds of 2.531 (3) and 2.485 (3) Å differ significantly. Similar patterns of likewise bridging dithio ligands are known for (Et4N)[Re2(µ-S)2(µ-S2)(µ-S2COR)(S2COR)2] (McConnachie & Stiefel, 1999) and Re2(CO)8(µ-S2CPCy3) (Alvarez et al., 1991), both with direct Re—Re bonds. The related Re—S bond lengths for these two compounds of 2.442 (2)/2.462 (1) Å and 2.462 (5)/2.518 (5) Å, respectively, are somewhat shorter than those for (I). The first structure exhibits ReIV atoms with strongly distorted octahedral S6 coordination spheres and a completely planar Re2µ-S2CO fragment. For the second structure the same twisted M2µ-S2C geometry is observed as for (I), for Os2N[S2CN(CH3)2]5 (Given & Pignolet, 1977) and for Ru2(CO)4(µ-S2CH)(µ-PBu2)(µ-dppm) (Böttcher et al., 2000) as well. S···S bite distances of these other structures range from 3.02 to 3.15 Å and the S—C—S angles from 128.7 to 130.7°.

Experimental top

In a Schlenk tube, 150 mg (0.172 mmol) Re2(µ-Br)(µ-PCy2)(CO)8 was dissolved in 20 ml THF. 39 mg (0.228 mmol) NaS2CNEt2 was added and the reaction mixture was stirred for 24 h. The solvent was removed and the resulting residue subjected to TLC (eluent: dichloromethane/hexane, 1:10). From the major band, a pale yellow substance was isolated, which upon recrystallization from dichloromethane/pentane gave 75 mg (46% yield) of the title compound. Spectroscopic data: ν(CO)—IR: 2090 (vw), 2077 (s), 1998 (versus), 1936 (s). 1H NMR (CDCl3): 1.23–2.34 (m, 28H; Cy, Me), 4.18 (q, 3JHH = 6.8 Hz, 4H, NCH2). 13C NMR (CDCl3): 13.0 (s, Me), 26.0 [s, C4(Cy)], 27.5 [d, 2JCP = 9 Hz, C2(Cy)], 33.2 [s, C3(Cy)], 41.0 [d, 1JCP = 11 Hz, C1(Cy)], 51.2 (s, NCH2), 183.5 [d, 2JCP = 40 Hz, CO (trans µ-P)], 188.6 (d, 2JCP = 6 Hz, CO); 190.2 (d, 2JCP = 7 Hz, CO), 208.7 (s, S2CN). 31P NMR (CDCl3): 22.5 (s, µ-P).

Refinement top

H atoms were placed at calculated positions, riding on the attached C atoms, with isotropic displacement parameters Uiso(H) = 1.2Ueq(C), or 1.5Ueq(C) for methyl groups. Residual electron density of 1.25 e Å3 is found at (0.058, 0.871, 0.327), 0.96 Å from Re1.

Computing details top

Data collection: XSCANS (Bruker, 1996); cell refinement: XSCANS; data reduction: SHELXTL (Bruker, 1998); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with H atoms omitted. Displacement ellipsoids are drawn at the 50% probability level.
Octacarbonyl-µ-N,N-diethyldithiocarbamato-µ-dicyclohexylphosphido- dirhenium top
Crystal data top
[Re2(C5H10NS2)(C12H22P)(CO)8]Z = 2
Mr = 942.01F(000) = 900
Triclinic, P1Dx = 2.050 Mg m3
a = 9.218 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.891 (2) ÅCell parameters from 25 reflections
c = 14.624 (2) Åθ = 7.3–15.6°
α = 96.40 (1)°µ = 8.16 mm1
β = 99.89 (2)°T = 203 K
γ = 102.06 (2)°Block, colorless
V = 1526.1 (5) Å30.30 × 0.26 × 0.20 mm
Data collection top
Bruker P4
diffractometer
5125 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.053
Graphite monochromatorθmax = 27.5°, θmin = 2.9°
ω scansh = 111
Absorption correction: ψ scan
(North et al., 1968)
k = 1515
Tmin = 0.121, Tmax = 0.187l = 1819
8235 measured reflections3 standard reflections every 397 reflections
6945 independent reflections intensity decay: 2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.149 w = 1/[σ2(Fo2) + (0.0703P)2 + 15.7996P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
6945 reflectionsΔρmax = 1.25 e Å3
353 parametersΔρmin = 1.04 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0038 (4)
Crystal data top
[Re2(C5H10NS2)(C12H22P)(CO)8]γ = 102.06 (2)°
Mr = 942.01V = 1526.1 (5) Å3
Triclinic, P1Z = 2
a = 9.218 (2) ÅMo Kα radiation
b = 11.891 (2) ŵ = 8.16 mm1
c = 14.624 (2) ÅT = 203 K
α = 96.40 (1)°0.30 × 0.26 × 0.20 mm
β = 99.89 (2)°
Data collection top
Bruker P4
diffractometer
5125 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.053
Tmin = 0.121, Tmax = 0.1873 standard reflections every 397 reflections
8235 measured reflections intensity decay: 2%
6945 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0703P)2 + 15.7996P]
where P = (Fo2 + 2Fc2)/3
6945 reflectionsΔρmax = 1.25 e Å3
353 parametersΔρmin = 1.04 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re10.14111 (5)0.83672 (4)0.34918 (3)0.02840 (15)
Re20.40585 (5)0.67779 (4)0.17406 (3)0.03113 (16)
S10.3144 (4)0.7198 (3)0.4261 (2)0.0382 (7)
S20.2363 (4)0.5410 (3)0.2482 (2)0.0389 (7)
P10.2676 (3)0.8393 (2)0.20640 (19)0.0258 (5)
N10.2285 (11)0.4928 (8)0.4170 (7)0.034 (2)
O10.3588 (13)1.0643 (9)0.4676 (8)0.062 (3)
C10.2847 (14)0.9797 (11)0.4202 (9)0.038 (3)
O20.0675 (12)0.9805 (10)0.2577 (7)0.057 (3)
C20.0129 (15)0.9280 (11)0.2926 (9)0.041 (3)
O30.1033 (11)0.6059 (9)0.2734 (7)0.054 (3)
C30.0115 (14)0.6878 (11)0.2940 (9)0.038 (3)
O40.0247 (13)0.8515 (11)0.5146 (7)0.063 (3)
C40.0393 (14)0.8405 (12)0.4551 (9)0.039 (3)
O50.6601 (11)0.7622 (9)0.3552 (8)0.056 (3)
C50.5615 (14)0.7350 (10)0.2921 (10)0.039 (3)
O60.1860 (12)0.5530 (9)0.0144 (7)0.056 (3)
C60.2604 (14)0.6030 (11)0.0544 (9)0.037 (3)
O70.5701 (13)0.4818 (10)0.1339 (9)0.072 (3)
C70.5116 (16)0.5547 (14)0.1499 (10)0.050 (3)
O80.5947 (13)0.8419 (10)0.0689 (9)0.066 (3)
C80.5255 (14)0.7805 (11)0.1070 (10)0.042 (3)
C90.2573 (12)0.5771 (10)0.3682 (8)0.031 (2)
C110.4029 (13)0.9831 (10)0.2102 (8)0.032 (2)
H110.43490.97920.14890.038*
C120.5489 (12)1.0045 (10)0.2849 (9)0.035 (3)
H12A0.52331.00750.34730.042*
H12B0.59710.93920.27560.042*
C130.6600 (14)1.1167 (11)0.2809 (10)0.045 (3)
H13A0.69951.10850.22300.054*
H13B0.74561.13100.33410.054*
C140.5869 (15)1.2209 (10)0.2837 (11)0.047 (3)
H14A0.56181.23670.34560.056*
H14B0.65961.28980.27480.056*
C150.4455 (15)1.1999 (11)0.2091 (10)0.043 (3)
H15A0.47181.19220.14690.051*
H15B0.39921.26670.21540.051*
C160.3320 (12)1.0893 (10)0.2177 (9)0.034 (2)
H16A0.24191.07630.16770.041*
H16B0.30051.09910.27820.041*
C210.1244 (13)0.8439 (11)0.1002 (7)0.032 (2)
H210.08680.91450.11520.039*
C220.1907 (13)0.8603 (11)0.0126 (8)0.035 (2)
H22A0.24250.79790.00000.042*
H22B0.26650.93430.02500.042*
C230.0721 (16)0.8598 (12)0.0753 (9)0.045 (3)
H23A0.03000.92850.06700.053*
H23B0.12040.86330.12990.053*
C240.0550 (14)0.7499 (12)0.0923 (8)0.040 (3)
H24A0.12950.75010.14880.048*
H24B0.01350.68110.10240.048*
C250.1294 (14)0.7449 (12)0.0100 (9)0.042 (3)
H25A0.21330.67570.02250.050*
H25B0.17150.81350.00080.050*
C260.0166 (12)0.7405 (10)0.0813 (8)0.033 (2)
H26A0.06780.74310.13470.039*
H26B0.01580.66700.07520.039*
C310.2241 (15)0.5097 (12)0.5180 (9)0.042 (3)
H31A0.14340.44840.52980.051*
H31B0.19940.58460.53460.051*
C320.3720 (18)0.5071 (13)0.5800 (10)0.052 (4)
H32A0.36280.51800.64530.077*
H32B0.45190.56900.56990.077*
H32C0.39630.43260.56460.077*
C330.1940 (14)0.3673 (10)0.3739 (8)0.036 (3)
H33A0.22670.32120.42160.043*
H33B0.25060.35900.32360.043*
C340.0256 (15)0.3215 (12)0.3341 (9)0.044 (3)
H34A0.00620.24040.30660.067*
H34B0.00650.36640.28630.067*
H34C0.03040.32850.38410.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.0244 (3)0.0336 (3)0.0273 (2)0.00840 (18)0.00453 (18)0.00319 (17)
Re20.0264 (3)0.0340 (3)0.0344 (3)0.01141 (19)0.0060 (2)0.00311 (19)
S10.0436 (17)0.0318 (14)0.0336 (15)0.0109 (13)0.0072 (13)0.0004 (11)
S20.0428 (17)0.0366 (15)0.0318 (14)0.0010 (13)0.0061 (13)0.0002 (12)
P10.0210 (13)0.0281 (13)0.0272 (13)0.0058 (10)0.0034 (11)0.0017 (10)
N10.033 (5)0.036 (5)0.034 (5)0.011 (4)0.008 (4)0.005 (4)
O10.059 (7)0.059 (6)0.056 (6)0.004 (5)0.014 (5)0.013 (5)
C10.032 (6)0.041 (6)0.041 (7)0.011 (5)0.012 (5)0.000 (5)
O20.055 (6)0.087 (8)0.043 (5)0.045 (6)0.009 (5)0.017 (5)
C20.037 (7)0.044 (7)0.041 (7)0.019 (6)0.002 (6)0.002 (5)
O30.033 (5)0.054 (6)0.065 (7)0.006 (4)0.009 (5)0.005 (5)
C30.031 (6)0.045 (7)0.041 (7)0.008 (5)0.010 (5)0.012 (5)
O40.063 (7)0.088 (8)0.045 (6)0.016 (6)0.031 (5)0.010 (5)
C40.032 (6)0.053 (7)0.035 (6)0.012 (6)0.010 (5)0.010 (5)
O50.042 (6)0.051 (6)0.066 (7)0.008 (5)0.007 (5)0.004 (5)
C50.032 (6)0.031 (6)0.049 (7)0.005 (5)0.006 (6)0.002 (5)
O60.059 (6)0.060 (6)0.041 (5)0.019 (5)0.005 (5)0.015 (5)
C60.033 (6)0.041 (6)0.039 (7)0.017 (5)0.006 (5)0.006 (5)
O70.065 (7)0.063 (7)0.094 (9)0.043 (6)0.012 (7)0.005 (6)
C70.039 (7)0.067 (9)0.044 (7)0.023 (7)0.001 (6)0.001 (7)
O80.058 (7)0.071 (7)0.087 (8)0.020 (6)0.048 (7)0.021 (6)
C80.030 (6)0.044 (7)0.061 (8)0.015 (5)0.024 (6)0.008 (6)
C90.024 (5)0.038 (6)0.032 (6)0.013 (5)0.000 (5)0.001 (5)
C110.027 (6)0.037 (6)0.030 (5)0.007 (5)0.005 (5)0.003 (4)
C120.022 (5)0.037 (6)0.045 (7)0.006 (5)0.005 (5)0.007 (5)
C130.028 (6)0.043 (7)0.057 (8)0.003 (5)0.002 (6)0.003 (6)
C140.035 (7)0.029 (6)0.064 (9)0.004 (5)0.002 (6)0.005 (6)
C150.038 (7)0.034 (6)0.055 (8)0.005 (5)0.009 (6)0.003 (6)
C160.021 (5)0.036 (6)0.043 (6)0.009 (4)0.000 (5)0.000 (5)
C210.028 (6)0.050 (7)0.021 (5)0.016 (5)0.002 (4)0.004 (5)
C220.031 (6)0.045 (7)0.029 (6)0.012 (5)0.003 (5)0.007 (5)
C230.049 (8)0.051 (8)0.039 (7)0.022 (6)0.009 (6)0.010 (6)
C240.030 (6)0.055 (8)0.028 (6)0.015 (6)0.008 (5)0.004 (5)
C250.034 (7)0.049 (7)0.037 (6)0.010 (6)0.000 (5)0.004 (5)
C260.016 (5)0.041 (6)0.034 (6)0.003 (4)0.002 (4)0.006 (5)
C310.046 (8)0.047 (7)0.037 (7)0.014 (6)0.013 (6)0.002 (5)
C320.068 (10)0.052 (8)0.043 (7)0.033 (7)0.007 (7)0.009 (6)
C330.041 (7)0.032 (6)0.034 (6)0.005 (5)0.011 (5)0.008 (5)
C340.039 (7)0.050 (7)0.043 (7)0.001 (6)0.018 (6)0.004 (6)
Geometric parameters (Å, º) top
Re1—C21.913 (12)C14—H14A0.980
Re1—C41.946 (12)C14—H14B0.980
Re1—C11.979 (13)C15—C161.532 (16)
Re1—C32.005 (13)C15—H15A0.980
Re1—S12.531 (3)C15—H15B0.980
Re1—P12.561 (3)C16—H16A0.980
Re2—C81.935 (13)C16—H16B0.980
Re2—C71.954 (14)C21—C221.525 (15)
Re2—C51.995 (13)C21—C261.553 (16)
Re2—C62.000 (13)C21—H210.990
Re2—S22.485 (3)C22—C231.536 (17)
Re2—P12.562 (3)C22—H22A0.980
S1—C91.740 (12)C22—H22B0.980
S2—C91.727 (12)C23—C241.527 (19)
P1—C211.871 (11)C23—H23A0.980
P1—C111.883 (12)C23—H23B0.980
N1—C91.303 (15)C24—C251.485 (17)
N1—C311.476 (15)C24—H24A0.980
N1—C331.500 (15)C24—H24B0.980
O1—C11.163 (15)C25—C261.559 (16)
O2—C21.155 (15)C25—H25A0.980
O3—C31.121 (15)C25—H25B0.980
O4—C41.142 (15)C26—H26A0.980
O5—C51.142 (15)C26—H26B0.980
O6—C61.138 (15)C31—C321.510 (19)
O7—C71.136 (16)C31—H31A0.980
O8—C81.127 (15)C31—H31B0.980
C11—C121.536 (16)C32—H32A0.970
C11—C161.540 (15)C32—H32B0.970
C11—H110.990C32—H32C0.970
C12—C131.517 (16)C33—C341.520 (18)
C12—H12A0.980C33—H33A0.980
C12—H12B0.980C33—H33B0.980
C13—C141.529 (18)C34—H34A0.970
C13—H13A0.980C34—H34B0.970
C13—H13B0.980C34—H34C0.970
C14—C151.505 (19)
C2—Re1—C488.5 (6)C13—C14—H14B109.2
C2—Re1—C190.4 (5)H14A—C14—H14B107.9
C4—Re1—C185.8 (5)C14—C15—C16110.8 (11)
C2—Re1—C392.1 (5)C14—C15—H15A109.5
C4—Re1—C386.9 (5)C16—C15—H15A109.5
C1—Re1—C3172.3 (5)C14—C15—H15B109.5
C2—Re1—S1178.8 (4)C16—C15—H15B109.5
C4—Re1—S191.4 (4)H15A—C15—H15B108.1
C1—Re1—S188.4 (4)C15—C16—C11110.7 (9)
C3—Re1—S189.1 (4)C15—C16—H16A109.5
C2—Re1—P188.6 (4)C11—C16—H16A109.5
C4—Re1—P1177.0 (4)C15—C16—H16B109.5
C1—Re1—P193.8 (4)C11—C16—H16B109.5
C3—Re1—P193.6 (4)H16A—C16—H16B108.1
S1—Re1—P191.58 (10)C22—C21—C26112.2 (9)
C8—Re2—C792.4 (6)C22—C21—P1113.9 (8)
C8—Re2—C590.7 (6)C26—C21—P1112.9 (8)
C7—Re2—C587.1 (5)C22—C21—H21105.7
C8—Re2—C690.8 (6)C26—C21—H21105.7
C7—Re2—C686.0 (5)P1—C21—H21105.7
C5—Re2—C6172.9 (5)C21—C22—C23113.8 (10)
C8—Re2—S2175.3 (4)C21—C22—H22A108.8
C7—Re2—S288.1 (5)C23—C22—H22A108.8
C5—Re2—S293.9 (4)C21—C22—H22B108.8
C6—Re2—S284.6 (4)C23—C22—H22B108.8
C8—Re2—P187.7 (4)H22A—C22—H22B107.7
C7—Re2—P1179.8 (4)C24—C23—C22110.4 (10)
C5—Re2—P192.7 (4)C24—C23—H23A109.6
C6—Re2—P194.2 (3)C22—C23—H23A109.6
S2—Re2—P191.86 (10)C24—C23—H23B109.6
C9—S1—Re1108.5 (4)C22—C23—H23B109.6
C9—S2—Re2114.9 (4)H23A—C23—H23B108.1
C21—P1—C1198.8 (5)C25—C24—C23109.7 (10)
C21—P1—Re1109.0 (4)C25—C24—H24A109.7
C11—P1—Re1111.9 (4)C23—C24—H24A109.7
C21—P1—Re2110.7 (4)C25—C24—H24B109.7
C11—P1—Re2107.9 (4)C23—C24—H24B109.7
Re1—P1—Re2117.03 (11)H24A—C24—H24B108.2
C9—N1—C31124.5 (10)C24—C25—C26111.8 (10)
C9—N1—C33122.1 (10)C24—C25—H25A109.3
C31—N1—C33113.4 (9)C26—C25—H25A109.3
O1—C1—Re1173.2 (11)C24—C25—H25B109.3
O2—C2—Re1178.2 (13)C26—C25—H25B109.3
O3—C3—Re1171.2 (11)H25A—C25—H25B107.9
O4—C4—Re1173.7 (12)C21—C26—C25111.2 (10)
O5—C5—Re2172.9 (11)C21—C26—H26A109.4
O6—C6—Re2173.5 (11)C25—C26—H26A109.4
O7—C7—Re2178.2 (13)C21—C26—H26B109.4
O8—C8—Re2178.8 (12)C25—C26—H26B109.4
N1—C9—S2118.0 (9)H26A—C26—H26B108.0
N1—C9—S1118.9 (9)N1—C31—C32112.8 (11)
S2—C9—S1123.1 (7)N1—C31—H31A109.0
C12—C11—C16110.3 (9)C32—C31—H31A109.0
C12—C11—P1113.9 (8)N1—C31—H31B109.0
C16—C11—P1114.7 (8)C32—C31—H31B109.0
C12—C11—H11105.7H31A—C31—H31B107.8
C16—C11—H11105.7C31—C32—H32A109.5
P1—C11—H11105.7C31—C32—H32B109.5
C13—C12—C11112.3 (10)H32A—C32—H32B109.5
C13—C12—H12A109.1C31—C32—H32C109.5
C11—C12—H12A109.1H32A—C32—H32C109.5
C13—C12—H12B109.1H32B—C32—H32C109.5
C11—C12—H12B109.1N1—C33—C34111.0 (10)
H12A—C12—H12B107.9N1—C33—H33A109.4
C12—C13—C14112.1 (10)C34—C33—H33A109.4
C12—C13—H13A109.2N1—C33—H33B109.4
C14—C13—H13A109.2C34—C33—H33B109.4
C12—C13—H13B109.2H33A—C33—H33B108.0
C14—C13—H13B109.2C33—C34—H34A109.5
H13A—C13—H13B107.9C33—C34—H34B109.5
C15—C14—C13112.0 (11)H34A—C34—H34B109.5
C15—C14—H14A109.2C33—C34—H34C109.5
C13—C14—H14A109.2H34A—C34—H34C109.5
C15—C14—H14B109.2H34B—C34—H34C109.5
C4—Re1—S1—C9106.2 (6)Re2—S2—C9—N1150.3 (8)
C1—Re1—S1—C9168.0 (6)Re2—S2—C9—S129.9 (8)
C3—Re1—S1—C919.3 (6)Re1—S1—C9—N1126.1 (8)
P1—Re1—S1—C974.3 (4)Re1—S1—C9—S253.7 (8)
C7—Re2—S2—C9111.3 (6)C21—P1—C11—C12173.7 (8)
C5—Re2—S2—C924.4 (5)Re1—P1—C11—C1271.7 (9)
C6—Re2—S2—C9162.5 (5)Re2—P1—C11—C1258.4 (9)
P1—Re2—S2—C968.5 (4)C21—P1—C11—C1658.0 (9)
C2—Re1—P1—C2131.7 (6)Re1—P1—C11—C1656.6 (9)
C1—Re1—P1—C21122.1 (6)Re2—P1—C11—C16173.2 (7)
C3—Re1—P1—C2160.3 (6)C16—C11—C12—C1353.9 (13)
S1—Re1—P1—C21149.5 (4)P1—C11—C12—C13175.6 (9)
C2—Re1—P1—C1176.5 (6)C11—C12—C13—C1452.3 (15)
C1—Re1—P1—C1113.9 (5)C12—C13—C14—C1553.4 (16)
C3—Re1—P1—C11168.5 (5)C13—C14—C15—C1656.1 (15)
S1—Re1—P1—C11102.3 (4)C14—C15—C16—C1157.9 (14)
C2—Re1—P1—Re2158.2 (4)C12—C11—C16—C1556.3 (13)
C1—Re1—P1—Re2111.4 (4)P1—C11—C16—C15173.6 (8)
C3—Re1—P1—Re266.2 (4)C11—P1—C21—C2256.2 (10)
S1—Re1—P1—Re222.96 (12)Re1—P1—C21—C22173.1 (8)
C8—Re2—P1—C2178.1 (6)Re2—P1—C21—C2256.8 (9)
C5—Re2—P1—C21168.7 (5)C11—P1—C21—C26174.3 (8)
C6—Re2—P1—C2112.5 (5)Re1—P1—C21—C2657.4 (8)
S2—Re2—P1—C2197.2 (4)Re2—P1—C21—C2672.7 (8)
C8—Re2—P1—C1129.0 (6)C26—C21—C22—C2348.1 (14)
C5—Re2—P1—C1161.6 (5)P1—C21—C22—C23178.0 (9)
C6—Re2—P1—C11119.6 (5)C21—C22—C23—C2454.0 (14)
S2—Re2—P1—C11155.7 (4)C22—C23—C24—C2559.8 (14)
C8—Re2—P1—Re1156.3 (4)C23—C24—C25—C2661.1 (14)
C5—Re2—P1—Re165.6 (4)C22—C21—C26—C2547.2 (13)
C6—Re2—P1—Re1113.1 (4)P1—C21—C26—C25177.5 (8)
S2—Re2—P1—Re128.42 (12)C24—C25—C26—C2154.9 (14)
C31—N1—C9—S2172.7 (9)C9—N1—C31—C3295.6 (14)
C33—N1—C9—S26.5 (15)C33—N1—C31—C3285.2 (13)
C31—N1—C9—S17.2 (16)C9—N1—C33—C3488.2 (13)
C33—N1—C9—S1173.7 (8)C31—N1—C33—C3491.0 (12)

Experimental details

Crystal data
Chemical formula[Re2(C5H10NS2)(C12H22P)(CO)8]
Mr942.01
Crystal system, space groupTriclinic, P1
Temperature (K)203
a, b, c (Å)9.218 (2), 11.891 (2), 14.624 (2)
α, β, γ (°)96.40 (1), 99.89 (2), 102.06 (2)
V3)1526.1 (5)
Z2
Radiation typeMo Kα
µ (mm1)8.16
Crystal size (mm)0.30 × 0.26 × 0.20
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.121, 0.187
No. of measured, independent and
observed [I > 2σ(I)] reflections
8235, 6945, 5125
Rint0.053
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.149, 1.05
No. of reflections6945
No. of parameters353
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0703P)2 + 15.7996P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.25, 1.04

Computer programs: XSCANS (Bruker, 1996), XSCANS, SHELXTL (Bruker, 1998), SHELXTL.

Selected geometric parameters (Å, º) top
Re1—S12.531 (3)Re2—P12.562 (3)
Re1—P12.561 (3)S1—C91.740 (12)
Re2—S22.485 (3)S2—C91.727 (12)
S1—Re1—P191.58 (10)Re1—P1—Re2117.03 (11)
S2—Re2—P191.86 (10)N1—C9—S2118.0 (9)
C9—S1—Re1108.5 (4)N1—C9—S1118.9 (9)
C9—S2—Re2114.9 (4)S2—C9—S1123.1 (7)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds