Download citation
Download citation
link to html
The title compound, C27H35NO7S, is selectively formed by the oxidative addition of a β-keto ester to a chiral N-cinnamoyl derivative. The determination from X-ray analysis of the absolute configuration of two newly created stereogenic centres allows us to understand the facial selectivity of the addition.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802000971/dn6011sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802000971/dn6011Isup2.hkl
Contains datablock I

CCDC reference: 182631

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.057
  • wR factor = 0.127
  • Data-to-parameter ratio = 19.3

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
CELLV_02 Alert C The supplied cell volume s.u. differs from that calculated from the cell parameter s.u.'s by > 2 Calculated cell volume su = 14.50 Cell volume su given = 12.00 General Notes
REFLT_03 From the CIF: _diffrn_reflns_theta_max 28.63 From the CIF: _reflns_number_total 6413 Count of symmetry unique reflns 3709 Completeness (_total/calc) 172.90% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 2704 Fraction of Friedel pairs measured 0.729 Are heavy atom types Z>Si present yes Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

The addition of isopropyl 3-oxobutanoate to compound (1) [(1S,2R)-N-[(E)-4-methoxycinnamoyl]-10,2-camphorsultam] in the presence of Mn(OAc)3, using a previously described method, affords the title molecule, (2), as a major isomer, the reaction being totally regio- and diastereoselective (Garzino et al., 2000). The facial selectivity of the MnIII-mediated addition of β-keto esters to olefins can be controlled by introduction of a chiral auxiliary on the substrate (Curran et al., 1996). This reaction thereby provides an entry to chiral dihydrofurans. The structures of the starting compound (Garzino et al., 2002) and of the dihydrofuran adduct were thus elucidated in order to know their relative configuration and to understand how the diastereoselection is controlled. When using compound (I) as substrate, dihydrofuran (2) was selectively formed.

The absolute configurations of the two stereogenic centres were determined by X-ray analysis. It appears that, when (-)-10,2-camphorsultam was used as the chiral inductor, the (2R,3R)-dihydrofuran (2) was selectively obtained, with a specific rotation of -229.0° in choroform for a concentration c = 0.7 (2R is atom C9 and 3R is atom C13). As it is known that in such radical reactions the transition state resembles the substrate, the explanation of such a facial selectivity can be provided by the crystal structure of the starting compound (1). Indeed it can be seen that, in this compound, the anti s-cis conformation is favoured by dipolar interactions between the cinnamate CO group and the equatorial SO group of the sulfonyl moiety. In this conformation, the approach by the lower face is hindered by the axial SO, thus enabling the facial stereoselectivity to be controlled. It is interesting to notice that the addition of isopropyl 3-oxobutanoate to compound (1) affects considerably the conjugation of the π sytem. The value of the torsion angle C9—C10—C11—O12 changes from 19.8 (2) to 76.40 (3)°.

Experimental top

Colourless needle-shaped crystals of (2) were obtained by evaporation of an ethanol solution.

Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997); cell refinement: DENZO; data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) drawing of (2).
(I) top
Crystal data top
C27H35NO7SF(000) = 552
Mr = 517.62Dx = 1.264 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2ybCell parameters from 12731 reflections
a = 12.1894 (7) Åθ = 1.8–28.6°
b = 8.9921 (3) ŵ = 0.16 mm1
c = 13.0425 (8) ÅT = 293 K
β = 107.97 (1)°Square platelet, colourless
V = 1359.83 (12) Å30.42 × 0.41 × 0.32 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
5079 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.082
Graphite monochromatorθmax = 28.6°, θmin = 1.8°
ϕ scansh = 1616
12731 measured reflectionsk = 911
6413 independent reflectionsl = 1714
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0502P)2 + 0.2323P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.004
6413 reflectionsΔρmax = 0.24 e Å3
332 parametersΔρmin = 0.26 e Å3
1 restraintAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (8)
Crystal data top
C27H35NO7SV = 1359.83 (12) Å3
Mr = 517.62Z = 2
Monoclinic, P21Mo Kα radiation
a = 12.1894 (7) ŵ = 0.16 mm1
b = 8.9921 (3) ÅT = 293 K
c = 13.0425 (8) Å0.42 × 0.41 × 0.32 mm
β = 107.97 (1)°
Data collection top
Nonius KappaCCD
diffractometer
5079 reflections with I > 2σ(I)
12731 measured reflectionsRint = 0.082
6413 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.128Δρmax = 0.24 e Å3
S = 1.02Δρmin = 0.26 e Å3
6413 reflectionsAbsolute structure: Flack (1983)
332 parametersAbsolute structure parameter: 0.03 (8)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7590 (4)0.1820 (4)1.4594 (3)0.0781 (10)
H110.80510.13401.52410.117*
H120.75090.11711.39900.117*
H130.68430.20411.46550.117*
O20.8136 (2)0.3163 (2)1.44387 (15)0.0653 (6)
C30.7637 (2)0.3942 (3)1.3503 (2)0.0457 (6)
C40.6625 (2)0.3525 (3)1.2732 (2)0.0510 (6)
H40.62250.26861.28340.061*
C50.6213 (2)0.4367 (3)1.1809 (2)0.0484 (6)
H50.55300.40861.12930.058*
C60.6791 (2)0.5623 (3)1.16288 (18)0.0379 (5)
C70.7792 (2)0.6033 (3)1.24264 (18)0.0439 (5)
H70.81880.68801.23330.053*
C80.8210 (2)0.5204 (3)1.3355 (2)0.0481 (6)
H80.88810.54981.38820.058*
C90.63195 (19)0.6522 (3)1.06160 (19)0.0394 (5)
H90.67520.74541.06780.047*
O100.51034 (15)0.6846 (2)1.04801 (14)0.0470 (4)
C110.4443 (2)0.6078 (3)0.96175 (19)0.0420 (5)
C120.5040 (2)0.5381 (3)0.90532 (19)0.0392 (5)
C130.63085 (19)0.5694 (3)0.95591 (17)0.0376 (5)
H13A0.67530.47690.97220.045*
C140.3192 (2)0.6127 (4)0.9489 (2)0.0584 (7)
H1410.27700.56680.88190.088*
H1420.29510.71430.94910.088*
H1430.30450.56021.00750.088*
C150.4544 (2)0.4485 (3)0.8094 (2)0.0445 (6)
O160.35240 (17)0.4308 (2)0.76475 (16)0.0591 (5)
O170.53765 (17)0.3865 (2)0.77539 (15)0.0531 (5)
C180.5000 (3)0.2781 (4)0.6872 (3)0.0692 (9)
H180.42520.23650.68530.083*
C190.5884 (4)0.1573 (4)0.7100 (3)0.0850 (11)
H1910.56520.08230.65510.127*
H1920.59550.11390.77900.127*
H1930.66140.19810.71050.127*
C200.4884 (4)0.3609 (6)0.5824 (3)0.1016 (15)
H2010.46330.29310.52290.152*
H2020.56170.40240.58470.152*
H2030.43280.43930.57360.152*
C210.6740 (2)0.6690 (3)0.8817 (2)0.0409 (5)
O220.61499 (17)0.7664 (2)0.82772 (19)0.0686 (6)
N230.78244 (15)0.6416 (2)0.87213 (15)0.0370 (4)
C240.8229 (2)0.7316 (3)0.79590 (19)0.0404 (5)
H240.83010.83650.81740.048*
C250.9417 (2)0.6670 (3)0.79914 (19)0.0427 (5)
C261.0019 (2)0.6112 (4)0.9126 (2)0.0498 (6)
H26A1.05930.68260.95170.060*
H26B1.04020.51730.91010.060*
S270.89428 (5)0.58802 (9)0.97727 (5)0.05254 (19)
O280.87975 (19)0.4366 (3)1.0018 (2)0.0932 (10)
O290.9098 (2)0.6926 (4)1.06203 (17)0.0987 (11)
C300.7503 (2)0.7154 (4)0.6769 (2)0.0568 (7)
H30A0.68990.64180.66800.068*
H30B0.71600.80940.64710.068*
C310.8406 (2)0.6640 (4)0.6247 (2)0.0598 (7)
H310.80780.62420.55170.072*
C320.9268 (3)0.7925 (5)0.6332 (2)0.0721 (9)
H32A0.88690.88660.61360.086*
H32B0.97470.77490.58730.086*
C330.9996 (2)0.7909 (4)0.7538 (2)0.0579 (7)
H33A1.07970.76770.76270.070*
H33B0.99530.88550.78810.070*
C340.9115 (2)0.5512 (3)0.7063 (2)0.0514 (6)
C351.0190 (3)0.4924 (5)0.6807 (3)0.0818 (11)
H3510.99530.43240.61670.123*
H3521.06450.43340.74000.123*
H3531.06410.57470.66950.123*
C360.8441 (3)0.4143 (4)0.7229 (3)0.0675 (8)
H3610.81780.35910.65680.101*
H3620.77900.44540.74420.101*
H3630.89340.35240.77820.101*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.116 (3)0.059 (2)0.0604 (18)0.0020 (19)0.0290 (19)0.0113 (16)
O20.0808 (15)0.0665 (13)0.0427 (10)0.0010 (11)0.0103 (10)0.0045 (9)
C30.0529 (15)0.0495 (15)0.0383 (12)0.0023 (11)0.0194 (11)0.0029 (10)
C40.0604 (17)0.0476 (16)0.0457 (14)0.0119 (12)0.0174 (12)0.0003 (11)
C50.0471 (14)0.0473 (15)0.0484 (14)0.0121 (11)0.0113 (11)0.0028 (11)
C60.0410 (11)0.0371 (13)0.0385 (11)0.0034 (9)0.0167 (9)0.0069 (9)
C70.0440 (12)0.0441 (13)0.0463 (12)0.0095 (11)0.0179 (10)0.0083 (11)
C80.0443 (13)0.0558 (15)0.0425 (13)0.0048 (11)0.0110 (11)0.0111 (11)
C90.0385 (12)0.0344 (12)0.0475 (13)0.0026 (9)0.0164 (10)0.0041 (10)
O100.0425 (9)0.0470 (10)0.0548 (10)0.0072 (7)0.0198 (8)0.0058 (8)
C110.0416 (12)0.0376 (13)0.0477 (12)0.0022 (10)0.0152 (10)0.0034 (10)
C120.0397 (12)0.0366 (13)0.0430 (12)0.0009 (9)0.0154 (10)0.0028 (9)
C130.0399 (11)0.0331 (12)0.0414 (11)0.0027 (9)0.0151 (9)0.0026 (9)
C140.0437 (13)0.0639 (19)0.0720 (18)0.0044 (13)0.0244 (13)0.0005 (15)
C150.0500 (15)0.0387 (13)0.0465 (13)0.0054 (10)0.0172 (11)0.0039 (10)
O160.0484 (11)0.0605 (12)0.0622 (12)0.0086 (9)0.0081 (9)0.0052 (10)
O170.0558 (11)0.0604 (12)0.0479 (10)0.0131 (9)0.0229 (9)0.0170 (8)
C180.076 (2)0.073 (2)0.0667 (19)0.0268 (17)0.0337 (16)0.0320 (16)
C190.121 (3)0.057 (2)0.091 (3)0.010 (2)0.054 (2)0.0196 (18)
C200.111 (3)0.134 (4)0.0484 (19)0.012 (3)0.009 (2)0.021 (2)
C210.0405 (12)0.0352 (12)0.0512 (13)0.0038 (10)0.0202 (10)0.0043 (10)
O220.0573 (12)0.0647 (13)0.0955 (16)0.0279 (10)0.0409 (11)0.0424 (12)
N230.0345 (9)0.0401 (11)0.0379 (9)0.0033 (7)0.0133 (8)0.0096 (8)
C240.0424 (13)0.0421 (13)0.0387 (12)0.0002 (10)0.0154 (10)0.0082 (9)
C250.0370 (12)0.0521 (14)0.0413 (12)0.0054 (10)0.0157 (10)0.0005 (11)
C260.0338 (11)0.0693 (18)0.0468 (13)0.0052 (11)0.0130 (10)0.0001 (12)
S270.0371 (3)0.0800 (5)0.0395 (3)0.0008 (3)0.0105 (2)0.0148 (3)
O280.0540 (13)0.106 (2)0.121 (2)0.0194 (13)0.0294 (13)0.0802 (18)
O290.0636 (14)0.189 (3)0.0458 (11)0.0204 (17)0.0206 (10)0.0385 (16)
C300.0494 (15)0.076 (2)0.0438 (14)0.0042 (13)0.0128 (12)0.0144 (13)
C310.0527 (15)0.091 (2)0.0370 (12)0.0090 (15)0.0150 (11)0.0003 (14)
C320.073 (2)0.096 (3)0.0548 (17)0.0107 (18)0.0314 (16)0.0172 (17)
C330.0521 (16)0.0677 (19)0.0582 (16)0.0156 (13)0.0232 (13)0.0073 (14)
C340.0477 (14)0.0619 (18)0.0475 (14)0.0026 (12)0.0189 (11)0.0096 (11)
C350.072 (2)0.100 (3)0.082 (2)0.0074 (19)0.0358 (19)0.024 (2)
C360.075 (2)0.0550 (19)0.074 (2)0.0106 (15)0.0250 (17)0.0213 (15)
Geometric parameters (Å, º) top
C1—O21.423 (4)C18—C191.494 (5)
O2—C31.376 (3)C18—C201.524 (6)
C3—C81.377 (4)C21—O221.211 (3)
C3—C41.381 (4)C21—N231.388 (3)
C4—C51.379 (4)N23—C241.480 (3)
C5—C61.389 (3)N23—S271.6785 (19)
C6—C71.387 (3)C24—C301.538 (4)
C6—C91.504 (3)C24—C251.549 (3)
C7—C81.378 (4)C25—C261.520 (3)
C9—O101.467 (3)C25—C331.531 (4)
C9—C131.563 (3)C25—C341.552 (4)
O10—C111.354 (3)C26—S271.777 (2)
C11—C121.340 (3)S27—O291.419 (3)
C11—C141.482 (3)S27—O281.422 (3)
C12—C151.454 (3)C30—C311.533 (4)
C12—C131.509 (3)C31—C341.530 (4)
C13—C211.526 (3)C31—C321.542 (5)
C15—O161.210 (3)C32—C331.549 (4)
C15—O171.347 (3)C34—C361.533 (4)
O17—C181.469 (3)C34—C351.543 (4)
C3—O2—C1117.4 (2)N23—C21—C13118.47 (19)
O2—C3—C8116.0 (2)C21—N23—C24119.17 (18)
O2—C3—C4124.0 (2)C21—N23—S27122.25 (15)
C8—C3—C4119.9 (2)C24—N23—S27110.52 (14)
C5—C4—C3119.3 (3)N23—C24—C30114.7 (2)
C4—C5—C6121.8 (2)N23—C24—C25106.23 (18)
C7—C6—C5117.6 (2)C30—C24—C25103.54 (19)
C7—C6—C9121.7 (2)C26—C25—C33118.3 (2)
C5—C6—C9120.6 (2)C26—C25—C24108.46 (18)
C8—C7—C6121.1 (2)C33—C25—C24104.8 (2)
C3—C8—C7120.2 (2)C26—C25—C34117.7 (2)
O10—C9—C6108.14 (18)C33—C25—C34102.3 (2)
O10—C9—C13104.76 (17)C24—C25—C34103.59 (19)
C6—C9—C13114.56 (19)C25—C26—S27107.18 (16)
C11—O10—C9108.61 (17)O29—S27—O28117.1 (2)
C12—C11—O10114.2 (2)O29—S27—N23109.02 (16)
C12—C11—C14131.8 (2)O28—S27—N23109.40 (13)
O10—C11—C14114.0 (2)O29—S27—C26110.57 (15)
C11—C12—C15125.4 (2)O28—S27—C26112.36 (16)
C11—C12—C13109.3 (2)N23—S27—C2696.38 (10)
C15—C12—C13125.3 (2)C31—C30—C24102.0 (2)
C12—C13—C21109.84 (19)C34—C31—C30102.7 (2)
C12—C13—C9101.73 (18)C34—C31—C32102.7 (2)
C21—C13—C9111.65 (19)C30—C31—C32108.0 (3)
O16—C15—O17123.6 (2)C31—C32—C33103.3 (2)
O16—C15—C12125.4 (2)C25—C33—C32102.2 (2)
O17—C15—C12110.9 (2)C31—C34—C36114.8 (2)
C15—O17—C18116.6 (2)C31—C34—C35114.3 (3)
O17—C18—C19107.1 (3)C36—C34—C35106.4 (3)
O17—C18—C20107.4 (3)C31—C34—C2592.6 (2)
C19—C18—C20113.3 (3)C36—C34—C25116.0 (2)
O22—C21—N23119.2 (2)C35—C34—C25112.7 (2)
O22—C21—C13122.3 (2)

Experimental details

Crystal data
Chemical formulaC27H35NO7S
Mr517.62
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)12.1894 (7), 8.9921 (3), 13.0425 (8)
β (°) 107.97 (1)
V3)1359.83 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.42 × 0.41 × 0.32
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12731, 6413, 5079
Rint0.082
(sin θ/λ)max1)0.674
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.128, 1.02
No. of reflections6413
No. of parameters332
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.26
Absolute structureFlack (1983)
Absolute structure parameter0.03 (8)

Computer programs: DENZO (Otwinowski & Minor, 1997), DENZO, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), PLATON (Spek, 1990).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds