Download citation
Download citation
link to html
In the crystal structure of the title compound, C23H24N4O2·H2O, the 4,4'-methyl­enedianti­pyrine mol­ecules are linked via hydrogen bonds through water mol­ecules to form centrosymmetric dimers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802003331/cv6093sup1.cif
Contains datablocks md786t, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802003331/cv6093Isup2.hkl
Contains datablock I

CCDC reference: 182642

Key indicators

  • Single-crystal X-ray study
  • T = 203 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.047
  • wR factor = 0.130
  • Data-to-parameter ratio = 13.1

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

4,4'-Methylenediantipyrine reacts with titanium(IV) in a strongly acid medium to form a complex having an absorption maximum at around 285 nm (Minin, 1955). This reaction has widely been used for selective photometric determination of titanium(IV). We report here the structure and hydrogen-bonding behavior of the title compound, (I). 4,4-Methylenediantipyrine crystallized from acetone as the monohydrate in the space group P21/c. The molecular structure is shown in Fig. 1.

The structure is dominated by the angle of the bridging C atom C8—C12—C13 between the two pyrazolone moities. There is no conjugation between the pyrazolone moieties and the phenyl rings. In the molecule, the two phenyl rings and the two pyrazolone rings are oriented with respect to each other at 55.6 and 54.0°. But the N2—C1 and N4—C18 bonds are slightly shorter than the accepted N—C single-bond distance of 1.47 (1) Å (Allen et al., 1987). This is in a good agreement with the determined structures of phenanzone (Singh & Vijayan, 1973) and other metal–pyrazolone complexes (Vijayan & Viswamitra, 1968). All the lengths in the moieties lie between the corresponding single- and double-bond distances. However, the C9—C10 distance deviates from the usual length of 1.54 (1) Å (Allen et al., 1987) of a C—C single bond. This might be partly due to the sp2 hybridization state of atom C9. Distances and angles of special interest are given in Table 1.

Another striking feature of this compound is the orientation of the two pyrazolone moieties. The differences between the molecular dimensions of free 4,4'-methylenediantipyrine monohydrate determined from the present study and the structure observed in the titanium(IV)-antipyrine complexes (Yuchi, 1991) are significant. As a consequence of the confirmation of the bridging atom C12, the carboxyl groups of the pyrazolone moieties in the free 4,4'-methylenediantipyrine monohydrate have contrary orientations. In contrast, 4,4'-methylenediantipyrine acts as a bidentate ligand to form eight-membered chelate rings with tin(IV) tetrachloride.

Each pyrazolone moiety in the title compound is nearly planar, but the C atoms of the phenyl groups are not coplanar with the pyrazolone moieties (Table 1). The dihedral angle between the pyrazolone moieties is 110.9 (2)°. The crystal lattice is held together by hydrogen-bond interactions building dimeric units containing 16-membered rings (Fig. 2). The water molecule is linked to the carboxyl groups via hydrogen bonds (Table 2).

Experimental top

4,4'-Methylenediantipyrine monohydrate was heated in acetone until most of the solid was dissolved. Crystals suitable for X-ray diffraction analysis were obtained by slowly cooling of the solution containing a few drops of heptane.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Siemens, 1996); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsiods.
[Figure 2] Fig. 2. The dimeric units in the title compound, showing the hydrogen bonding between the water molecules and the carboxyl groups of the pyrazolone moities.
(I) top
Crystal data top
C23H24N4O2·H2OF(000) = 864
Mr = 406.48Dx = 1.271 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.937 (3) ÅCell parameters from 83 reflections
b = 14.740 (4) Åθ = 3.2–19.7°
c = 12.085 (3) ŵ = 0.09 mm1
β = 92.436 (5)°T = 203 K
V = 2124.4 (10) Å3Plates, colourless
Z = 40.4 × 0.3 × 0.1 mm
Data collection top
Bruker CCD 1000
diffractometer
3704 independent reflections
Radiation source: fine-focus sealed tube3017 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 25.0°, θmin = 2.7°
Absorption correction: empirical (using intensity measurements)
(Blessing, 1995)
h = 1214
Tmin = 0.970, Tmax = 0.991k = 1717
12780 measured reflectionsl = 1412
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0661P)2 + 0.63P]
where P = (Fo2 + 2Fc2)/3
3704 reflections(Δ/σ)max = 0.001
282 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C23H24N4O2·H2OV = 2124.4 (10) Å3
Mr = 406.48Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.937 (3) ŵ = 0.09 mm1
b = 14.740 (4) ÅT = 203 K
c = 12.085 (3) Å0.4 × 0.3 × 0.1 mm
β = 92.436 (5)°
Data collection top
Bruker CCD 1000
diffractometer
3704 independent reflections
Absorption correction: empirical (using intensity measurements)
(Blessing, 1995)
3017 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.991Rint = 0.037
12780 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.19 e Å3
3704 reflectionsΔρmin = 0.18 e Å3
282 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.70112 (12)0.61762 (9)0.36296 (11)0.0475 (4)
C10.83082 (13)0.36051 (11)0.88481 (14)0.0314 (4)
N10.70776 (12)0.40512 (10)0.72856 (13)0.0393 (4)
O20.96615 (10)0.50286 (9)0.78919 (11)0.0445 (3)
N20.79887 (12)0.42539 (9)0.80164 (12)0.0354 (4)
C20.80865 (15)0.26890 (12)0.86868 (15)0.0377 (4)
H2A0.77250.24880.80260.045*
H260.786 (3)0.525 (2)0.310 (3)0.105 (10)*
H270.892 (3)0.482 (2)0.262 (2)0.097 (10)*
N30.74879 (13)0.79490 (9)0.54638 (12)0.0373 (4)
C30.84015 (17)0.20756 (12)0.95055 (17)0.0450 (5)
H3A0.82500.14550.94010.054*
O30.81822 (14)0.46905 (10)0.28413 (14)0.0571 (4)
N40.70539 (12)0.75850 (9)0.44667 (12)0.0357 (4)
C40.89373 (17)0.23663 (13)1.04763 (17)0.0481 (5)
H4A0.91460.19461.10320.058*
C50.91646 (17)0.32759 (13)1.06275 (16)0.0458 (5)
H5A0.95360.34731.12860.055*
C60.88513 (15)0.38982 (11)0.98195 (15)0.0377 (4)
H6A0.90050.45180.99270.045*
C70.87284 (14)0.48218 (11)0.74848 (14)0.0315 (4)
C80.81876 (14)0.50457 (11)0.64333 (14)0.0323 (4)
C90.72036 (14)0.45879 (12)0.63677 (15)0.0372 (4)
C100.63024 (18)0.45903 (17)0.54749 (19)0.0580 (6)
H10A0.56480.49020.57340.087*
H10B0.61050.39700.52810.087*
H10C0.65690.49000.48280.087*
C110.59944 (17)0.39928 (17)0.7809 (2)0.0602 (6)
H11A0.54120.38500.72520.090*
H11B0.58280.45690.81520.090*
H11C0.60260.35210.83680.090*
C120.87121 (14)0.56322 (12)0.55738 (15)0.0355 (4)
H12A0.94870.57630.58230.043*
H12B0.87390.52850.48840.043*
C130.81259 (14)0.65181 (11)0.53251 (14)0.0317 (4)
C140.82012 (14)0.73021 (11)0.59169 (14)0.0343 (4)
C150.73695 (14)0.66817 (11)0.43858 (14)0.0343 (4)
C160.89230 (17)0.75129 (14)0.69192 (17)0.0479 (5)
H16A0.92380.69550.72240.072*
H16B0.84760.78060.74680.072*
H16C0.95250.79150.67190.072*
C170.7821 (2)0.89059 (13)0.5405 (2)0.0649 (7)
H17A0.80620.91160.61380.097*
H17B0.71880.92660.51310.097*
H17C0.84330.89680.49080.097*
C180.60641 (14)0.79685 (11)0.39530 (15)0.0366 (4)
C190.59687 (19)0.80375 (17)0.28303 (18)0.0590 (6)
H19A0.65530.78370.23940.071*
C200.5007 (2)0.84037 (19)0.2336 (2)0.0757 (8)
H20A0.49440.84510.15600.091*
C210.4151 (2)0.86964 (16)0.2948 (3)0.0729 (8)
H21A0.34970.89410.26050.087*
C220.4261 (2)0.8627 (3)0.4063 (3)0.1027 (12)
H22A0.36760.88300.44980.123*
C230.5213 (2)0.8264 (2)0.4576 (2)0.0856 (9)
H23A0.52740.82200.53530.103*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0611 (9)0.0396 (7)0.0405 (8)0.0122 (6)0.0125 (6)0.0073 (6)
C10.0288 (8)0.0305 (8)0.0347 (9)0.0002 (6)0.0004 (7)0.0033 (7)
N10.0279 (8)0.0447 (8)0.0445 (9)0.0063 (6)0.0085 (6)0.0096 (7)
O20.0381 (7)0.0479 (7)0.0464 (8)0.0139 (6)0.0113 (6)0.0077 (6)
N20.0313 (8)0.0359 (8)0.0384 (9)0.0048 (6)0.0077 (6)0.0070 (6)
C20.0394 (10)0.0357 (9)0.0377 (10)0.0077 (7)0.0015 (8)0.0024 (8)
N30.0418 (8)0.0322 (7)0.0375 (9)0.0033 (6)0.0006 (7)0.0025 (6)
C30.0537 (12)0.0288 (9)0.0523 (12)0.0051 (8)0.0020 (9)0.0042 (8)
O30.0508 (9)0.0428 (8)0.0784 (11)0.0049 (7)0.0103 (8)0.0080 (8)
N40.0399 (8)0.0340 (7)0.0330 (8)0.0082 (6)0.0018 (6)0.0012 (6)
C40.0583 (12)0.0406 (10)0.0448 (12)0.0033 (9)0.0048 (9)0.0131 (9)
C50.0551 (12)0.0451 (11)0.0361 (10)0.0010 (9)0.0113 (9)0.0002 (8)
C60.0422 (10)0.0301 (8)0.0403 (10)0.0005 (7)0.0053 (8)0.0017 (7)
C70.0305 (9)0.0274 (8)0.0361 (10)0.0016 (6)0.0033 (7)0.0008 (7)
C80.0318 (9)0.0290 (8)0.0358 (10)0.0046 (7)0.0019 (7)0.0020 (7)
C90.0321 (9)0.0387 (9)0.0402 (10)0.0031 (7)0.0070 (7)0.0050 (8)
C100.0400 (11)0.0754 (15)0.0568 (14)0.0049 (10)0.0184 (10)0.0157 (11)
C110.0328 (11)0.0800 (16)0.0675 (15)0.0063 (10)0.0016 (10)0.0243 (12)
C120.0329 (9)0.0376 (9)0.0358 (10)0.0063 (7)0.0001 (7)0.0040 (7)
C130.0304 (9)0.0344 (9)0.0306 (9)0.0022 (7)0.0048 (7)0.0043 (7)
C140.0316 (9)0.0382 (9)0.0331 (10)0.0005 (7)0.0034 (7)0.0043 (7)
C150.0365 (9)0.0331 (9)0.0335 (10)0.0060 (7)0.0031 (7)0.0015 (7)
C160.0466 (11)0.0521 (11)0.0443 (12)0.0015 (9)0.0061 (9)0.0039 (9)
C170.0802 (16)0.0326 (10)0.0801 (17)0.0009 (10)0.0182 (13)0.0016 (10)
C180.0336 (9)0.0321 (9)0.0441 (11)0.0054 (7)0.0017 (8)0.0064 (8)
C190.0551 (13)0.0754 (15)0.0463 (13)0.0222 (11)0.0005 (10)0.0074 (11)
C200.0814 (18)0.0794 (17)0.0635 (16)0.0205 (14)0.0292 (14)0.0071 (13)
C210.0485 (14)0.0529 (13)0.115 (2)0.0122 (11)0.0278 (14)0.0032 (14)
C220.0581 (17)0.146 (3)0.106 (3)0.0536 (19)0.0194 (16)0.025 (2)
C230.0655 (16)0.130 (2)0.0626 (16)0.0497 (16)0.0213 (13)0.0251 (16)
Geometric parameters (Å, º) top
O1—C151.241 (2)C10—H10A0.9700
C1—C61.386 (2)C10—H10B0.9700
C1—C21.388 (2)C10—H10C0.9700
C1—N21.427 (2)C11—H11A0.9700
N1—C91.376 (2)C11—H11B0.9700
N1—N21.404 (2)C11—H11C0.9700
N1—C111.466 (3)C12—C131.506 (2)
O2—C71.237 (2)C12—H12A0.9800
N2—C71.393 (2)C12—H12B0.9800
C2—C31.381 (3)C13—C141.360 (2)
C2—H2A0.9400C13—C151.440 (2)
N3—C141.376 (2)C14—C161.489 (3)
N3—N41.398 (2)C16—H16A0.9700
N3—C171.468 (2)C16—H16B0.9700
C3—C41.380 (3)C16—H16C0.9700
C3—H3A0.9400C17—H17A0.9700
O3—H260.96 (3)C17—H17B0.9700
O3—H270.96 (3)C17—H17C0.9700
N4—C151.388 (2)C18—C191.361 (3)
N4—C181.428 (2)C18—C231.362 (3)
C4—C51.379 (3)C19—C201.381 (3)
C4—H4A0.9400C19—H19A0.9400
C5—C61.380 (3)C20—C211.357 (4)
C5—H5A0.9400C20—H20A0.9400
C6—H6A0.9400C21—C221.353 (4)
C7—C81.439 (2)C21—H21A0.9400
C8—C91.354 (2)C22—C231.379 (4)
C8—C121.508 (2)C22—H22A0.9400
C9—C101.491 (3)C23—H23A0.9400
C6—C1—C2120.11 (16)N1—C11—H11C109.5
C6—C1—N2119.27 (15)H11A—C11—H11C109.5
C2—C1—N2120.61 (15)H11B—C11—H11C109.5
C9—N1—N2106.05 (13)C13—C12—C8115.57 (14)
C9—N1—C11120.67 (15)C13—C12—H12A108.4
N2—N1—C11114.54 (16)C8—C12—H12A108.4
C7—N2—N1109.09 (13)C13—C12—H12B108.4
C7—N2—C1124.86 (14)C8—C12—H12B108.4
N1—N2—C1118.49 (13)H12A—C12—H12B107.4
C3—C2—C1119.47 (17)C14—C13—C15107.30 (15)
C3—C2—H2A120.3C14—C13—C12127.75 (16)
C1—C2—H2A120.3C15—C13—C12124.95 (15)
C14—N3—N4106.09 (13)C13—C14—N3110.71 (16)
C14—N3—C17121.37 (16)C13—C14—C16128.91 (16)
N4—N3—C17114.74 (15)N3—C14—C16120.39 (16)
C4—C3—C2120.53 (17)O1—C15—N4122.80 (16)
C4—C3—H3A119.7O1—C15—C13131.65 (16)
C2—C3—H3A119.7N4—C15—C13105.54 (15)
H26—O3—H27109 (3)C14—C16—H16A109.5
C15—N4—N3109.70 (13)C14—C16—H16B109.5
C15—N4—C18124.83 (15)H16A—C16—H16B109.5
N3—N4—C18119.48 (14)C14—C16—H16C109.5
C5—C4—C3119.74 (17)H16A—C16—H16C109.5
C5—C4—H4A120.1H16B—C16—H16C109.5
C3—C4—H4A120.1N3—C17—H17A109.5
C4—C5—C6120.46 (18)N3—C17—H17B109.5
C4—C5—H5A119.8H17A—C17—H17B109.5
C6—C5—H5A119.8N3—C17—H17C109.5
C5—C6—C1119.68 (16)H17A—C17—H17C109.5
C5—C6—H6A120.2H17B—C17—H17C109.5
C1—C6—H6A120.2C19—C18—C23119.7 (2)
O2—C7—N2122.85 (16)C19—C18—N4119.73 (17)
O2—C7—C8131.11 (16)C23—C18—N4120.62 (19)
N2—C7—C8106.01 (14)C18—C19—C20119.6 (2)
C9—C8—C7107.03 (15)C18—C19—H19A120.2
C9—C8—C12129.05 (16)C20—C19—H19A120.2
C7—C8—C12123.79 (15)C21—C20—C19121.3 (3)
C8—C9—N1111.33 (15)C21—C20—H20A119.3
C8—C9—C10129.69 (17)C19—C20—H20A119.3
N1—C9—C10118.99 (16)C22—C21—C20118.4 (2)
C9—C10—H10A109.5C22—C21—H21A120.8
C9—C10—H10B109.5C20—C21—H21A120.8
H10A—C10—H10B109.5C21—C22—C23121.4 (3)
C9—C10—H10C109.5C21—C22—H22A119.3
H10A—C10—H10C109.5C23—C22—H22A119.3
H10B—C10—H10C109.5C18—C23—C22119.7 (3)
N1—C11—H11A109.5C18—C23—H23A120.1
N1—C11—H11B109.5C22—C23—H23A120.1
H11A—C11—H11B109.5
C9—N1—N2—C77.34 (19)N2—N1—C9—C10174.48 (17)
C11—N1—N2—C7142.96 (16)C11—N1—C9—C1042.2 (3)
C9—N1—N2—C1158.51 (15)C9—C8—C12—C1369.4 (2)
C11—N1—N2—C165.9 (2)C7—C8—C12—C13115.47 (18)
C6—C1—N2—C759.9 (2)C8—C12—C13—C1480.4 (2)
C2—C1—N2—C7119.66 (18)C8—C12—C13—C1599.9 (2)
C6—C1—N2—N1153.84 (16)C15—C13—C14—N33.87 (19)
C2—C1—N2—N126.6 (2)C12—C13—C14—N3176.36 (16)
C6—C1—C2—C30.6 (3)C15—C13—C14—C16175.83 (17)
N2—C1—C2—C3179.83 (16)C12—C13—C14—C163.9 (3)
C1—C2—C3—C40.3 (3)N4—N3—C14—C137.51 (19)
C14—N3—N4—C158.37 (18)C17—N3—C14—C13140.82 (19)
C17—N3—N4—C15145.20 (17)N4—N3—C14—C16172.22 (15)
C14—N3—N4—C18162.43 (15)C17—N3—C14—C1638.9 (3)
C17—N3—N4—C1860.7 (2)N3—N4—C15—O1173.24 (16)
C2—C3—C4—C50.3 (3)C18—N4—C15—O120.9 (3)
C3—C4—C5—C60.6 (3)N3—N4—C15—C136.04 (18)
C4—C5—C6—C10.2 (3)C18—N4—C15—C13158.40 (16)
C2—C1—C6—C50.4 (3)C14—C13—C15—O1177.80 (19)
N2—C1—C6—C5179.91 (17)C12—C13—C15—O12.4 (3)
N1—N2—C7—O2171.97 (16)C14—C13—C15—N41.38 (18)
C1—N2—C7—O223.1 (3)C12—C13—C15—N4178.40 (15)
N1—N2—C7—C86.00 (18)C15—N4—C18—C1967.7 (3)
C1—N2—C7—C8154.90 (15)N3—N4—C18—C19142.39 (19)
O2—C7—C8—C9175.38 (18)C15—N4—C18—C23112.1 (3)
N2—C7—C8—C92.35 (18)N3—N4—C18—C2337.8 (3)
O2—C7—C8—C120.6 (3)C23—C18—C19—C200.2 (4)
N2—C7—C8—C12178.37 (15)N4—C18—C19—C20179.6 (2)
C7—C8—C9—N12.3 (2)C18—C19—C20—C210.1 (4)
C12—C8—C9—N1173.48 (16)C19—C20—C21—C220.4 (4)
C7—C8—C9—C10178.2 (2)C20—C21—C22—C230.4 (5)
C12—C8—C9—C106.1 (3)C19—C18—C23—C220.2 (4)
N2—N1—C9—C85.9 (2)N4—C18—C23—C22179.6 (3)
C11—N1—C9—C8138.22 (19)C21—C22—C23—C180.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H26···O10.96 (3)1.83 (3)2.788 (2)170 (3)
O3—H27···O2i0.96 (3)1.84 (3)2.789 (2)175 (3)
Symmetry code: (i) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC23H24N4O2·H2O
Mr406.48
Crystal system, space groupMonoclinic, P21/c
Temperature (K)203
a, b, c (Å)11.937 (3), 14.740 (4), 12.085 (3)
β (°) 92.436 (5)
V3)2124.4 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.4 × 0.3 × 0.1
Data collection
DiffractometerBruker CCD 1000
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(Blessing, 1995)
Tmin, Tmax0.970, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
12780, 3704, 3017
Rint0.037
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.130, 1.03
No. of reflections3704
No. of parameters282
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.18

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXTL (Siemens, 1996), SHELXTL.

Selected geometric parameters (Å, º) top
O1—C151.241 (2)O3—H270.96 (3)
C1—N21.427 (2)N4—C151.388 (2)
N1—C91.376 (2)N4—C181.428 (2)
N1—N21.404 (2)C7—C81.439 (2)
N1—C111.466 (3)C8—C91.354 (2)
O2—C71.237 (2)C8—C121.508 (2)
N2—C71.393 (2)C9—C101.491 (3)
N3—C141.376 (2)C12—C131.506 (2)
N3—N41.398 (2)C13—C141.360 (2)
N3—C171.468 (2)C13—C151.440 (2)
O3—H260.96 (3)C14—C161.489 (3)
C9—N1—N2106.05 (13)C9—C8—C12129.05 (16)
C7—N2—N1109.09 (13)C7—C8—C12123.79 (15)
C7—N2—C1124.86 (14)C8—C9—N1111.33 (15)
N1—N2—C1118.49 (13)C13—C12—C8115.57 (14)
C14—N3—N4106.09 (13)C14—C13—C15107.30 (15)
H26—O3—H27109 (3)C14—C13—C12127.75 (16)
C15—N4—N3109.70 (13)C15—C13—C12124.95 (15)
C15—N4—C18124.83 (15)C13—C14—N3110.71 (16)
O2—C7—N2122.85 (16)O1—C15—N4122.80 (16)
O2—C7—C8131.11 (16)O1—C15—C13131.65 (16)
N2—C7—C8106.01 (14)N4—C15—C13105.54 (15)
C9—C8—C7107.03 (15)
C9—N1—N2—C77.34 (19)C7—C8—C9—N12.3 (2)
C9—N1—N2—C1158.51 (15)N2—N1—C9—C85.9 (2)
C14—N3—N4—C158.37 (18)C15—C13—C14—N33.87 (19)
C14—N3—N4—C18162.43 (15)N4—N3—C14—C137.51 (19)
N1—N2—C7—O2171.97 (16)N3—N4—C15—O1173.24 (16)
C1—N2—C7—O223.1 (3)C18—N4—C15—O120.9 (3)
N1—N2—C7—C86.00 (18)N3—N4—C15—C136.04 (18)
C1—N2—C7—C8154.90 (15)C18—N4—C15—C13158.40 (16)
O2—C7—C8—C9175.38 (18)C14—C13—C15—O1177.80 (19)
N2—C7—C8—C92.35 (18)C14—C13—C15—N41.38 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H26···O10.96 (3)1.83 (3)2.788 (2)170 (3)
O3—H27···O2i0.96 (3)1.84 (3)2.789 (2)175 (3)
Symmetry code: (i) x+2, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds