Download citation
Download citation
link to html
The crystal structure of the title compound, [Et3NH][(Me2bpb)FeCl2] or (C6H16N)[FeCl2(C20H16N4O2)], has been determined. Four N atoms of the Me2bpb [1,2-bis(2-pyridine­carbox­amido)-4,5-di­methyl­benzene] ligand and two chloro ligands are coordinated to the iron(III) ion. The geometry of the complex anion is distorted octahedral, with a Cl-Fe-Cl angle of 156.59 (3)°. The 4,5-di­methyl­benzene ring of the Me2bpb ligand is tilted from the N4 plane by 9.5 (1)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802006001/ci6112sup1.cif
Contains datablocks fe1, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802006001/ci6112Isup2.hkl
Contains datablock I

CCDC reference: 185745

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.040
  • wR factor = 0.120
  • Data-to-parameter ratio = 16.0

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

The discovery that mononuclear nonheme iron proteins, such as lipoxygenase, isopenicillin N synthase and phenylalanine hydroxylase, can oxidize inert substrates selectively has stimulated chemists to investigate the biomimetic reactions of nonheme iron complexes with various oxidants, H2O2, iodosylbenzene (PhIO), m-chloroperbenzoic acid (MCPBA), and etc. (Que & Ho, 1996). However, few examples have shown the biomimetic reactivity in a nonheme ligand environment (Chen & Que, 2001; Kim et al., 1997; Leung et al., 1991; Mekmouche et al., 2001). Yang et al. have first reported the crystal structure of the complex, [(Et3NH)Fe(bpb)X2] [H2bpb is 1,2-bis(2-pyridinecarboxamido)benzene; X = Cl- and OTf-], with a tetradentate pyridine/amide ligand, and have found that it can catalyze the epoxidation of olefins by iodosylbenzene (Yang et al., 1991). In order to further develop functional models for mononuclear nonheme iron oxygenases, therefore, we have studied on a family of the nonheme iron catalyst, represented by [(bpb)FeCl2]. First of all, to examine the electronic effect of the ligand on the reactivity of the complex [(bpb)FeCl2], we have synthesized the title complex, with two methyl groups on the phenyl ring of the bpb ligand, H2Me2bpb [1,2-bis(2-pyridinecarboxamido)-4,5-dimethylbenzene] and obtained the crystal of its iron(III) complex. We now report the structure of an electron-rich iron complex [Et3NH][(Me2bpb)FeCl2], (I).

The asymmetric unit contains an [(Me2bpb)FeCl2]- anion and a triethylammonium cation [Et3NH]+ in P21/n with Z = 4. Four N atoms of the Me2bpb2- ligand are coordinated to the iron(III) ion. The Fe—N distances range from 2.041 (2) to 2.153 (2) Å. Two chloro ligands are also coordinted to the iron(III) ion, with Fe—Cl distances of 2.3457 (7) and 2.3546 (7) Å. The geometry of the anion complex is distorted octahedral, with a Cl—Fe—Cl angle of 156.59 (3)°. The N1—Fe1—N3 and N2—Fe1—N4 angles are 155.59 (7) and 155.53 (8)°, respectively. The 4,5-dimethylbenzene ring of the Me2bpb2- ligand is tilted from the N1/N2/N3/N4 plane, with torsion angles of 9.4 (4) and 12.1 (4)° for C6—N2—C7—C8 and C13—N3—C12—C11, respectively. The C—O bond distances of the Me2bpb2- ligand are 1.243 (3) and 1.234 (3) Å. There is an intermolecular interaction between the N atom of a triethylammonium cation and the carbonyl O atom of next anion complex, with an N5···O1 distance of 2.73 (1) Å.

Experimental top

For the preparation of the ligand 1,2-bis(pyridine-2-carboxamido)-4,5-dimethylbenzene (H2Me2bpb), a modification of the method of Patra et al. (2000) was used. To a stirred solution of picolinic acid (0.246 g, 2 mmol) in pyridine (1 ml), a solution of 4,5-dimethyl-1,2-diaminobenzene (0.136 g, 1 mmol) in pyridine (1.5 ml) was added dropwise. The solution was stirred for 15 min and triphenyl phosphite (520 µl, 2 mmol) was added dropwise. The temperature of the reaction mixture was increased to 393 K, and the mixture was stirred for 4 h. The volume was then reduced to 2 ml and kept in air. After 24 h, a white precipitate that resulted was collected by filtration. Recrystallization from CHCl3 and diethyl ether afforded white needles. For the preparation of (I), a modification of the method of Yang et al. (1991) was used. FeCl3.xH2O (0.162 g, 1 mmol) was added to a solution of H2Me2bpb (0.346 g, 1 mmol) and 300 µl of Et3N in 30 ml of dry acetonitrile under a nitrogen atmosphere. The solution turned dark-green immediately. The solution was stirred overnight. A small amount of brown precipitate was removed by filtration. A mixture of dark-green crystals of [(Et3NH)][(Me2bpb)FeCl2] and a white powder of Et3NHCl was formed and isolated by filtration. Dark-green single crystals of [(Et3NH)][(Me2bpb)FeCl2] were grown from acetonitrile underlayering ether at room temperature.

Refinement top

The H atoms attached to C atoms were placed at calculated positions and treated as riding with isotropic displacement parameters.

Computing details top

Data collection: CAD-4-PC Software (Enraf-Nonius, 1992); cell refinement: CAD-4-PC Software; data reduction: XCAD4 (Harms, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. View of compound (I) showing the atom-labeling scheme. Ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.
(I) top
Crystal data top
(C6H16N)[FeCl2(C20H16N4O2)]F(000) = 1196
Mr = 573.32Dx = 1.390 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 11.0038 (10) Åθ = 9.6–12.3°
b = 16.273 (2) ŵ = 0.78 mm1
c = 15.578 (2) ÅT = 298 K
β = 100.789 (10)°Block cut from plate, dark green
V = 2740.2 (5) Å30.35 × 0.35 × 0.25 mm
Z = 4
Data collection top
Enraf-Nonius CAD-4 MACH3
diffractometer
Rint = 0.029
Radiation source: fine-focus sealed tubeθmax = 26.0°, θmin = 2.1°
Graphite monochromatorh = 013
2θω scansk = 020
5637 measured reflectionsl = 1918
5352 independent reflections3 standard reflections every 60 min
4515 reflections with I > 2σ(I) intensity decay: negligible'
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0774P)2 + 1.2196P]
where P = (Fo2 + 2Fc2)/3
5352 reflections(Δ/σ)max < 0.001
334 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.64 e Å3
Crystal data top
(C6H16N)[FeCl2(C20H16N4O2)]V = 2740.2 (5) Å3
Mr = 573.32Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.0038 (10) ŵ = 0.78 mm1
b = 16.273 (2) ÅT = 298 K
c = 15.578 (2) Å0.35 × 0.35 × 0.25 mm
β = 100.789 (10)°
Data collection top
Enraf-Nonius CAD-4 MACH3
diffractometer
Rint = 0.029
5637 measured reflections3 standard reflections every 60 min
5352 independent reflections intensity decay: negligible'
4515 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.04Δρmax = 0.70 e Å3
5352 reflectionsΔρmin = 0.64 e Å3
334 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.43795 (3)0.140014 (18)0.346984 (19)0.02867 (12)
Cl10.25261 (6)0.20788 (4)0.35577 (4)0.04375 (17)
Cl20.60189 (6)0.04664 (4)0.38843 (4)0.04393 (17)
N10.50532 (18)0.19638 (12)0.47187 (12)0.0343 (4)
N20.53808 (17)0.23778 (11)0.31418 (12)0.0314 (4)
N30.41062 (17)0.12999 (11)0.21417 (12)0.0303 (4)
N40.32519 (18)0.03203 (11)0.32242 (13)0.0334 (4)
O10.6361 (2)0.35770 (12)0.36829 (14)0.0600 (6)
O20.33026 (18)0.04615 (10)0.09685 (11)0.0432 (4)
C10.4890 (3)0.17013 (17)0.54974 (16)0.0444 (6)
H10.44530.12170.55320.053*
C20.5350 (3)0.21276 (19)0.62588 (17)0.0516 (7)
H20.52280.19320.67970.062*
C30.5990 (3)0.28441 (19)0.62023 (18)0.0526 (7)
H30.63130.31400.67040.063*
C40.6148 (2)0.31184 (17)0.54018 (18)0.0462 (6)
H40.65680.36070.53520.055*
C50.5674 (2)0.26586 (14)0.46606 (15)0.0346 (5)
C60.5834 (2)0.29131 (14)0.37623 (16)0.0356 (5)
C70.5344 (2)0.24981 (13)0.22441 (15)0.0318 (5)
C80.5906 (2)0.31226 (15)0.18567 (17)0.0398 (5)
H80.64440.34770.22100.048*
C90.5691 (2)0.32363 (15)0.09573 (17)0.0421 (6)
C100.4875 (2)0.27111 (15)0.04238 (16)0.0407 (5)
C110.4381 (2)0.20528 (15)0.07972 (15)0.0364 (5)
H110.38840.16810.04370.044*
C120.4604 (2)0.19263 (13)0.16977 (15)0.0306 (4)
C130.3509 (2)0.06451 (13)0.17511 (14)0.0309 (5)
C140.3035 (2)0.00933 (13)0.23826 (15)0.0329 (5)
C150.2418 (2)0.06262 (16)0.21124 (18)0.0445 (6)
H150.22860.07830.15280.053*
C160.2001 (3)0.11083 (17)0.2723 (2)0.0525 (7)
H160.15940.16000.25570.063*
C170.2190 (3)0.08586 (17)0.3579 (2)0.0502 (7)
H170.18920.11690.39960.060*
C180.2830 (2)0.01405 (15)0.38112 (17)0.0422 (6)
H180.29710.00270.43920.051*
C190.6313 (4)0.3939 (2)0.0574 (2)0.0712 (10)
H19A0.56990.43280.03120.085*
H19B0.67440.37310.01380.085*
H19C0.68900.42030.10280.085*
C200.4506 (3)0.2849 (2)0.05528 (19)0.0610 (8)
H20A0.39430.24250.08030.073*
H20B0.52300.28340.08140.073*
H20C0.41110.33750.06600.073*
N50.2692 (2)0.48698 (13)0.63768 (14)0.0410 (5)
H50.307 (3)0.536 (2)0.641 (2)0.058 (9)*
C210.3037 (3)0.4488 (2)0.7269 (2)0.0610 (8)
H21A0.26370.47910.76760.073*
H21B0.27300.39280.72450.073*
C220.4402 (4)0.4481 (3)0.7602 (2)0.0831 (11)
H22A0.47790.40690.72960.100*
H22B0.45630.43600.82160.100*
H22C0.47400.50100.75070.100*
C310.3178 (3)0.44050 (18)0.56786 (18)0.0508 (7)
H31A0.30110.47220.51420.061*
H31B0.40690.43540.58510.061*
C320.2638 (4)0.3568 (2)0.5501 (3)0.0835 (12)
H32A0.28020.32470.60270.100*
H32B0.30040.33050.50590.100*
H32C0.17610.36120.53020.100*
C410.1330 (3)0.5029 (2)0.6117 (2)0.0557 (7)
H41A0.11450.51890.55060.067*
H41B0.08840.45250.61780.067*
C420.0888 (3)0.5684 (2)0.6652 (3)0.0675 (9)
H42A0.09170.54860.72360.081*
H42B0.00520.58300.63980.081*
H42C0.14090.61590.66680.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.03711 (19)0.02292 (18)0.02493 (18)0.00332 (12)0.00314 (13)0.00038 (11)
Cl10.0438 (3)0.0447 (3)0.0420 (3)0.0082 (3)0.0061 (3)0.0007 (3)
Cl20.0496 (4)0.0413 (3)0.0396 (3)0.0121 (3)0.0051 (3)0.0039 (2)
N10.0397 (10)0.0309 (10)0.0299 (10)0.0000 (8)0.0003 (8)0.0011 (8)
N20.0363 (10)0.0254 (9)0.0315 (10)0.0042 (7)0.0036 (8)0.0009 (7)
N30.0365 (9)0.0267 (9)0.0273 (9)0.0040 (7)0.0047 (7)0.0003 (7)
N40.0380 (10)0.0270 (9)0.0346 (10)0.0039 (8)0.0055 (8)0.0023 (8)
O10.0842 (15)0.0442 (11)0.0512 (12)0.0344 (10)0.0120 (11)0.0081 (9)
O20.0599 (11)0.0368 (9)0.0298 (9)0.0094 (8)0.0000 (8)0.0035 (7)
C10.0555 (15)0.0424 (14)0.0338 (13)0.0005 (12)0.0048 (11)0.0017 (11)
C20.0631 (17)0.0597 (18)0.0292 (12)0.0050 (14)0.0015 (12)0.0006 (12)
C30.0569 (16)0.0617 (18)0.0335 (13)0.0025 (14)0.0061 (12)0.0131 (12)
C40.0440 (14)0.0481 (14)0.0424 (14)0.0081 (11)0.0022 (11)0.0116 (12)
C50.0327 (11)0.0339 (12)0.0343 (12)0.0001 (9)0.0012 (9)0.0047 (9)
C60.0369 (12)0.0302 (11)0.0383 (12)0.0049 (9)0.0035 (10)0.0031 (9)
C70.0334 (11)0.0281 (11)0.0344 (11)0.0008 (9)0.0079 (9)0.0005 (9)
C80.0468 (13)0.0323 (12)0.0424 (14)0.0069 (10)0.0138 (11)0.0027 (10)
C90.0537 (15)0.0324 (12)0.0445 (14)0.0019 (11)0.0206 (12)0.0044 (11)
C100.0534 (14)0.0363 (12)0.0355 (13)0.0028 (11)0.0160 (11)0.0054 (10)
C110.0434 (13)0.0346 (12)0.0312 (12)0.0003 (10)0.0073 (10)0.0010 (9)
C120.0349 (11)0.0257 (10)0.0318 (11)0.0018 (9)0.0079 (9)0.0021 (8)
C130.0331 (11)0.0279 (10)0.0301 (11)0.0003 (9)0.0016 (9)0.0007 (9)
C140.0343 (11)0.0269 (11)0.0360 (12)0.0020 (9)0.0030 (9)0.0003 (9)
C150.0469 (14)0.0371 (13)0.0484 (15)0.0118 (11)0.0061 (11)0.0069 (11)
C160.0523 (15)0.0366 (13)0.0689 (19)0.0176 (12)0.0120 (14)0.0023 (13)
C170.0525 (15)0.0414 (14)0.0590 (17)0.0083 (12)0.0166 (13)0.0122 (13)
C180.0492 (14)0.0380 (13)0.0398 (13)0.0048 (11)0.0093 (11)0.0046 (10)
C190.108 (3)0.0558 (18)0.0591 (19)0.0292 (19)0.0399 (19)0.0026 (16)
C200.090 (2)0.0582 (18)0.0379 (15)0.0071 (16)0.0185 (15)0.0107 (13)
N50.0475 (12)0.0360 (11)0.0385 (11)0.0099 (9)0.0055 (9)0.0018 (9)
C210.083 (2)0.0595 (18)0.0397 (15)0.0070 (16)0.0100 (15)0.0094 (13)
C220.096 (3)0.088 (3)0.056 (2)0.014 (2)0.0101 (19)0.0157 (19)
C310.0605 (17)0.0508 (16)0.0399 (14)0.0035 (13)0.0064 (12)0.0022 (12)
C320.087 (3)0.065 (2)0.098 (3)0.0068 (19)0.014 (2)0.035 (2)
C410.0415 (14)0.0635 (18)0.0604 (18)0.0098 (13)0.0053 (13)0.0025 (15)
C420.0630 (19)0.0525 (19)0.090 (3)0.0024 (15)0.0229 (18)0.0054 (17)
Geometric parameters (Å, º) top
Fe1—N32.0408 (19)C14—C151.379 (3)
Fe1—N22.0535 (18)C15—C161.376 (4)
Fe1—N42.1438 (19)C15—H150.93
Fe1—N12.1531 (19)C16—C171.373 (4)
Fe1—Cl12.3457 (7)C16—H160.93
Fe1—Cl22.3546 (7)C17—C181.377 (4)
N1—C11.330 (3)C17—H170.93
N1—C51.333 (3)C18—H180.93
N2—C61.327 (3)C19—H19A0.96
N2—C71.405 (3)C19—H19B0.96
N3—C131.337 (3)C19—H19C0.96
N3—C121.400 (3)C20—H20A0.96
N4—C181.332 (3)C20—H20B0.96
N4—C141.340 (3)C20—H20C0.96
O1—C61.243 (3)N5—C411.500 (4)
O1—N5i2.742 (3)N5—C311.503 (4)
O2—C131.234 (3)N5—C211.505 (4)
C1—C21.386 (4)N5—H50.89 (3)
C1—H10.93C21—C221.495 (5)
C2—C31.373 (4)C21—H21A0.97
C2—H20.93C21—H21B0.97
C3—C41.366 (4)C22—H22A0.96
C3—H30.93C22—H22B0.96
C4—C51.393 (3)C22—H22C0.96
C4—H40.93C31—C321.492 (4)
C5—C61.501 (3)C31—H31A0.97
C7—C81.385 (3)C31—H31B0.97
C7—C121.412 (3)C32—H32A0.96
C8—C91.389 (4)C32—H32B0.96
C8—H80.93C32—H32C0.96
C9—C101.396 (4)C41—C421.491 (5)
C9—C191.511 (4)C41—H41A0.97
C10—C111.379 (3)C41—H41B0.97
C10—C201.516 (4)C42—H42A0.96
C11—C121.393 (3)C42—H42B0.96
C11—H110.93C42—H42C0.96
C13—C141.496 (3)
N3—Fe1—N278.10 (7)N4—C14—C13117.26 (19)
N3—Fe1—N477.47 (7)C15—C14—C13121.4 (2)
N2—Fe1—N4155.53 (8)C16—C15—C14118.8 (3)
N3—Fe1—N1155.59 (7)C16—C15—H15120.6
N2—Fe1—N177.58 (7)C14—C15—H15120.6
N4—Fe1—N1126.89 (7)C17—C16—C15119.6 (2)
N3—Fe1—Cl197.59 (6)C17—C16—H16120.2
N2—Fe1—Cl199.36 (6)C15—C16—H16120.2
N4—Fe1—Cl185.17 (6)C16—C17—C18118.9 (2)
N1—Fe1—Cl184.42 (6)C16—C17—H17120.6
N3—Fe1—Cl2100.74 (6)C18—C17—H17120.6
N2—Fe1—Cl298.57 (6)N4—C18—C17121.6 (2)
N4—Fe1—Cl284.73 (6)N4—C18—H18119.2
N1—Fe1—Cl284.87 (5)C17—C18—H18119.2
Cl1—Fe1—Cl2156.59 (3)C9—C19—H19A109.5
C1—N1—C5119.5 (2)C9—C19—H19B109.5
C1—N1—Fe1127.23 (17)H19A—C19—H19B109.5
C5—N1—Fe1113.22 (15)C9—C19—H19C109.5
C6—N2—C7124.77 (19)H19A—C19—H19C109.5
C6—N2—Fe1118.25 (15)H19B—C19—H19C109.5
C7—N2—Fe1116.02 (14)C10—C20—H20A109.5
C13—N3—C12124.05 (19)C10—C20—H20B109.5
C13—N3—Fe1119.44 (15)H20A—C20—H20B109.5
C12—N3—Fe1116.47 (14)C10—C20—H20C109.5
C18—N4—C14119.7 (2)H20A—C20—H20C109.5
C18—N4—Fe1127.12 (17)H20B—C20—H20C109.5
C14—N4—Fe1113.06 (14)C41—N5—C31111.4 (2)
C6—O1—N5i172.6 (2)C41—N5—C21112.8 (2)
N1—C1—C2122.0 (3)C31—N5—C21113.5 (2)
N1—C1—H1119.0C41—N5—H5107 (2)
C2—C1—H1119.0C31—N5—H5105 (2)
C3—C2—C1118.7 (3)C21—N5—H5106 (2)
C3—C2—H2120.7C22—C21—N5112.7 (3)
C1—C2—H2120.7C22—C21—H21A109.1
C4—C3—C2119.4 (3)N5—C21—H21A109.1
C4—C3—H3120.3C22—C21—H21B109.1
C2—C3—H3120.3N5—C21—H21B109.1
C3—C4—C5119.3 (3)H21A—C21—H21B107.8
C3—C4—H4120.4C21—C22—H22A109.5
C5—C4—H4120.4C21—C22—H22B109.5
N1—C5—C4121.1 (2)H22A—C22—H22B109.5
N1—C5—C6116.6 (2)C21—C22—H22C109.5
C4—C5—C6122.2 (2)H22A—C22—H22C109.5
O1—C6—N2128.1 (2)H22B—C22—H22C109.5
O1—C6—C5118.1 (2)C32—C31—N5114.2 (3)
N2—C6—C5113.83 (19)C32—C31—H31A108.7
C8—C7—N2127.1 (2)N5—C31—H31A108.7
C8—C7—C12118.4 (2)C32—C31—H31B108.7
N2—C7—C12114.47 (19)N5—C31—H31B108.7
C7—C8—C9122.1 (2)H31A—C31—H31B107.6
C7—C8—H8118.9C31—C32—H32A109.5
C9—C8—H8118.9C31—C32—H32B109.5
C8—C9—C10119.2 (2)H32A—C32—H32B109.5
C8—C9—C19119.7 (3)C31—C32—H32C109.5
C10—C9—C19121.1 (2)H32A—C32—H32C109.5
C11—C10—C9119.0 (2)H32B—C32—H32C109.5
C11—C10—C20119.0 (2)C42—C41—N5112.7 (2)
C9—C10—C20121.9 (2)C42—C41—H41A109.0
C10—C11—C12122.1 (2)N5—C41—H41A109.0
C10—C11—H11119.0C42—C41—H41B109.0
C12—C11—H11119.0N5—C41—H41B109.0
C11—C12—N3126.4 (2)H41A—C41—H41B107.8
C11—C12—C7118.8 (2)C41—C42—H42A109.5
N3—C12—C7114.6 (2)C41—C42—H42B109.5
O2—C13—N3128.8 (2)H42A—C42—H42B109.5
O2—C13—C14118.8 (2)C41—C42—H42C109.5
N3—C13—C14112.41 (19)H42A—C42—H42C109.5
N4—C14—C15121.3 (2)H42B—C42—H42C109.5
N3—Fe1—N1—C1178.0 (2)Fe1—N2—C6—C57.3 (3)
N2—Fe1—N1—C1177.2 (2)N1—C5—C6—O1176.8 (2)
N4—Fe1—N1—C12.3 (2)C4—C5—C6—O13.4 (4)
Cl1—Fe1—N1—C182.0 (2)N1—C5—C6—N23.3 (3)
Cl2—Fe1—N1—C177.2 (2)C4—C5—C6—N2176.5 (2)
N3—Fe1—N1—C50.5 (3)C6—N2—C7—C89.4 (4)
N2—Fe1—N1—C54.29 (15)Fe1—N2—C7—C8177.97 (19)
N4—Fe1—N1—C5176.27 (14)C6—N2—C7—C12167.9 (2)
Cl1—Fe1—N1—C596.59 (16)Fe1—N2—C7—C120.6 (2)
Cl2—Fe1—N1—C5104.25 (16)N2—C7—C8—C9172.5 (2)
N3—Fe1—N2—C6171.47 (18)C12—C7—C8—C94.8 (4)
N4—Fe1—N2—C6174.60 (18)C7—C8—C9—C100.6 (4)
N1—Fe1—N2—C66.50 (17)C7—C8—C9—C19178.8 (3)
Cl1—Fe1—N2—C675.62 (17)C8—C9—C10—C115.2 (4)
Cl2—Fe1—N2—C689.27 (17)C19—C9—C10—C11176.6 (3)
N3—Fe1—N2—C72.14 (15)C8—C9—C10—C20174.1 (3)
N4—Fe1—N2—C75.3 (3)C19—C9—C10—C204.1 (4)
N1—Fe1—N2—C7175.83 (16)C9—C10—C11—C124.4 (4)
Cl1—Fe1—N2—C793.71 (15)C20—C10—C11—C12174.9 (2)
Cl2—Fe1—N2—C7101.40 (15)C10—C11—C12—N3177.1 (2)
N2—Fe1—N3—C13173.44 (18)C10—C11—C12—C71.0 (3)
N4—Fe1—N3—C135.24 (16)C13—N3—C12—C1112.1 (4)
N1—Fe1—N3—C13178.24 (17)Fe1—N3—C12—C11169.83 (18)
Cl1—Fe1—N3—C1388.54 (16)C13—N3—C12—C7171.5 (2)
Cl2—Fe1—N3—C1376.83 (17)Fe1—N3—C12—C76.5 (2)
N2—Fe1—N3—C124.68 (15)C8—C7—C12—C115.5 (3)
N4—Fe1—N3—C12176.64 (17)N2—C7—C12—C11172.1 (2)
N1—Fe1—N3—C120.1 (3)C8—C7—C12—N3177.9 (2)
Cl1—Fe1—N3—C1293.34 (15)N2—C7—C12—N34.5 (3)
Cl2—Fe1—N3—C12101.28 (15)C12—N3—C13—O21.3 (4)
N3—Fe1—N4—C18178.5 (2)Fe1—N3—C13—O2176.70 (19)
N2—Fe1—N4—C18178.34 (19)C12—N3—C13—C14177.75 (19)
N1—Fe1—N4—C180.3 (2)Fe1—N3—C13—C144.3 (2)
Cl1—Fe1—N4—C1879.6 (2)C18—N4—C14—C152.3 (4)
Cl2—Fe1—N4—C1879.2 (2)Fe1—N4—C14—C15174.34 (19)
N3—Fe1—N4—C145.15 (16)C18—N4—C14—C13178.7 (2)
N2—Fe1—N4—C142.0 (3)Fe1—N4—C14—C134.7 (2)
N1—Fe1—N4—C14176.65 (14)O2—C13—C14—N4178.6 (2)
Cl1—Fe1—N4—C14104.04 (16)N3—C13—C14—N40.6 (3)
Cl2—Fe1—N4—C1497.10 (16)O2—C13—C14—C152.4 (3)
C5—N1—C1—C20.2 (4)N3—C13—C14—C15178.4 (2)
Fe1—N1—C1—C2178.7 (2)N4—C14—C15—C161.2 (4)
N1—C1—C2—C30.3 (4)C13—C14—C15—C16179.9 (2)
C1—C2—C3—C40.4 (4)C14—C15—C16—C171.0 (4)
C2—C3—C4—C51.0 (4)C15—C16—C17—C182.0 (4)
C1—N1—C5—C40.4 (4)C14—N4—C18—C171.2 (4)
Fe1—N1—C5—C4178.26 (19)Fe1—N4—C18—C17174.9 (2)
C1—N1—C5—C6179.4 (2)C16—C17—C18—N40.9 (4)
Fe1—N1—C5—C61.9 (3)C41—N5—C21—C22168.7 (3)
C3—C4—C5—N11.0 (4)C31—N5—C21—C2263.5 (4)
C3—C4—C5—C6178.7 (2)C41—N5—C31—C3263.0 (3)
C7—N2—C6—O14.5 (4)C21—N5—C31—C3265.5 (4)
Fe1—N2—C6—O1172.8 (2)C31—N5—C41—C42163.1 (3)
C7—N2—C6—C5175.64 (19)C21—N5—C41—C4268.0 (3)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula(C6H16N)[FeCl2(C20H16N4O2)]
Mr573.32
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)11.0038 (10), 16.273 (2), 15.578 (2)
β (°) 100.789 (10)
V3)2740.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.78
Crystal size (mm)0.35 × 0.35 × 0.25
Data collection
DiffractometerEnraf-Nonius CAD-4 MACH3
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5637, 5352, 4515
Rint0.029
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.120, 1.04
No. of reflections5352
No. of parameters334
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 0.64

Computer programs: CAD-4-PC Software (Enraf-Nonius, 1992), CAD-4-PC Software, XCAD4 (Harms, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
Fe1—N32.0408 (19)Fe1—Cl22.3546 (7)
Fe1—N22.0535 (18)O1—C61.243 (3)
Fe1—N42.1438 (19)O1—N5i2.742 (3)
Fe1—N12.1531 (19)O2—C131.234 (3)
Fe1—Cl12.3457 (7)
N3—Fe1—N278.10 (7)N4—Fe1—Cl185.17 (6)
N3—Fe1—N477.47 (7)N1—Fe1—Cl184.42 (6)
N2—Fe1—N4155.53 (8)N3—Fe1—Cl2100.74 (6)
N3—Fe1—N1155.59 (7)N2—Fe1—Cl298.57 (6)
N2—Fe1—N177.58 (7)N4—Fe1—Cl284.73 (6)
N4—Fe1—N1126.89 (7)N1—Fe1—Cl284.87 (5)
N3—Fe1—Cl197.59 (6)Cl1—Fe1—Cl2156.59 (3)
N2—Fe1—Cl199.36 (6)
C6—N2—C7—C89.4 (4)C13—N3—C12—C1112.1 (4)
Symmetry code: (i) x+1, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds