Download citation
Download citation
link to html
The title compound, C20H25NO4S, is the precursor mol­ecule for the synthesis of (2R,3R)-2-(4-methoxy­phenyl)-3-{1-[(3aS)-(3aα,6α,7aα)-hexa­hydro-8,8-di­methyl-3H-3a,6-methano-2,2-di­oxo-2,1-benzoiso­thia­zolyl]­carbonyl}-4-isopropoxy­carbonyl-5-methyl-2,2-di­hydro­furan, which is selectively formed by an oxidative addition of a β-keto ester.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680200096X/dn6012sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680200096X/dn6012Isup2.hkl
Contains datablock I

CCDC reference: 182630

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.040
  • wR factor = 0.103
  • Data-to-parameter ratio = 16.9

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

REFLT_03 From the CIF: _diffrn_reflns_theta_max 28.91 From the CIF: _reflns_number_total 4046 Count of symmetry unique reflns 2709 Completeness (_total/calc) 149.35% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1337 Fraction of Friedel pairs measured 0.494 Are heavy atom types Z>Si present yes WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure

Comment top

The title compound, (1), was prepared by reaction between (E)-4-methoxy-cinnamoyl chloride and the sodium salt of (-)-10,2-camphorsultam (Oppolzer et al., 1992). The starting camphorsultam is a commercial product (1S,2R purum enantiomer) with a specific rotation of -33° in ethylic alcohol for a concentration c = 1. The Mn(OAc)3-induced radical addition of a β-keto ester to (1) gives preferentially a major diastereoisomer of a chiral dihydrofuran possessing two newly formed adjacent stereogenic centres (Garzino et al., 2000). The specific rotation of the synthesized compound is -85.4° in chloroform for a concentration c = 1. The crystal structure of compound (1) was determined by X-ray analysis in order to understand the origin of the facial selectivity of this oxidative addition. It is known that in such radical reactions the transition state resembles the substrate (Curran et al., 1996).

Experimental top

Colourless crystals, shaped as square platelets, were obtained by evaporation of an ethanol solution.

Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997); cell refinement: DENZO; data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) drawing of (1). 1S and 2R correspond to atoms C15 and C14, respectively.
(I) top
Crystal data top
C20H25NO4SF(000) = 800
Mr = 375.47Dx = 1.272 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71069 Å
Hall symbol: C 2yCell parameters from 8349 reflections
a = 10.147 (2) Åθ = 2.9–28.9°
b = 10.938 (2) ŵ = 0.19 mm1
c = 17.681 (3) ÅT = 293 K
β = 92.65 (3)°Needle, colourless
V = 1960.3 (6) Å30.39 × 0.22 × 0.19 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3702 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.041
Graphite monochromatorθmax = 28.9°, θmin = 2.9°
ϕ scansh = 1213
8349 measured reflectionsk = 1413
4046 independent reflectionsl = 2320
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0493P)2 + 0.4741P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4046 reflectionsΔρmax = 0.17 e Å3
239 parametersΔρmin = 0.17 e Å3
1 restraintAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (7)
Crystal data top
C20H25NO4SV = 1960.3 (6) Å3
Mr = 375.47Z = 4
Monoclinic, C2Mo Kα radiation
a = 10.147 (2) ŵ = 0.19 mm1
b = 10.938 (2) ÅT = 293 K
c = 17.681 (3) Å0.39 × 0.22 × 0.19 mm
β = 92.65 (3)°
Data collection top
Nonius KappaCCD
diffractometer
3702 reflections with I > 2σ(I)
8349 measured reflectionsRint = 0.041
4046 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.103Δρmax = 0.17 e Å3
S = 1.05Δρmin = 0.17 e Å3
4046 reflectionsAbsolute structure: Flack (1983)
239 parametersAbsolute structure parameter: 0.06 (7)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.3268 (3)0.7722 (4)1.02333 (16)0.0939 (12)
H1A1.38040.72710.98980.141*
H1B1.28120.71641.05480.141*
H1C1.38180.82511.05450.141*
O21.23340 (19)0.8436 (2)0.98017 (11)0.0843 (6)
C31.1409 (2)0.7825 (3)0.93751 (12)0.0573 (6)
C41.1338 (2)0.6592 (3)0.93133 (12)0.0584 (6)
H41.19450.61010.95820.070*
C51.0353 (2)0.6061 (2)0.88469 (13)0.0553 (5)
H51.03210.52150.87950.066*
C60.9424 (2)0.6776 (2)0.84599 (11)0.0477 (5)
C70.9515 (2)0.8019 (2)0.85406 (13)0.0578 (6)
H70.88980.85180.82870.069*
C81.0493 (3)0.8539 (3)0.89861 (15)0.0660 (6)
H81.05400.93860.90280.079*
C90.8398 (2)0.6166 (2)0.79962 (12)0.0534 (5)
H90.85400.53460.78870.064*
C100.7286 (2)0.6648 (2)0.77133 (11)0.0521 (5)
H100.71090.74720.77910.063*
C110.6335 (2)0.5895 (2)0.72791 (12)0.0541 (5)
O120.66000 (19)0.49286 (19)0.69955 (12)0.0879 (7)
N130.50551 (15)0.63475 (15)0.71772 (8)0.0423 (3)
C140.40516 (19)0.55650 (18)0.68117 (11)0.0457 (4)
H140.39580.48160.71090.055*
C150.27490 (16)0.62867 (18)0.67917 (9)0.0396 (4)
C160.27552 (17)0.7149 (3)0.74609 (10)0.0514 (4)
H16A0.21600.68570.78350.062*
H16B0.24730.79590.72980.062*
S170.43934 (4)0.71974 (5)0.78517 (2)0.04551 (13)
O180.49290 (18)0.83859 (17)0.78486 (13)0.0785 (6)
O190.44912 (19)0.6546 (2)0.85471 (8)0.0822 (6)
C200.4216 (2)0.5236 (3)0.59777 (13)0.0697 (8)
H20A0.49410.56820.57700.084*
H20B0.43590.43660.59150.084*
C210.2898 (2)0.5631 (2)0.56135 (12)0.0611 (6)
H210.28860.56660.50590.073*
C220.1823 (3)0.4834 (3)0.59213 (18)0.0826 (9)
H22A0.20890.39820.59380.099*
H22B0.10090.49080.56150.099*
C230.1663 (3)0.5339 (3)0.67194 (17)0.0704 (7)
H23A0.08010.57080.67660.084*
H23B0.17860.47030.70990.084*
C240.26874 (19)0.68725 (19)0.59920 (10)0.0485 (5)
C250.1357 (3)0.7450 (3)0.57794 (15)0.0752 (9)
H25A0.13630.77600.52720.113*
H25B0.11930.81080.61220.113*
H25C0.06750.68460.58110.113*
C260.3725 (3)0.7834 (3)0.58594 (14)0.0751 (8)
H26A0.35550.85450.61580.113*
H26B0.36970.80520.53330.113*
H26C0.45820.75140.60030.113*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0533 (13)0.162 (3)0.0636 (14)0.0045 (17)0.0212 (11)0.0253 (17)
O20.0649 (11)0.1136 (17)0.0722 (12)0.0205 (12)0.0191 (8)0.0138 (11)
C30.0452 (11)0.0858 (18)0.0405 (10)0.0125 (11)0.0021 (8)0.0051 (10)
C40.0403 (11)0.0878 (19)0.0460 (10)0.0073 (12)0.0094 (8)0.0048 (11)
C50.0423 (10)0.0652 (14)0.0572 (12)0.0096 (10)0.0102 (8)0.0033 (10)
C60.0379 (9)0.0621 (13)0.0423 (9)0.0074 (8)0.0058 (7)0.0021 (8)
C70.0578 (13)0.0593 (14)0.0550 (12)0.0006 (10)0.0129 (9)0.0082 (9)
C80.0652 (15)0.0681 (16)0.0636 (14)0.0120 (13)0.0098 (11)0.0035 (11)
C90.0462 (10)0.0588 (13)0.0538 (11)0.0131 (9)0.0128 (8)0.0113 (9)
C100.0453 (10)0.0576 (12)0.0522 (10)0.0139 (9)0.0116 (8)0.0099 (9)
C110.0485 (11)0.0579 (13)0.0541 (11)0.0218 (10)0.0177 (8)0.0155 (9)
O120.0687 (11)0.0830 (13)0.1077 (15)0.0441 (10)0.0444 (10)0.0519 (11)
N130.0394 (7)0.0472 (9)0.0390 (7)0.0135 (7)0.0112 (5)0.0105 (6)
C140.0495 (10)0.0390 (9)0.0470 (9)0.0092 (8)0.0146 (8)0.0081 (7)
C150.0358 (8)0.0448 (9)0.0381 (8)0.0026 (8)0.0001 (6)0.0035 (7)
C160.0409 (9)0.0714 (13)0.0416 (8)0.0088 (11)0.0013 (6)0.0124 (10)
S170.0451 (2)0.0519 (3)0.0388 (2)0.0096 (2)0.00575 (14)0.01192 (19)
O180.0604 (10)0.0479 (10)0.1263 (17)0.0063 (8)0.0043 (9)0.0328 (10)
O190.0820 (12)0.1292 (18)0.0347 (7)0.0189 (12)0.0055 (7)0.0101 (9)
C200.0538 (12)0.0915 (19)0.0618 (13)0.0322 (12)0.0204 (10)0.0410 (13)
C210.0512 (11)0.0839 (17)0.0467 (10)0.0240 (11)0.0157 (8)0.0254 (10)
C220.0648 (16)0.0770 (19)0.103 (2)0.0007 (14)0.0245 (14)0.0376 (16)
C230.0578 (14)0.0703 (17)0.0827 (17)0.0175 (13)0.0009 (11)0.0064 (13)
C240.0437 (9)0.0629 (14)0.0378 (8)0.0135 (8)0.0104 (7)0.0010 (7)
C250.0654 (14)0.086 (2)0.0715 (14)0.0313 (14)0.0302 (11)0.0094 (13)
C260.0795 (17)0.0879 (19)0.0575 (13)0.0038 (15)0.0024 (11)0.0305 (13)
Geometric parameters (Å, º) top
C1—O21.422 (4)C14—C201.534 (3)
O2—C31.353 (3)C14—C151.538 (3)
C3—C41.355 (4)C15—C161.513 (3)
C3—C81.374 (4)C15—C231.514 (3)
C4—C51.392 (3)C15—C241.551 (2)
C5—C61.382 (3)C16—S171.7712 (18)
C6—C71.370 (3)S17—O181.409 (2)
C6—C91.457 (3)S17—O191.4207 (18)
C7—C81.362 (3)C20—C211.519 (3)
C9—C101.323 (3)C21—C221.517 (4)
C10—C111.460 (3)C21—C241.534 (3)
C11—O121.205 (3)C22—C231.531 (4)
C11—N131.394 (2)C24—C261.514 (4)
N13—C141.458 (2)C24—C251.522 (3)
N13—S171.6767 (15)
C3—O2—C1117.1 (3)C23—C15—C14105.77 (19)
O2—C3—C4124.7 (3)C16—C15—C24116.98 (18)
O2—C3—C8115.8 (3)C23—C15—C24101.97 (17)
C4—C3—C8119.5 (2)C14—C15—C24103.38 (14)
C3—C4—C5119.8 (2)C15—C16—S17107.06 (13)
C6—C5—C4120.8 (3)O18—S17—O19117.04 (14)
C7—C6—C5118.0 (2)O18—S17—N13109.97 (11)
C7—C6—C9123.8 (2)O19—S17—N13108.85 (11)
C5—C6—C9118.2 (2)O18—S17—C16112.39 (12)
C8—C7—C6121.2 (2)O19—S17—C16110.46 (12)
C7—C8—C3120.7 (3)N13—S17—C1696.06 (8)
C10—C9—C6127.2 (2)C21—C20—C14102.03 (17)
C9—C10—C11120.3 (2)C22—C21—C20108.5 (2)
O12—C11—N13118.83 (19)C22—C21—C24103.60 (19)
O12—C11—C10123.98 (18)C20—C21—C24101.81 (16)
N13—C11—C10117.17 (18)C21—C22—C23103.42 (19)
C11—N13—C14118.43 (16)C15—C23—C22102.5 (2)
C11—N13—S17120.42 (13)C26—C24—C25106.8 (2)
C14—N13—S17110.26 (12)C26—C24—C21115.8 (2)
N13—C14—C20117.33 (19)C25—C24—C21113.58 (18)
N13—C14—C15106.90 (15)C26—C24—C15115.41 (17)
C20—C14—C15103.27 (15)C25—C24—C15113.24 (18)
C16—C15—C23118.02 (18)C21—C24—C1591.80 (16)
C16—C15—C14109.24 (14)

Experimental details

Crystal data
Chemical formulaC20H25NO4S
Mr375.47
Crystal system, space groupMonoclinic, C2
Temperature (K)293
a, b, c (Å)10.147 (2), 10.938 (2), 17.681 (3)
β (°) 92.65 (3)
V3)1960.3 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.39 × 0.22 × 0.19
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8349, 4046, 3702
Rint0.041
(sin θ/λ)max1)0.680
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.103, 1.05
No. of reflections4046
No. of parameters239
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.17
Absolute structureFlack (1983)
Absolute structure parameter0.06 (7)

Computer programs: DENZO (Otwinowski & Minor, 1997), DENZO, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), PLATON (Spek, 1990).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds