Download citation
Download citation
link to html
The title compound, C52H56O2P2, was synthesized conveniently from (S)-2,2'-di­hydroxy-5,5',6,6',7,7',8,8'-octa­hydro-1,1'-bi­naphthyl and bis(3,5-di­methyl­phenyl)­phosphine chloride in high yield. The mol­ecule has crystallographic twofold rotation symmetry.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802001010/ob6106sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802001010/ob6106Isup2.hkl
Contains datablock I

CCDC reference: 182616

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.049
  • wR factor = 0.128
  • Data-to-parameter ratio = 20.3

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

REFLT_03 From the CIF: _diffrn_reflns_theta_max 27.55 From the CIF: _reflns_number_total 5134 Count of symmetry unique reflns 2918 Completeness (_total/calc) 175.94% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 2216 Fraction of Friedel pairs measured 0.759 Are heavy atom types Z>Si present yes Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.

Comment top

The phosphinite ligands exhibit good to excellent enantioselectivity and high reactivity in the hydrogenation of prochiral olefines (Zhang et al., 1998; Chan et al., 1997). The phosphinite (I) can be conveniently obtained by reacting (S)-2,2'-dihydroxy-5,5',6,6',7,7',8,8'-octahydro-1,1'-binaphthyl (H8-BINOL) with bis(3,5-dimethylphenyl)phosphine chloride. Recent research shows that the phosphinite ligands derived from bis(3,5-dimethylphenyl)phosphine chloride exhibit higher enantioselectivity in the catalytic hydrogenation reaction than that derived from chlorodiphenylphosphine, due to the steric and electronic modulation of the substitute groups on the P atom (Trabesinger et al., 1997; RajanBabu et al., 1997). As part of our efforts investigating this phenomenon, we present the crystal structure of (I).

As shown in Fig. 1, the title molecule has crystallographic twofold rotation symmetry. The lengths of the Csp3—Csp3 bonds C7—C8, C8—C9 and C9—C10 [1.476 (3), 1.441 (3) and 1.463 (3) Å, respectively] are shorter than the normal Csp3—Csp3 bond (1.51–1.55 Å) and differ significantly from the Csp3—Csp2 bonds C3—-C7 and C4–C10 [1.513 (4) and 1.510 (4) Å, respectively] in the H8-naphthyl unit. The disorder is persumed to be due to the puckering of the ring, which is suggested by the high Ueq values of the C8 and C9 atoms.

Experimental top

All reactions were carried out under N2 using Schlenk techniques. (S)-2,2'-Dihydroxy-5,5',6,6',7,7',8,8'-octahydro-1,1'-binaphthyl (0.30 g, 1.0 mmol) and 4-N,N-dimethylaminopyridine (15 mg) were added in a 50 ml round-bottomed Schlenk flask with a stir bar. The atmosphere was replaced with N2 several times, and 0.8 ml dry Et3N and 30 ml dry Et2O were added. The mixture cooled to 273 K with ice-bath, followed by dropping in bis(3,5-dimethylphenyl)phosphine chloride (0.6 ml, 2.5 mmol) within 20 min. The solvent was removed under vacuum after stirring at room temperature for another 3 h. The residues were dissolved in 15 ml toluene and purified with flash silica-gel column (30 ml toluene as eluent). Toluene was removed and 670 mg white solid obtained (yield: 87%). Colorless crystals suitable for X-ray diffraction were obtained by recrystallization of a solution in Et2O/CH2Cl2 (5:1). 31P NMR (CDCl3): δ 109.7. 13C NMR (CDCl3): δ 21.39, 21.48, 23.22, 23.30, 27.80, 29.76, 115.28, 115.41, 127.36, 127.54, 127.65, 127.84, 129.09, 130.85, 131.01, 131.33, 137.03, 137.59, 142.11, 142.26. 1H NMR (500 MHz, CDCl3): δ 1.52–1.68 (m, 8H), 2.21 (s, 12H), 2.19 (s, 12H), 2.14–2.23 (m, 2H), 2.38–2.42 (m, 2H), 2.60–2.64 (m, 2H), 2.69–2.75 (m, 2H).

Computing details top

Data collection: SMART (Bruker, 1995); cell refinement: SMART; data reduction: SHELXTL-NT (Bruker, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-NT; software used to prepare material for publication: SHELXTL-NT.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing ellipsoids at the 30% probability level.
2,2'-Bis[bis(3,5-dimethylphenyl)phosphinoyl]-5,5',6,6',7,7',8,8'-Octahydro -1,1'-Binaphthyl top
Crystal data top
C52H56O2P2Dx = 1.159 Mg m3
Mr = 774.91Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P21212Cell parameters from 5442 reflections
a = 13.1983 (18) Åθ = 1–27.5°
b = 19.015 (3) ŵ = 0.14 mm1
c = 8.8486 (12) ÅT = 294 K
V = 2220.7 (5) Å3Block, colorless
Z = 20.34 × 0.28 × 0.26 mm
F(000) = 828
Data collection top
Bruker CCD area-detector
diffractometer
5134 independent reflections
Radiation source: fine-focus sealed tube3079 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ϕ and ω scansθmax = 27.6°, θmin = 1.9°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 1711
Tmin = 0.955, Tmax = 0.965k = 2424
15328 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0656P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.93(Δ/σ)max < 0.001
5134 reflectionsΔρmax = 0.27 e Å3
253 parametersΔρmin = 0.28 e Å3
3 restraintsAbsolute structure: Flack (1983), 2216 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (12)
Crystal data top
C52H56O2P2V = 2220.7 (5) Å3
Mr = 774.91Z = 2
Orthorhombic, P21212Mo Kα radiation
a = 13.1983 (18) ŵ = 0.14 mm1
b = 19.015 (3) ÅT = 294 K
c = 8.8486 (12) Å0.34 × 0.28 × 0.26 mm
Data collection top
Bruker CCD area-detector
diffractometer
5134 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
3079 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.965Rint = 0.045
15328 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.128Δρmax = 0.27 e Å3
S = 0.93Δρmin = 0.28 e Å3
5134 reflectionsAbsolute structure: Flack (1983), 2216 Friedel pairs
253 parametersAbsolute structure parameter: 0.03 (12)
3 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. The crystal structure of the compound was determined by the direct method (or Patterson function) which yielded the positions of part of non-hydrogen atoms and subsequent difference Fourier syntheses were employed to locate all of the remaining non-hydrogen atoms which did not show up in the initial structure. Hydrogen atoms were located basing on Difference Fourier Syntheses connecting geometrical analysis. All of non-hydrogen atoms were refined anisotropically. All of hydrogen atoms were refined with fixed individual displacement parameters. All experiment and computation were performed on a Bruker CCD Area Detector Diffractomrter and PC computer with program of Bruker Smart and Bruker SHELXTL packages. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.25399 (5)0.04515 (3)0.63295 (8)0.04504 (19)
O10.37731 (12)0.03915 (9)0.6105 (2)0.0479 (5)
C10.44142 (18)0.07676 (13)0.7069 (3)0.0388 (6)
C20.50291 (17)0.03932 (12)0.8033 (3)0.0357 (6)
C30.57059 (17)0.07564 (13)0.8971 (3)0.0395 (6)
C40.57599 (19)0.14848 (13)0.8897 (3)0.0452 (7)
C50.5118 (2)0.18387 (14)0.7915 (4)0.0551 (8)
H5A0.51420.23270.78800.066*
C60.4453 (2)0.14923 (14)0.7000 (4)0.0551 (8)
H6A0.40340.17400.63430.066*
C70.6382 (2)0.03482 (14)1.0038 (3)0.0531 (8)
H7A0.59720.00081.05800.064*
H7B0.68770.00900.94490.064*
C80.6920 (3)0.07922 (18)1.1146 (5)0.0989 (14)
H8A0.64750.08701.20020.119*
H8B0.75040.05331.15110.119*
C90.7263 (3)0.14666 (16)1.0607 (5)0.1041 (15)
H9A0.75350.17281.14560.125*
H9B0.78120.13910.98970.125*
C100.6488 (2)0.18970 (14)0.9872 (4)0.0638 (9)
H10A0.68200.22480.92500.077*
H10B0.61050.21431.06440.077*
C110.22009 (19)0.04828 (14)0.6221 (3)0.0469 (6)
C120.2805 (2)0.09767 (14)0.5532 (3)0.0517 (7)
H12A0.34110.08390.50870.062*
C130.2518 (3)0.16836 (14)0.5493 (3)0.0603 (8)
C140.1611 (3)0.18645 (16)0.6172 (4)0.0699 (10)
H14A0.14110.23330.61510.084*
C150.0987 (2)0.13820 (18)0.6881 (4)0.0643 (9)
C160.1307 (2)0.06902 (16)0.6912 (3)0.0565 (8)
H16A0.09130.03560.74080.068*
C170.3180 (3)0.22299 (16)0.4754 (5)0.0879 (12)
H17A0.28620.26820.48330.132*
H17B0.38260.22420.52510.132*
H17C0.32730.21130.37080.132*
C180.0027 (3)0.1618 (2)0.7629 (5)0.1041 (14)
H18A0.00600.21140.74770.156*
H18B0.05370.13700.71990.156*
H18C0.00640.15210.86930.156*
C190.21828 (19)0.07338 (12)0.4439 (3)0.0438 (7)
C200.1160 (2)0.07499 (14)0.4076 (3)0.0532 (8)
H20A0.06880.05940.47820.064*
C210.0828 (2)0.09904 (15)0.2698 (4)0.0612 (9)
C220.1542 (2)0.12326 (14)0.1666 (4)0.0613 (9)
H22A0.13260.13920.07260.074*
C230.2572 (2)0.12426 (13)0.2001 (3)0.0537 (7)
C240.2871 (2)0.09915 (13)0.3400 (3)0.0471 (7)
H24A0.35560.09960.36480.057*
C250.0300 (2)0.1007 (2)0.2327 (5)0.0970 (14)
H25A0.06770.08190.31620.146*
H25B0.04260.07280.14420.146*
H25C0.05070.14830.21450.146*
C260.3327 (3)0.15355 (16)0.0901 (4)0.0719 (10)
H26A0.39970.14950.13160.108*
H26B0.31770.20220.07120.108*
H26C0.32910.12770.00300.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0420 (4)0.0433 (3)0.0498 (4)0.0021 (4)0.0049 (4)0.0002 (3)
O10.0413 (9)0.0471 (10)0.0554 (12)0.0041 (9)0.0095 (9)0.0049 (10)
C10.0364 (13)0.0346 (13)0.0454 (16)0.0021 (11)0.0025 (12)0.0012 (12)
C20.0340 (13)0.0309 (12)0.0423 (14)0.0009 (11)0.0028 (11)0.0006 (11)
C30.0340 (13)0.0385 (13)0.0461 (16)0.0026 (11)0.0027 (12)0.0028 (12)
C40.0400 (14)0.0371 (14)0.0586 (18)0.0027 (12)0.0067 (14)0.0063 (14)
C50.0606 (19)0.0305 (14)0.074 (2)0.0027 (14)0.0019 (17)0.0033 (14)
C60.0556 (18)0.0422 (16)0.068 (2)0.0070 (14)0.0066 (16)0.0076 (15)
C70.0494 (17)0.0507 (16)0.059 (2)0.0009 (14)0.0105 (15)0.0018 (14)
C80.110 (3)0.084 (2)0.103 (3)0.023 (2)0.062 (3)0.007 (2)
C90.093 (3)0.073 (2)0.146 (4)0.002 (2)0.059 (3)0.036 (3)
C100.059 (2)0.0508 (17)0.082 (3)0.0116 (16)0.0077 (18)0.0160 (17)
C110.0459 (14)0.0498 (14)0.0448 (15)0.0048 (13)0.0101 (12)0.0092 (15)
C120.0565 (19)0.0470 (16)0.0516 (17)0.0060 (14)0.0030 (14)0.0024 (14)
C130.077 (2)0.0453 (15)0.0583 (18)0.0033 (18)0.018 (2)0.0002 (14)
C140.086 (3)0.0542 (19)0.069 (2)0.0280 (19)0.016 (2)0.0134 (18)
C150.062 (2)0.065 (2)0.065 (2)0.0183 (18)0.0073 (17)0.0180 (17)
C160.0520 (17)0.0593 (18)0.058 (2)0.0034 (15)0.0019 (15)0.0111 (15)
C170.120 (3)0.0550 (19)0.089 (3)0.002 (2)0.009 (3)0.0100 (19)
C180.085 (3)0.104 (3)0.123 (4)0.036 (2)0.022 (3)0.015 (3)
C190.0417 (15)0.0309 (12)0.0589 (17)0.0006 (11)0.0051 (13)0.0025 (13)
C200.0444 (16)0.0483 (15)0.067 (2)0.0081 (13)0.0099 (14)0.0153 (15)
C210.0536 (18)0.0512 (17)0.079 (2)0.0046 (15)0.0190 (17)0.0127 (17)
C220.072 (2)0.0481 (17)0.063 (2)0.0026 (15)0.0194 (18)0.0115 (15)
C230.065 (2)0.0373 (14)0.0584 (18)0.0095 (15)0.0057 (17)0.0019 (12)
C240.0421 (14)0.0422 (14)0.0570 (19)0.0055 (12)0.0009 (13)0.0004 (14)
C250.062 (2)0.107 (3)0.123 (4)0.022 (2)0.043 (2)0.040 (3)
C260.083 (2)0.0602 (19)0.072 (2)0.0107 (18)0.015 (2)0.0082 (17)
Geometric parameters (Å, º) top
P1—O11.6437 (18)C13—C141.383 (5)
P1—C191.819 (3)C13—C171.506 (5)
P1—C111.834 (3)C14—C151.384 (5)
O1—C11.398 (3)C14—H14A0.9300
C1—C21.376 (3)C15—C161.382 (4)
C1—C61.380 (4)C15—C181.498 (5)
C2—C31.402 (3)C16—H16A0.9300
C2—C2i1.497 (4)C17—H17A0.9600
C3—C41.389 (3)C17—H17B0.9600
C3—C71.513 (4)C17—H17C0.9600
C4—C51.387 (4)C18—H18A0.9600
C4—C101.510 (4)C18—H18B0.9600
C5—C61.364 (4)C18—H18C0.9600
C5—H5A0.9300C19—C241.382 (4)
C6—H6A0.9300C19—C201.388 (4)
C7—C81.476 (3)C20—C211.374 (4)
C7—H7A0.9700C20—H20A0.9300
C7—H7B0.9700C21—C221.391 (5)
C8—C91.441 (3)C21—C251.524 (4)
C8—H8A0.9700C22—C231.391 (4)
C8—H8B0.9700C22—H22A0.9300
C9—C101.463 (3)C23—C241.384 (4)
C9—H9A0.9700C23—C261.500 (4)
C9—H9B0.9700C24—H24A0.9300
C10—H10A0.9700C25—H25A0.9600
C10—H10B0.9700C25—H25B0.9600
C11—C121.374 (4)C25—H25C0.9600
C11—C161.387 (4)C26—H26A0.9600
C12—C131.397 (4)C26—H26B0.9600
C12—H12A0.9300C26—H26C0.9600
O1—P1—C1999.55 (11)C14—C13—C17121.2 (3)
O1—P1—C1199.67 (11)C12—C13—C17121.2 (3)
C19—P1—C11100.04 (12)C15—C14—C13123.2 (3)
C1—O1—P1119.36 (16)C15—C14—H14A118.4
C2—C1—C6121.5 (2)C13—C14—H14A118.4
C2—C1—O1118.1 (2)C16—C15—C14117.3 (3)
C6—C1—O1120.4 (2)C16—C15—C18122.3 (4)
C1—C2—C3119.2 (2)C14—C15—C18120.4 (3)
C1—C2—C2i119.1 (2)C15—C16—C11121.5 (3)
C3—C2—C2i121.6 (2)C15—C16—H16A119.3
C4—C3—C2119.7 (2)C11—C16—H16A119.3
C4—C3—C7120.7 (2)C13—C17—H17A109.5
C2—C3—C7119.5 (2)C13—C17—H17B109.5
C5—C4—C3118.8 (2)H17A—C17—H17B109.5
C5—C4—C10119.6 (2)C13—C17—H17C109.5
C3—C4—C10121.6 (3)H17A—C17—H17C109.5
C6—C5—C4122.0 (2)H17B—C17—H17C109.5
C6—C5—H5A119.0C15—C18—H18A109.5
C4—C5—H5A119.0C15—C18—H18B109.5
C5—C6—C1118.7 (3)H18A—C18—H18B109.5
C5—C6—H6A120.7C15—C18—H18C109.5
C1—C6—H6A120.7H18A—C18—H18C109.5
C8—C7—C3113.9 (2)H18B—C18—H18C109.5
C8—C7—H7A108.8C24—C19—C20118.5 (3)
C3—C7—H7A108.8C24—C19—P1123.1 (2)
C8—C7—H7B108.8C20—C19—P1118.1 (2)
C3—C7—H7B108.8C21—C20—C19121.5 (3)
H7A—C7—H7B107.7C21—C20—H20A119.2
C9—C8—C7116.1 (3)C19—C20—H20A119.2
C9—C8—H8A108.3C20—C21—C22118.5 (3)
C7—C8—H8A108.3C20—C21—C25120.6 (3)
C9—C8—H8B108.3C22—C21—C25120.9 (3)
C7—C8—H8B108.3C21—C22—C23121.8 (3)
H8A—C8—H8B107.4C21—C22—H22A119.1
C10—C9—C8115.2 (3)C23—C22—H22A119.1
C10—C9—H9A108.5C24—C23—C22117.7 (3)
C8—C9—H9A108.5C24—C23—C26121.3 (3)
C10—C9—H9B108.5C22—C23—C26121.0 (3)
C8—C9—H9B108.5C19—C24—C23122.0 (3)
H9A—C9—H9B107.5C19—C24—H24A119.0
C9—C10—C4114.1 (2)C23—C24—H24A119.0
C9—C10—H10A108.7C21—C25—H25A109.5
C4—C10—H10A108.7C21—C25—H25B109.5
C9—C10—H10B108.7H25A—C25—H25B109.5
C4—C10—H10B108.7C21—C25—H25C109.5
H10A—C10—H10B107.6H25A—C25—H25C109.5
C12—C11—C16119.7 (3)H25B—C25—H25C109.5
C12—C11—P1122.9 (2)C23—C26—H26A109.5
C16—C11—P1117.4 (2)C23—C26—H26B109.5
C11—C12—C13120.8 (3)H26A—C26—H26B109.5
C11—C12—H12A119.6C23—C26—H26C109.5
C13—C12—H12A119.6H26A—C26—H26C109.5
C14—C13—C12117.6 (3)H26B—C26—H26C109.5
C19—P1—O1—C1124.38 (19)O1—P1—C11—C16155.9 (2)
C11—P1—O1—C1133.61 (19)C19—P1—C11—C16102.5 (2)
P1—O1—C1—C2114.1 (2)C16—C11—C12—C131.3 (4)
P1—O1—C1—C668.5 (3)P1—C11—C12—C13179.3 (2)
C6—C1—C2—C30.4 (4)C11—C12—C13—C140.1 (4)
O1—C1—C2—C3177.7 (2)C11—C12—C13—C17179.4 (3)
C6—C1—C2—C2i178.6 (2)C12—C13—C14—C150.2 (5)
O1—C1—C2—C2i1.3 (3)C17—C13—C14—C15179.1 (3)
C1—C2—C3—C41.2 (4)C13—C14—C15—C160.7 (5)
C2i—C2—C3—C4177.8 (2)C13—C14—C15—C18178.3 (3)
C1—C2—C3—C7179.8 (2)C14—C15—C16—C112.0 (5)
C2i—C2—C3—C71.3 (3)C18—C15—C16—C11179.6 (3)
C2—C3—C4—C51.7 (4)C12—C11—C16—C152.3 (4)
C7—C3—C4—C5179.3 (3)P1—C11—C16—C15179.6 (2)
C2—C3—C4—C10179.2 (3)O1—P1—C19—C2415.2 (2)
C7—C3—C4—C100.1 (4)C11—P1—C19—C24116.9 (2)
C3—C4—C5—C61.4 (4)O1—P1—C19—C20170.8 (2)
C10—C4—C5—C6179.4 (3)C11—P1—C19—C2069.1 (2)
C4—C5—C6—C10.6 (4)C24—C19—C20—C212.4 (4)
C2—C1—C6—C50.1 (4)P1—C19—C20—C21176.7 (2)
O1—C1—C6—C5177.4 (2)C19—C20—C21—C221.1 (5)
C4—C3—C7—C811.3 (4)C19—C20—C21—C25179.7 (3)
C2—C3—C7—C8169.6 (3)C20—C21—C22—C230.6 (5)
C3—C7—C8—C936.9 (5)C25—C21—C22—C23178.0 (3)
C7—C8—C9—C1052.0 (6)C21—C22—C23—C241.0 (4)
C8—C9—C10—C438.5 (5)C21—C22—C23—C26177.2 (3)
C5—C4—C10—C9167.6 (3)C20—C19—C24—C232.0 (4)
C3—C4—C10—C913.3 (5)P1—C19—C24—C23176.03 (19)
O1—P1—C11—C1222.1 (3)C22—C23—C24—C190.4 (4)
C19—P1—C11—C1279.5 (2)C26—C23—C24—C19178.6 (3)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC52H56O2P2
Mr774.91
Crystal system, space groupOrthorhombic, P21212
Temperature (K)294
a, b, c (Å)13.1983 (18), 19.015 (3), 8.8486 (12)
V3)2220.7 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.34 × 0.28 × 0.26
Data collection
DiffractometerBruker CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.955, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
15328, 5134, 3079
Rint0.045
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.128, 0.93
No. of reflections5134
No. of parameters253
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.28
Absolute structureFlack (1983), 2216 Friedel pairs
Absolute structure parameter0.03 (12)

Computer programs: SMART (Bruker, 1995), SMART, SHELXTL-NT (Bruker, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-NT.

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds