Download citation
Download citation
link to html
The trans stereochemical relationship of the two substituents of the title compound, C9H12N2O5, a new spiro-nucleoside, has been confirmed. The cyclo­pentane moiety adopts the C3'-endo-type conformation, while the barbiturate ring is almost planar. Molecules interconnected by a two-dimensional network of hydrogen bonds build layers parallel to the ab plane.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802002337/dn6015sup1.cif
Contains datablocks MITSO, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802002337/dn6015Isup2.hkl
Contains datablock I

CCDC reference: 182610

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.039
  • wR factor = 0.044
  • Data-to-parameter ratio = 12.5

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_162 Alert C Missing or Zero su (esd) on y-coordinate for . O2 General Notes
REFLT_03 From the CIF: _diffrn_reflns_theta_max 35.00 From the CIF: _reflns_number_total 2187 Count of symmetry unique reflns 2191 Completeness (_total/calc) 99.82% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

Among many modified nucleosides exhibiting biological activities, some spiro-nucleosides have been shown to be useful as potent herbicide without animal toxicity. Synthetic efforts have been devoted in recent years to their analogues (Mio & Sano, 1997; Nakajima et al., 1991). We are interested in the highly constrained structural feature of these spiro-nucleosides which may be used as promising building units for modified oligonucleotide synthesis in the antisense and/or the antigene strategy. It is well established that conformational restriction may lead to favourable complex formation due to an entropic advantage. This concept has been investigated quite intensively in nucleoside and especially oligonucleotide chemistry (Meldgaard & Wengel, 2000). Recently, we have developed synthetic methods for new carbocyclic spiro-nucleosides containing barbituric acid moiety (1) using the synthetic scheme below (Renard et al., 2002). The reagents and conditions are as follows: (a) (CH2O)n, AcOH, H2SO4, 333 K, 24 h; (b) TMSCl, MeOH; (c) resolution; (d) TBDMSCl, imidazole; (e) urea, tBuOK; (f) TMSCl, MeOH.

We have shown that the spiro-nucleoside (1) is considerably more stable against ring opening than the deoxyribosyl derivative (2). Also these compounds present enhanced hydrogen bonding capacity with `complementary' deoxyadenosine derivative. So it is interesting to determine the three-dimensional structure and hydrogen-bonding features of this spiro-nucleoside.

The present atomic arrangement is a typical layer organization. Molecules of the title compound interconnected by N—H···O and O—H···O hydrogen bonds build up layers parallel to the ab planes. In the present compound, as expected, the barbiturate ring is quasi-planar. The largest deviation from its least-squares plane is 0.102 (2) Å for C10. It is also worth noticing the relatively high density (1.623 Mg m-3) of this compound.

Experimental top

The title compound was prepared according to the process decribed by Renard et al. (2002). To a solution of 3',5'-O-bis(tert-butyldimethylsilyl)spirocyclopentylbarbituric acid (2.0 g, 4.4 mmol) in MeOH (10 ml) was added TMSCl (500 µl). This solution was stirred at room temperature for 15 min while the deprotected spirocyclopentylbarbituric acid precipitated in the medium. The volatile material was removed under reduced pressure and the resulting residue was triturated into Et2O as to afford a white powder (1.0 g, 4.3 mmol, 99%; m.p. 487–489 K). TLC (MeOH/CH2Cl2 20:80): Rf 0.28. [α]D25 = +34.8 (c = 0.91, MeOH). IR (KBr): ν 3351, 3197, 3076, 2844, 1754, 1740, 1689, 1444, 1352, 1175, 1081, 807 cm-1. 1H NMR (200 MHz, [D6]DMSO): δ 1.65–2.30 (m, 5H, H-2', H-4', H-6'), 3.31 (m, 1H, H-5'), 3.56 (m, 1H, H-5'), 3.82 (m, 1H, H-3'), 4.42 (m, OH-5'), 4.84 (m, OH-3'), 11.0 (br s, 2H, NH). 13C NMR (50 MHz, [D6]DMSO): δ = 37.9 (C-6'), 42.5 (C-2'),49.0 (C-4'), 51.9 (C-1'), 61.3 (C-5'), 72.5 (C-3'), 150.5 (CO), 174.6 (CO). MS (FAB–, glycerol): m/z: 227 [M—H]. Analysis for C9H12N2O5 (228.20), calculated: C 47.37, H 5.30, N 12.28%; found: C 47.46, H 5.46, N 12.27%. Crystals were obtained by slow evaporation of a solution in water.

Refinement top

The H atoms located on CH bonds were placed by geometry whereas H atoms located on OH or NH bonds were placed from a difference Fourier map; in both cases, they were not refined. Since there is a twofold screw axis, in order to avoid any remaining shifts, we choose to fix as an origin the heaviest atom O2 and to fix its y coordinate instead of fixing the sum of coordinates. Because of the lack of any significant anomalous dispersion effects, the absolute configuration can not be determined from the diffraction experiment. Friedel pairs in the data set have been merged prior to refinement.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: TEXSAN (Molecular Structure Corporation, 1992-1997); program(s) used to solve structure: SIR 92 (Altomare et al., 1994); program(s) used to refine structure: TEXSAN; software used to prepare material for publication: TEXSAN.

Figures top
[Figure 1]
[Figure 2]
Fig. 1. ORTEPII (Johnson, 1976) molecular diagram of title compound. Ellipsoids are shown at the 25% probability level.
(I) top
Crystal data top
C9H12N2O5F(000) = 240.00
Mr = 228.20Dx = 1.623 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.7107 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 7.467 (2) Åθ = 9.3–12.7°
b = 6.802 (1) ŵ = 0.13 mm1
c = 9.673 (3) ÅT = 293 K
β = 108.07 (2)°Monoclinic prism, colorless
V = 467.1 (2) Å30.32 × 0.16 × 0.09 mm
Z = 2
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.014
Radiation source: X-ray tubeθmax = 35°, θmin = 2°
Graphite monochromatorh = 1212
ω scansk = 011
2284 measured reflectionsl = 015
2187 independent reflections2 standard reflections every 120 reflections
1818 reflections with I > 1.5σ(I) intensity decay: 0.2%
Refinement top
Refinement on F0 restraints
Least-squares matrix: full0 constraints
R[F2 > 2σ(F2)] = 0.039H-atom parameters not refined
wR(F2) = 0.044Weighting scheme based on measured s.u.'s w = 1/[σ2(Fo) + 0.00006|Fo|2]
S = 1.40(Δ/σ)max = 0.004
1817 reflectionsΔρmax = 0.28 e Å3
145 parametersΔρmin = 0.22 e Å3
Crystal data top
C9H12N2O5V = 467.1 (2) Å3
Mr = 228.20Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.467 (2) ŵ = 0.13 mm1
b = 6.802 (1) ÅT = 293 K
c = 9.673 (3) Å0.32 × 0.16 × 0.09 mm
β = 108.07 (2)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.014
2284 measured reflections2 standard reflections every 120 reflections
2187 independent reflections intensity decay: 0.2%
1818 reflections with I > 1.5σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.044H-atom parameters not refined
S = 1.40Δρmax = 0.28 e Å3
1817 reflectionsΔρmin = 0.22 e Å3
145 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.7824 (1)0.35380.6125 (1)0.0259 (2)
O60.5675 (2)0.2227 (2)0.7783 (2)0.0428 (3)
O80.0661 (2)0.2172 (2)0.6421 (1)0.0385 (3)
O100.2232 (2)0.3681 (2)0.7248 (2)0.0436 (3)
O110.7784 (2)0.5336 (2)1.0048 (1)0.0367 (3)
N70.2531 (2)0.2161 (2)0.7162 (1)0.0241 (2)
N90.0841 (2)0.0764 (2)0.6633 (1)0.0239 (2)
C10.5145 (2)0.1639 (2)0.6213 (1)0.0224 (3)
C20.6546 (2)0.3235 (2)0.6934 (1)0.0189 (2)
C30.7449 (2)0.2422 (2)0.8470 (1)0.0204 (2)
C40.5742 (2)0.1718 (2)0.8875 (1)0.0257 (3)
C50.4305 (2)0.0959 (2)0.7430 (1)0.0215 (3)
C60.4234 (2)0.1261 (2)0.7470 (2)0.0242 (3)
C80.0810 (2)0.1249 (2)0.6717 (1)0.0227 (3)
C100.2408 (2)0.1914 (2)0.7133 (2)0.0245 (3)
C110.8744 (2)0.3826 (3)0.9555 (1)0.0282 (3)
H10.41860.21480.54000.027*
H20.57610.05780.59080.027*
H30.58960.44230.69790.023*
H40.83820.44520.63660.056*
H50.81680.12980.83940.024*
H60.60880.06870.95690.031*
H70.52130.27720.92630.031*
H80.25800.34280.71910.030*
H90.02120.13520.64830.029*
H100.95710.44210.91040.034*
H110.94570.30871.03740.034*
H120.72030.59780.93430.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0242 (4)0.0258 (5)0.0300 (4)0.0026 (4)0.0118 (3)0.0023 (4)
O60.0297 (5)0.0229 (5)0.0725 (8)0.0084 (4)0.0110 (5)0.0050 (6)
O80.0297 (5)0.0318 (6)0.0521 (6)0.0117 (5)0.0100 (4)0.0060 (6)
O100.0374 (5)0.0134 (4)0.0834 (9)0.0015 (4)0.0236 (5)0.0003 (6)
O110.0465 (6)0.0280 (5)0.0322 (5)0.0022 (5)0.0074 (5)0.0079 (4)
N70.0281 (5)0.0114 (4)0.0328 (5)0.0026 (4)0.0094 (4)0.0001 (4)
N90.0198 (4)0.0196 (5)0.0315 (5)0.0024 (4)0.0068 (4)0.0025 (5)
C10.0227 (5)0.0213 (5)0.0226 (5)0.0035 (5)0.0063 (4)0.0024 (5)
C20.0182 (4)0.0154 (5)0.0224 (5)0.0001 (4)0.0054 (4)0.0005 (4)
C30.0206 (5)0.0178 (5)0.0212 (5)0.0008 (4)0.0041 (4)0.0002 (4)
C40.0292 (5)0.0240 (6)0.0260 (5)0.0056 (5)0.0115 (4)0.0016 (5)
C50.0209 (5)0.0140 (5)0.0302 (6)0.0013 (4)0.0088 (4)0.0000 (4)
C60.0237 (5)0.0144 (5)0.0344 (6)0.0001 (4)0.0090 (4)0.0008 (5)
C80.0246 (5)0.0199 (5)0.0241 (5)0.0026 (5)0.0081 (4)0.0017 (5)
C100.0231 (5)0.0152 (5)0.0368 (6)0.0004 (4)0.0117 (5)0.0022 (5)
C110.0243 (5)0.0299 (7)0.0264 (6)0.0008 (5)0.0023 (5)0.0044 (6)
Geometric parameters (Å, º) top
O2—C21.425 (2)C5—C61.511 (2)
O6—C61.217 (2)C5—C101.503 (2)
O8—C81.219 (2)O2—H40.74
O10—C101.218 (2)O11—H120.81
O11—C111.417 (2)N7—H80.86
N7—C61.359 (2)N9—H90.85
N7—C81.371 (2)C1—H10.95
N9—C81.372 (2)C1—H20.95
N9—C101.365 (2)C2—H30.95
C1—C21.519 (2)C3—H50.95
C1—C51.566 (2)C4—H60.95
C2—C31.532 (2)C4—H70.95
C3—C41.523 (2)C11—H100.95
C3—C111.523 (2)C11—H110.95
C4—C51.563 (2)
O2···N9i2.862 (1)O6···O11iv2.809 (2)
O2···O8ii3.111 (1)O10···N7v2.840 (2)
O2···O10i3.131 (2)O11···C10vi2.975 (2)
O2···N7iii3.143 (2)O11···N9vi3.066 (2)
C6—N7—C8126.0 (1)C11—O11—H12107.5
C8—N9—C10125.4 (1)C6—N7—H8114.6
C2—C1—C5104.2 (1)C8—N7—H8119.3
O2—C2—C1109.5 (1)C8—N9—H9116.5
O2—C2—C3114.6 (1)C10—N9—H9115.8
C1—C2—C3102.7 (1)C2—C1—H1110.8
C2—C3—C4102.2 (1)C2—C1—H2110.8
C2—C3—C11115.9 (1)C5—C1—H1110.8
C4—C3—C11115.0 (1)C5—C1—H2110.8
C3—C4—C5105.7 (1)H1—C1—H2109.5
C1—C5—C4104.5 (1)O2—C2—H3109.9
C1—C5—C6109.9 (1)C1—C2—H3109.9
C1—C5—C10107.6 (1)C3—C2—H3109.9
C4—C5—C6109.1 (1)C2—C3—H5107.8
C4—C5—C10111.9 (1)C4—C3—H5107.8
C6—C5—C10113.5 (1)C11—C3—H5107.8
O6—C6—N7120.4 (1)C3—C4—H6110.4
O6—C6—C5120.7 (1)C3—C4—H7110.4
N7—C6—C5118.8 (1)C5—C4—H6110.4
O8—C8—N7121.9 (1)C5—C4—H7110.4
O8—C8—N9122.0 (1)H6—C4—H7109.5
N7—C8—N9116.0 (1)O11—C11—H10108.3
O10—C10—N9119.5 (1)O11—C11—H11108.3
O10—C10—C5122.1 (1)C3—C11—H10108.3
N9—C10—C5118.3 (1)C3—C11—H11108.3
O11—C11—C3114.0 (1)H10—C11—H11109.5
C2—O2—H4110.7
O2—C2—C1—C5161.56 (9)N7—C8—N9—C109.2 (2)
O2—C2—C3—C4164.5 (1)N9—C8—N7—C62.5 (2)
O2—C2—C3—C1169.7 (1)N9—C10—C5—C1108.0 (1)
O6—C6—N7—C8176.1 (1)N9—C10—C5—C4137.7 (1)
O6—C6—C5—C163.8 (2)N9—C10—C5—C613.8 (2)
O6—C6—C5—C450.3 (2)C1—C2—C3—C445.7 (1)
O6—C6—C5—C10175.7 (1)C1—C2—C3—C11171.6 (1)
O8—C8—N7—C6177.9 (1)C1—C5—C4—C310.1 (1)
O8—C8—N9—C10170.4 (1)C2—C1—C5—C418.0 (1)
O10—C10—N9—C8166.4 (2)C2—C1—C5—C6134.9 (1)
O10—C10—C5—C168.0 (2)C2—C1—C5—C10101.1 (1)
O10—C10—C5—C446.3 (2)C2—C3—C4—C534.1 (1)
O10—C10—C5—C6170.3 (2)C3—C2—C1—C539.4 (1)
O11—C11—C3—C273.8 (2)C3—C4—C5—C6107.3 (1)
O11—C11—C3—C445.3 (2)C3—C4—C5—C10126.3 (1)
N7—C6—C5—C1116.7 (1)C5—C4—C3—C11160.5 (1)
N7—C6—C5—C4129.3 (1)C5—C6—N7—C84.4 (2)
N7—C6—C5—C103.8 (2)C5—C10—N9—C817.5 (2)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z; (iii) x+1, y+1/2, z+1; (iv) x, y1, z; (v) x, y+1, z; (vi) x+1, y+1/2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H12···O6v0.812.002.809 (2)173
N7—H8···O10iv0.861.992.840 (2)170
N9—H9···O2vii0.852.042.862 (1)161
Symmetry codes: (iv) x, y1, z; (v) x, y+1, z; (vii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC9H12N2O5
Mr228.20
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)7.467 (2), 6.802 (1), 9.673 (3)
β (°) 108.07 (2)
V3)467.1 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.32 × 0.16 × 0.09
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 1.5σ(I)] reflections
2284, 2187, 1818
Rint0.014
(sin θ/λ)max1)0.807
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.044, 1.40
No. of reflections1817
No. of parameters145
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.28, 0.22

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, TEXSAN (Molecular Structure Corporation, 1992-1997), SIR 92 (Altomare et al., 1994), TEXSAN.

Selected geometric parameters (Å, º) top
O2—C21.425 (2)C1—C21.519 (2)
O6—C61.217 (2)C1—C51.566 (2)
O8—C81.219 (2)C2—C31.532 (2)
O10—C101.218 (2)C3—C41.523 (2)
O11—C111.417 (2)C3—C111.523 (2)
N7—C61.359 (2)C4—C51.563 (2)
N7—C81.371 (2)C5—C61.511 (2)
N9—C81.372 (2)C5—C101.503 (2)
N9—C101.365 (2)
C6—N7—C8126.0 (1)C4—C5—C6109.1 (1)
C8—N9—C10125.4 (1)C4—C5—C10111.9 (1)
C2—C1—C5104.2 (1)C6—C5—C10113.5 (1)
O2—C2—C1109.5 (1)O6—C6—N7120.4 (1)
O2—C2—C3114.6 (1)O6—C6—C5120.7 (1)
C1—C2—C3102.7 (1)N7—C6—C5118.8 (1)
C2—C3—C4102.2 (1)O8—C8—N7121.9 (1)
C2—C3—C11115.9 (1)O8—C8—N9122.0 (1)
C4—C3—C11115.0 (1)N7—C8—N9116.0 (1)
C3—C4—C5105.7 (1)O10—C10—N9119.5 (1)
C1—C5—C4104.5 (1)O10—C10—C5122.1 (1)
C1—C5—C6109.9 (1)N9—C10—C5118.3 (1)
C1—C5—C10107.6 (1)O11—C11—C3114.0 (1)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H12···O6i0.812.002.809 (2)172.8
N7—H8···O10ii0.861.992.840 (2)170.1
N9—H9···O2iii0.852.042.862 (1)161.0
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds