Download citation
Download citation
link to html
The title mol­ecule, C17H14O, contains p-methyl­benzyl­idene and 1-indanone moieties. The 1-indanone moiety is nearly planar and it forms a dihedral angle of 7.2 (2)° with the plane through the methyl­phenyl ring. The crystal structure is stabilized by C—H...O intermolecular interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802006190/ci6114sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802006190/ci6114Isup2.hkl
Contains datablock I

CCDC reference: 185788

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.065
  • wR factor = 0.197
  • Data-to-parameter ratio = 15.1

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
WEIGH_01 Alert C Extra text has been found in the _refine_ls_weighting_scheme field. This should be in the _refine_ls_weighting_details field. Weighting scheme given as calc w = 1/[\s^2^(Fo^2^)+(0.0785P)^2^] wher Weighting scheme identified as calc
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

Indanone derivatives have been studied on account of the well known anticoagulant activity in the vitamin K dependent biosynthesis (Ernster et al., 1972; Bravic et al., 1974a,b; Csoregh & Eckstein, 1979). Some of the derivatives have also been shown to be charge-transfer complexes (Silverman et al., 1974) and the 1-indanone system has a particular propensity to produce catemers in the solid state (Brunskill et al., 1997; Lalancette, 1998). 2-Benzylidene-1-indanone has been used as the starting material to produce dimeric products (Berthelette et al., 1997; Houlihan et al., 1997). In view of these features associated with the indanone moiety, the structure determination of the 2-(p-methylbenzylidene)-1-indanone, (I), was undertaken.

The bond lengths and angles observed in (I) agree with the corresponding values observed for 2-benzylidene-1-indanone (Hoser et al., 1980). The 1-indanone moiety is nearly planar, with atom C2 deviating by a maximum of 0.033 (4) Å. The values of the O1—C1—C2—C10 [-3.4 (7)°], C1—C2—C10—C11 [-176.7 (4)°], C2—C10—C11—C16 [-3.7 (7)°] and C1—C2—C3—C4 [2.5 (5) Å] torsion angles show that the molecule as a whole is slightly distorted from planarity. The conformation of the molecule as a whole can be described conveniently by the dihedral angle between the planes of the two phenyl rings (Katrusiak et al., 1987). In the title molecule, it is found to be 7.5 (2)°. This angle is 15.3° for 2-benzylidene-1-indanone (Hoser et al., 1980), 11.4° for chalcone (Rabinovich 1970), 52.9° for 2-benzylidene-1-tetralone (Kaluski et al., 1978) and 59.1° for 3-benzylidene-4-chromanone (Katrusiak et al., 1987). This shows that the title molecule is flatter than the molecule of 2-benzylidene-1-indanone. Spectroscopic investigations (IR, UV, NMR) of arylidene derivatives of 1-tetralone and 4-chromanone showed that an increase in the electron interactions of electron-donor substituents in a conjugated bond system leads to flattening of the molecules (Orlov, Borovoi & Lavrushin, 1976; Orlov, Borovoi, Surov & Lavrushin, 1976). Fig. 2 shows the packing of the molecules viewed down the a axis. In the crystal, the molecules translated along the c-cell direction are linked by C3—H3A···O1i [symmetry code: (i) x, y, 1 + z] hydrogen bonds to form an infinite one-dimensional chain. The molecules of the adjacent inversion related chains are linked by centrosymmetric C12—H12···O1ii [symmetry code: (ii) 1 - x, -y, -z] hydrogen bonds to form a molecular column down the c axis (Table 1).

Experimental top

A vigorously stirred solution of aromatic aldehyde (0.01 mol) and 1-indanone (0.01 mol) at room temperature was treated with 6 drops of saturated ethanolic KOH. After 15 min, the mixture was heated with 95% ethanol (15 ml) and stirred for 3 h. The resulting product was filtered and washed with 95% ethanol and recrystallized from ethanol giving the title compound. Crystals suitable for X-ray diffraction study were grown by slow evaporation from methanol.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: SDP (Frenz, 1978); data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Johnson & Burnett, 1998); software used to prepare material for publication: PARST97 (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. A view of the molecular packing, showing C—H···O hydrogen bonds.
2-(p-methylbenzylindene)-1-indanone top
Crystal data top
C17H14OF(000) = 496
Mr = 234.28Dx = 1.231 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54180 Å
a = 13.919 (2) ÅCell parameters from 25 reflections
b = 14.457 (3) Åθ = 14–30°
c = 6.308 (1) ŵ = 0.58 mm1
β = 95.07 (2)°T = 293 K
V = 1264.4 (4) Å3Needle, colourless
Z = 40.20 × 0.10 × 0.05 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.079
Radiation source: fine-focus sealed tubeθmax = 71.9°, θmin = 3.2°
Graphite monochromatorh = 1717
ω–2θ scansk = 170
2727 measured reflectionsl = 07
2486 independent reflections3 standard reflections every 120min min
804 reflections with I > 2σ(I) intensity decay: <1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.197Calculated w = 1/[σ2(Fo2) + (0.0785P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.90(Δ/σ)max < 0.001
2486 reflectionsΔρmax = 0.20 e Å3
165 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0018 (5)
Crystal data top
C17H14OV = 1264.4 (4) Å3
Mr = 234.28Z = 4
Monoclinic, P21/cCu Kα radiation
a = 13.919 (2) ŵ = 0.58 mm1
b = 14.457 (3) ÅT = 293 K
c = 6.308 (1) Å0.20 × 0.10 × 0.05 mm
β = 95.07 (2)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.079
2727 measured reflections3 standard reflections every 120min min
2486 independent reflections intensity decay: <1%
804 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.197H-atom parameters constrained
S = 0.90Δρmax = 0.20 e Å3
2486 reflectionsΔρmin = 0.17 e Å3
165 parameters
Special details top

Experimental. The poor ratio of observed to unique reflections may be due to poor diffraction quality of the crystal.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2831 (2)0.0570 (2)0.0308 (5)0.0805 (11)
C10.2734 (3)0.0876 (3)0.1459 (7)0.0593 (12)
C20.3495 (3)0.1136 (3)0.3132 (6)0.0544 (12)
C30.3030 (3)0.1512 (3)0.5023 (6)0.0565 (12)
H3A0.32180.11560.62950.068*
H3B0.32020.21550.52780.068*
C40.1971 (3)0.1410 (3)0.4371 (7)0.0568 (12)
C50.1204 (3)0.1619 (3)0.5534 (8)0.0745 (14)
H50.13090.18560.69060.089*
C60.0287 (4)0.1471 (4)0.4631 (9)0.0919 (18)
H60.02310.16220.54010.110*
C70.0104 (4)0.1102 (4)0.2595 (10)0.0901 (17)
H70.05250.09950.20240.108*
C80.0869 (3)0.0899 (3)0.1454 (8)0.0763 (16)
H80.07650.06610.00830.092*
C90.1795 (3)0.1051 (3)0.2354 (7)0.0567 (12)
C100.4433 (3)0.1000 (3)0.2844 (7)0.0571 (12)
H100.45420.07700.15100.068*
C110.5299 (3)0.1150 (3)0.4246 (7)0.0512 (11)
C120.6185 (3)0.0895 (3)0.3575 (7)0.0595 (13)
H120.62030.06380.22280.071*
C130.7034 (3)0.1008 (3)0.4824 (8)0.0657 (13)
H130.76120.08180.43290.079*
C140.7032 (3)0.1404 (3)0.6824 (8)0.0576 (12)
C150.6166 (3)0.1663 (3)0.7516 (7)0.0619 (13)
H150.61530.19300.88550.074*
C160.5314 (3)0.1537 (3)0.6267 (7)0.0598 (12)
H160.47360.17140.67860.072*
C170.7956 (3)0.1537 (4)0.8219 (8)0.0838 (16)
H17A0.78260.15030.96870.126*
H17B0.82260.21310.79390.126*
H17C0.84060.10610.79220.126*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.094 (3)0.096 (3)0.050 (2)0.005 (2)0.0034 (17)0.015 (2)
C10.084 (4)0.051 (3)0.043 (3)0.004 (3)0.005 (2)0.005 (2)
C20.074 (3)0.041 (3)0.048 (3)0.003 (2)0.007 (2)0.008 (2)
C30.067 (3)0.057 (3)0.046 (3)0.004 (2)0.008 (2)0.006 (2)
C40.059 (3)0.055 (3)0.057 (3)0.002 (2)0.010 (2)0.000 (2)
C50.071 (3)0.082 (4)0.070 (3)0.001 (3)0.008 (3)0.012 (3)
C60.059 (4)0.108 (5)0.111 (5)0.002 (3)0.018 (3)0.019 (4)
C70.063 (3)0.097 (5)0.110 (5)0.006 (3)0.003 (3)0.013 (4)
C80.068 (3)0.081 (4)0.078 (4)0.003 (3)0.003 (3)0.004 (3)
C90.062 (3)0.051 (3)0.058 (3)0.002 (2)0.007 (2)0.000 (2)
C100.079 (3)0.044 (3)0.049 (3)0.002 (3)0.011 (2)0.001 (2)
C110.060 (3)0.042 (3)0.053 (3)0.003 (2)0.012 (2)0.001 (2)
C120.064 (3)0.051 (3)0.066 (3)0.003 (2)0.023 (3)0.003 (2)
C130.068 (3)0.052 (3)0.080 (4)0.004 (3)0.019 (3)0.006 (3)
C140.051 (3)0.045 (3)0.077 (3)0.001 (2)0.005 (2)0.006 (3)
C150.063 (3)0.055 (3)0.070 (3)0.003 (3)0.012 (3)0.009 (2)
C160.066 (3)0.052 (3)0.063 (3)0.001 (2)0.016 (2)0.007 (3)
C170.061 (3)0.084 (4)0.105 (4)0.003 (3)0.002 (3)0.005 (3)
Geometric parameters (Å, º) top
O1—C11.218 (5)C8—H80.93
C1—C21.476 (6)C10—C111.448 (5)
C1—C91.490 (6)C10—H100.93
C2—C101.348 (5)C11—C121.388 (5)
C2—C31.508 (5)C11—C161.391 (5)
C3—C41.502 (5)C12—C131.371 (5)
C3—H3A0.97C12—H120.93
C3—H3B0.97C13—C141.386 (6)
C4—C91.376 (5)C13—H130.93
C4—C51.381 (6)C14—C151.370 (5)
C5—C61.368 (6)C14—C171.505 (5)
C5—H50.93C15—C161.377 (5)
C6—C71.393 (7)C15—H150.93
C6—H60.93C16—H160.93
C7—C81.369 (6)C17—H17A0.96
C7—H70.93C17—H17B0.96
C8—C91.380 (6)C17—H17C0.96
O1—C1—C2128.1 (4)C8—C9—C1129.5 (5)
O1—C1—C9125.4 (4)C2—C10—C11131.3 (4)
C2—C1—C9106.5 (4)C2—C10—H10114.3
C10—C2—C1120.6 (4)C11—C10—H10114.3
C10—C2—C3130.3 (4)C12—C11—C16116.4 (4)
C1—C2—C3109.1 (4)C12—C11—C10119.2 (4)
C4—C3—C2103.2 (3)C16—C11—C10124.4 (4)
C4—C3—H3A111.1C13—C12—C11122.5 (5)
C2—C3—H3A111.1C13—C12—H12118.8
C4—C3—H3B111.1C11—C12—H12118.8
C2—C3—H3B111.1C12—C13—C14120.1 (5)
H3A—C3—H3B109.1C12—C13—H13120.0
C9—C4—C5119.4 (4)C14—C13—H13120.0
C9—C4—C3112.3 (4)C15—C14—C13118.4 (5)
C5—C4—C3128.3 (4)C15—C14—C17120.6 (5)
C6—C5—C4118.7 (5)C13—C14—C17121.0 (5)
C6—C5—H5120.6C14—C15—C16121.3 (5)
C4—C5—H5120.6C14—C15—H15119.4
C5—C6—C7122.1 (5)C16—C15—H15119.4
C5—C6—H6118.9C15—C16—C11121.3 (4)
C7—C6—H6118.9C15—C16—H16119.3
C8—C7—C6118.6 (5)C11—C16—H16119.3
C8—C7—H7120.7C14—C17—H17A109.5
C6—C7—H7120.7C14—C17—H17B109.5
C7—C8—C9119.4 (5)H17A—C17—H17B109.5
C7—C8—H8120.3C14—C17—H17C109.5
C9—C8—H8120.3H17A—C17—H17C109.5
C4—C9—C8121.6 (4)H17B—C17—H17C109.5
C4—C9—C1108.9 (4)
O1—C1—C2—C103.4 (7)O1—C1—C9—C4179.1 (4)
C9—C1—C2—C10175.8 (4)C2—C1—C9—C41.7 (5)
O1—C1—C2—C3178.1 (4)O1—C1—C9—C81.1 (8)
C9—C1—C2—C32.6 (5)C2—C1—C9—C8178.1 (5)
C10—C2—C3—C4175.7 (4)C1—C2—C10—C11176.7 (4)
C1—C2—C3—C42.5 (5)C3—C2—C10—C111.4 (8)
C2—C3—C4—C91.5 (5)C2—C10—C11—C12176.1 (4)
C2—C3—C4—C5177.6 (4)C2—C10—C11—C163.7 (7)
C9—C4—C5—C60.7 (7)C16—C11—C12—C130.5 (6)
C3—C4—C5—C6179.9 (4)C10—C11—C12—C13179.3 (4)
C4—C5—C6—C71.2 (8)C11—C12—C13—C141.2 (7)
C5—C6—C7—C81.3 (9)C12—C13—C14—C150.9 (7)
C6—C7—C8—C91.0 (8)C12—C13—C14—C17179.9 (4)
C5—C4—C9—C80.5 (7)C13—C14—C15—C160.1 (7)
C3—C4—C9—C8179.8 (4)C17—C14—C15—C16179.3 (4)
C5—C4—C9—C1179.3 (4)C14—C15—C16—C110.7 (7)
C3—C4—C9—C10.0 (5)C12—C11—C16—C150.5 (6)
C7—C8—C9—C40.6 (7)C10—C11—C16—C15179.8 (4)
C7—C8—C9—C1179.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O1i0.972.413.279 (5)149
C12—H12···O1ii0.932.573.333 (5)139
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC17H14O
Mr234.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.919 (2), 14.457 (3), 6.308 (1)
β (°) 95.07 (2)
V3)1264.4 (4)
Z4
Radiation typeCu Kα
µ (mm1)0.58
Crystal size (mm)0.20 × 0.10 × 0.05
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2727, 2486, 804
Rint0.079
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.197, 0.90
No. of reflections2486
No. of parameters165
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.17

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), SDP (Frenz, 1978), CAD-4 Software, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Johnson & Burnett, 1998), PARST97 (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O1i0.972.413.279 (5)149.1
C12—H12···O1ii0.932.573.333 (5)139.4
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds