Download citation
Download citation
link to html
Mercury(II) in the title compound, [Hg(C4H13N3)2](SCN)2, is six-coordinated with two diethyl­enetri­amine (dien) ligands in a sym-facial configuration. The complex cation has a twofold axis of symmetry, and the secondary amine groups are in trans positions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802004701/ob6118sup1.cif
Contains datablocks I, 1842ltran

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802004701/ob6118Isup2.hkl
Contains datablock I

CCDC reference: 183765

Key indicators

  • Single-crystal X-ray study
  • T = 130 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.019
  • wR factor = 0.049
  • Data-to-parameter ratio = 16.3

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS86 (Sheldrick, 1985); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Bis(diethylenetriamine)mercury(II) thiocyanate top
Crystal data top
[Hg(C4H13N3)2](SCN)2F(000) = 1016
Mr = 523.1Dx = 1.953 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 7.6710 (7) Åθ = 11.3–14.3°
b = 13.9712 (6) ŵ = 8.89 mm1
c = 16.639 (2) ÅT = 130 K
β = 93.809 (9)°Prism, colourless
V = 1779.3 (3) Å30.5 × 0.2 × 0.07 mm
Z = 4
Data collection top
Enraf-Nonius TurboCAD-4
diffractometer
1485 reflections with I > 2σ(I)
Radiation source: Enraf-Nonius FR590Rint = 0.023
Graphite monochromatorθmax = 25.0°, θmin = 2.5°
non–profiled ω scansh = 09
Absorption correction: ψ scan
(North et al., 1968)
k = 016
Tmin = 0.089, Tmax = 0.537l = 1919
1690 measured reflections3 standard reflections every 120 min
1565 independent reflections intensity decay: 9%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.049H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0341P)2 + 3.0573P]
where P = (Fo2 + 2Fc2)/3
1565 reflections(Δ/σ)max < 0.001
96 parametersΔρmax = 0.95 e Å3
0 restraintsΔρmin = 1.42 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. The structure was solved with SHELX97 by Patterson methods and refined using SHELX97. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3605 (5)0.0453 (3)0.0868 (2)0.0201 (8)
H1A0.28000.00120.05610.024*
H1B0.48020.03340.07030.024*
C20.3091 (5)0.1477 (3)0.0674 (3)0.0220 (9)
H2A0.31410.15870.00880.026*
H2B0.18720.15840.08150.026*
C30.5880 (5)0.2367 (3)0.0747 (2)0.0228 (8)
H3A0.56490.27850.02720.027*
H3B0.63960.17620.05640.027*
C40.7150 (5)0.2855 (3)0.1351 (3)0.0252 (9)
H4A0.82370.30140.10910.03*
H4B0.66320.34590.15340.03*
C50.7667 (5)0.0621 (3)0.1500 (2)0.0247 (9)
N10.3541 (4)0.0261 (2)0.17350 (19)0.0181 (7)
H1C0.40720.03150.18590.022*
H1D0.23970.02230.18650.022*
N20.4243 (4)0.2164 (2)0.1116 (2)0.0196 (7)
H20.36390.27360.11640.024*
N30.7566 (4)0.2229 (2)0.2049 (2)0.0225 (7)
H3C0.81070.25810.24610.027*
H3D0.83270.17580.19090.027*
N40.6682 (5)0.1178 (3)0.1709 (2)0.0312 (8)
S10.90594 (14)0.01518 (9)0.11620 (8)0.0338 (3)
Hg10.50.151351 (13)0.250.01504 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0225 (19)0.0189 (19)0.0182 (19)0.0024 (16)0.0041 (15)0.0038 (17)
C20.021 (2)0.025 (2)0.019 (2)0.0006 (16)0.0062 (16)0.0043 (16)
C30.027 (2)0.023 (2)0.019 (2)0.0002 (16)0.0033 (16)0.0031 (17)
C40.030 (2)0.021 (2)0.026 (2)0.0085 (17)0.0089 (17)0.0011 (17)
C50.028 (2)0.026 (2)0.020 (2)0.0153 (18)0.0034 (16)0.0015 (17)
N10.0189 (15)0.0168 (17)0.0180 (17)0.0006 (12)0.0043 (13)0.0014 (13)
N20.0210 (16)0.0151 (15)0.0229 (17)0.0039 (13)0.0025 (13)0.0010 (14)
N30.0195 (17)0.0244 (18)0.0234 (18)0.0035 (13)0.0002 (13)0.0034 (15)
N40.034 (2)0.0259 (19)0.033 (2)0.0119 (18)0.0025 (17)0.0023 (17)
S10.0237 (5)0.0375 (6)0.0396 (7)0.0036 (5)0.0011 (5)0.0021 (5)
Hg10.01616 (12)0.01564 (12)0.01302 (12)00.00128 (7)0
Geometric parameters (Å, º) top
C1—N11.471 (5)C5—N41.154 (6)
C1—C21.513 (5)C5—S11.644 (5)
C1—H1A0.9900N1—Hg12.396 (3)
C1—H1B0.9900N1—H1C0.9200
C2—N21.468 (5)N1—H1D0.9200
C2—H2A0.9900N2—Hg12.508 (3)
C2—H2B0.9900N2—H20.9300
C3—N21.461 (5)N3—Hg12.373 (3)
C3—C41.514 (6)N3—H3C0.9200
C3—H3A0.9900N3—H3D0.9200
C3—H3B0.9900Hg1—N3i2.373 (3)
C4—N31.472 (5)Hg1—N1i2.396 (3)
C4—H4A0.9900Hg1—N2i2.508 (3)
C4—H4B0.9900
N1—C1—C2110.9 (3)Hg1—N1—H1D109.6
N1—C1—H1A109.5H1C—N1—H1D108.2
C2—C1—H1A109.5C3—N2—C2115.0 (3)
N1—C1—H1B109.5C3—N2—Hg1107.6 (2)
C2—C1—H1B109.5C2—N2—Hg1108.5 (2)
H1A—C1—H1B108.1C3—N2—H2108.5
N2—C2—C1111.8 (3)C2—N2—H2108.5
N2—C2—H2A109.3Hg1—N2—H2108.5
C1—C2—H2A109.3C4—N3—Hg1111.0 (2)
N2—C2—H2B109.3C4—N3—H3C109.4
C1—C2—H2B109.3Hg1—N3—H3C109.4
H2A—C2—H2B107.9C4—N3—H3D109.4
N2—C3—C4110.0 (3)Hg1—N3—H3D109.4
N2—C3—H3A109.7H3C—N3—H3D108.0
C4—C3—H3A109.7N3—Hg1—N3i130.19 (17)
N2—C3—H3B109.7N3—Hg1—N1120.47 (11)
C4—C3—H3B109.7N3i—Hg1—N196.18 (11)
H3A—C3—H3B108.2N3—Hg1—N1i96.18 (11)
N3—C4—C3110.6 (3)N3i—Hg1—N1i120.47 (11)
N3—C4—H4A109.5N1—Hg1—N1i86.24 (15)
C3—C4—H4A109.5N3—Hg1—N2i89.52 (11)
N3—C4—H4B109.5N3i—Hg1—N2i72.74 (11)
C3—C4—H4B109.5N1—Hg1—N2i145.46 (11)
H4A—C4—H4B108.1N1i—Hg1—N2i72.85 (11)
N4—C5—S1177.5 (4)N3—Hg1—N272.74 (11)
C1—N1—Hg1110.1 (2)N3i—Hg1—N289.52 (11)
C1—N1—H1C109.6N1—Hg1—N272.85 (11)
Hg1—N1—H1C109.6N1i—Hg1—N2145.46 (11)
C1—N1—H1D109.6N2i—Hg1—N2137.52 (15)
Symmetry code: (i) x+1, y, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds