Download citation
Download citation
link to html
The synthesis, EPR (electron paramagnetic resonance) characterization, and crystal structure of (C16H36N)2[VO(C3H2O4)2] are described. The V atom is pentacoordinated by an oxo and two bidentate malonate ligands. The geometry around the metal is square-pyramidal and the two bidentate malonate ligands form the base of the pyramid. The V=O bond length is 1.556 (3) Å and the range of V-O bond lengths is 1.960 (3)-1.968 (3) Å. The EPR spectrum (giso = 1.965 and Aiso = 0.00965 cm-1) is typical of a VIV system.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802005913/ci6115sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802005913/ci6115Isup2.hkl
Contains datablock I

CCDC reference: 185753

Key indicators

  • Single-crystal X-ray study
  • T = 223 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.068
  • wR factor = 0.183
  • Data-to-parameter ratio = 16.8

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
GOODF_01 Alert C The least squares goodness of fit parameter lies outside the range 0.80 <> 2.00 Goodness of fit given = 0.760 REFLT_03 From the CIF: _diffrn_reflns_theta_max 25.87 From the CIF: _reflns_number_total 7920 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 8500 Completeness (_total/calc) 93.18% Alert C: < 95% complete RINTA_01 Alert C The value of Rint is greater than 0.10 Rint given 0.127
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
3 Alert Level C = Please check

Comment top

Soluble vanadium derivatives are known to be efficient reagents and catalysts in oxidations of various organic compounds (Sheldon & Kochi, 1981; Shul'pin, 1988; Butler et al., 1994; Yamanaka et al., 1998). During the course of our research investigation on the synthesis of oxovanadium complexes (Shul'pin et al., 2001), the reaction between tetrabutylammonium vanadate and malonic acid has been studied and can be denoted as follows: 12[VO3]- + 24CH2(COOH)2 2[VO(CH2(COO)2)2]- + [V10O26]4- + 6H2O + O2 + 4CH3COO- + 16CH3COOH + 20CO2

Tetrabutylammonium vanadate reacts in refluxing acetonitrile with malonic acid to give the disubstituted vanadate derivative [VO(mal)2]2-, (1) [mal = CH2(COO)2], and the mixed valence compound [V10O26]4-, (2). Anions (1) and (2) can be isolated as tetrabutylammonium salts in the form of blue (I) and green (II) crystals. The reduction of vanadium(V) to vanadium(IV) is coupled to the oxidation of malonic acid to acetic acid which has been detected in the product mixture by gas chromatography. Compound (II) is already known and well characterized (Baxter & Wolczanski, 1989), only the molecular structure and properties of (I), [NBu4]2[VO(mal)2], are discussed and presented here.

The malonato ligands are bonded to the vanadium through two carboxylate O atoms. The molecular structure of anion (I) shows a square-pyramidal geometry around the vanadium (Fig. 1). The two bidentate malonate ligands form the base of the pyramid, the V atom is elevated from the equatorial plane by 0.575 (2) Å, with an average V—O distances of 1.964 Å. An oxo ligand occupies the fifth coordination site, with a VO distance of 1.556 (3) Å. The two six-membered V-malonate rings have boat conformations. A search on the Cambridge Structural Database (Allen & Kennard, 1993) reveals three other anions containing two malonate and one oxo ligands coordinated to a vanadium metal, and they all possess octahedral geometry (Pajunen & Panjunen, 1980; Piro & Baran, 1997; Fillipova & Kiosse, 2000), the sixth coordinated site being filled with a water molecule. An intensive network of weak hydrogen bonds is observed between the O atoms of the vanadate and the tetrabutylammonium cations.

To confirm the oxidation state of the metal, EPR studies of (I) have been performed. A signal having an octuplet structure with giso = 1.965, and Aiso = 0.00965 cm-1 appears in the EPR spectrum of a solution containing [NBu4]2[VO(mal)2] in dichloromethane. These EPR parameters agree with the presence of a vanadium(IV), d1 system. Both the 1H and 13C NMR signals of [VO(mal)2] are extremely broad, due to the paramagnetic metal centre of the complex.

Experimental top

All reactions were carried out in air. Acetonitrile (Fluka) was distilled over CaH2; all other solvents were distilled over appropriate drying agents prior to use. Tetrabutylammonium vanadate was prepared according to the literature method of Day et al. (1990). Malonic acid (Fluka) was used without purification. IR spectra were recorded with a Perkin–Elmer 1720x FT—IR spectrometer. Microanalyses were carried out by the Mikroelementar-analytisches Laboratorium of the ETH Zürich, Switzerland. NBu4VO3 (868 mg, 2.54 mmol) was dissolved in 20 ml of acetonitrile. After complete dissolution, malonic acid was added (535 mg, 5.14 mmol), and the solution stirred under reflux for 5 h. After filtration and removal of the solvent, a green powder was obtained, being a mixture of [NBu4]2[VO(mal)2] and [NBu4]4[V10O26]. The mixture was dissolved in a minimum of acetone and diethyl ether was added to precipitate [NBu4]4[V10O26]. After filtration the solution was stored at 277 K, and about a week later, blue crystals of [NBu4]2[VO(mal)2] were obtained (21% yield, based on vanadium). IR (KBr, cm-1): 1637 (COO), 972 (VO) Analysis calculated for C38H76N2O9V: C 60.38, N 3.71, H 10.13, found: C 60.41, N 3.64, H 9.95%.

Computing details top

Data collection: EXPOSE (Stoe & Cie, 1997); cell refinement: CELL (Stoe & Cie, 1997); data reduction: INTEGRATE (Stoe & Cie, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON/PLUTON (Spek, 1990); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of the anion of (I), showing the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Bis(tetrabutylammonium) bis(malonato)oxovanadate(IV) top
Crystal data top
(C16H36N)2[VO(C3H2O4)2]Z = 2
Mr = 755.95F(000) = 826
Triclinic, P1Dx = 1.144 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6847 (9) ÅCell parameters from 8000 reflections
b = 13.3123 (13) Åθ = 2.0–25.9°
c = 17.1221 (15) ŵ = 0.28 mm1
α = 92.613 (11)°T = 223 K
β = 90.303 (11)°Block, blue
γ = 95.348 (11)°0.40 × 0.30 × 0.20 mm
V = 2195.5 (4) Å3
Data collection top
Stoe Image Plate Diffraction System
diffractometer
3112 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.127
Graphite monochromatorθmax = 25.9°, θmin = 2.0°
Detector resolution: 0.81Å pixels mm-1h = 1111
ϕ oscillation scansk = 1616
17277 measured reflectionsl = 2020
7920 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.183 w = 1/[σ2(Fo2) + (0.0859P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.76(Δ/σ)max < 0.001
7920 reflectionsΔρmax = 0.43 e Å3
471 parametersΔρmin = 0.56 e Å3
2 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0137 (17)
Crystal data top
(C16H36N)2[VO(C3H2O4)2]γ = 95.348 (11)°
Mr = 755.95V = 2195.5 (4) Å3
Triclinic, P1Z = 2
a = 9.6847 (9) ÅMo Kα radiation
b = 13.3123 (13) ŵ = 0.28 mm1
c = 17.1221 (15) ÅT = 223 K
α = 92.613 (11)°0.40 × 0.30 × 0.20 mm
β = 90.303 (11)°
Data collection top
Stoe Image Plate Diffraction System
diffractometer
3112 reflections with I > 2σ(I)
17277 measured reflectionsRint = 0.127
7920 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0682 restraints
wR(F2) = 0.183H-atom parameters constrained
S = 0.76Δρmax = 0.43 e Å3
7920 reflectionsΔρmin = 0.56 e Å3
471 parameters
Special details top

Experimental. The crystal did not diffract above ca 40° in 2θ and in one of the (n-Bu)4N+ cations a methyl group is disordered.

Image plate distance 70 mm, ϕ oscillation scans 0 - 200°, step Δϕ = 1°, 2θ range 3.27–52.1°, dmax-dmin = 12.45–0.81 Å.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
V10.66564 (9)0.73089 (5)0.22316 (4)0.0528 (3)
O10.5411 (4)0.7001 (2)0.16650 (16)0.0682 (9)
O20.6560 (3)0.6321 (2)0.30517 (15)0.0619 (9)
O30.8253 (3)0.6651 (2)0.18145 (16)0.0647 (9)
O40.5983 (3)0.8200 (2)0.30620 (15)0.0624 (9)
O50.7675 (3)0.8517 (2)0.18318 (15)0.0612 (8)
O60.6694 (4)0.4807 (2)0.35079 (17)0.0786 (11)
O70.9393 (4)0.5329 (2)0.14934 (18)0.0790 (11)
O80.5078 (4)0.9589 (2)0.34882 (17)0.0788 (11)
O90.7889 (5)1.0116 (3)0.1548 (2)0.1104 (15)
C10.8402 (6)0.5691 (4)0.1802 (2)0.0646 (14)
C20.7278 (6)0.5027 (3)0.2178 (2)0.0674 (14)
H2A0.75990.43550.22220.081*
H2B0.64640.49540.18310.081*
C30.6834 (5)0.5393 (3)0.2977 (2)0.0601 (13)
C40.5600 (5)0.9092 (3)0.2963 (2)0.0626 (13)
C50.5822 (6)0.9506 (4)0.2164 (3)0.0785 (16)
H5A0.56671.02230.21950.094*
H5B0.51230.91600.18050.094*
C60.7245 (6)0.9401 (4)0.1822 (2)0.0705 (15)
N10.4968 (4)0.7496 (2)0.53261 (17)0.0502 (9)
C110.4260 (5)0.8458 (3)0.5250 (2)0.0547 (12)
H11A0.48770.90250.54730.066*
H11B0.41420.85690.46930.066*
C120.2859 (5)0.8474 (3)0.5639 (2)0.0612 (13)
H12A0.29730.84710.62080.073*
H12B0.22560.78710.54670.073*
C130.2191 (6)0.9429 (4)0.5418 (3)0.0744 (15)
H13A0.28891.00110.54680.089*
H13B0.18850.93520.48710.089*
C140.0972 (7)0.9630 (5)0.5925 (3)0.0972 (19)
H14A0.03100.90350.59100.146*
H14B0.05321.01960.57320.146*
H14C0.12890.97860.64590.146*
C150.5125 (5)0.7253 (3)0.6180 (2)0.0577 (12)
H15A0.55230.66040.62010.069*
H15B0.42000.71690.64100.069*
C160.6024 (6)0.8037 (4)0.6683 (2)0.0655 (13)
H16A0.69770.80890.64890.079*
H16B0.56670.86990.66520.079*
C170.6012 (8)0.7729 (5)0.7526 (3)0.100 (2)
H17A0.68020.81220.77880.120*0.397 (12)
H17B0.51750.79670.77610.120*0.397 (12)
H17C0.65550.71450.75480.120*0.603 (12)
H17D0.65240.82810.78350.120*0.603 (12)
C18A0.6057 (18)0.6714 (11)0.7746 (8)0.105 (7)0.397 (12)
H18A0.59440.66820.83070.158*0.397 (12)
H18B0.69420.64800.75990.158*0.397 (12)
H18C0.53140.62880.74810.158*0.397 (12)
C18B0.4762 (10)0.7481 (7)0.7920 (4)0.081 (4)0.603 (12)
H18D0.42710.68860.76640.122*0.603 (12)
H18E0.41910.80410.79090.122*0.603 (12)
H18F0.49640.73440.84580.122*0.603 (12)
C190.4134 (5)0.6597 (3)0.4936 (2)0.0524 (11)
H19A0.46920.60200.49400.063*
H19B0.33120.64310.52540.063*
C200.3658 (5)0.6708 (3)0.4109 (2)0.0582 (12)
H20A0.29440.71830.41080.070*
H20B0.44420.69880.38030.070*
C210.3082 (6)0.5714 (4)0.3735 (3)0.0720 (15)
H21A0.38180.52560.37100.086*
H21B0.23450.54160.40660.086*
C220.2510 (7)0.5796 (5)0.2928 (3)0.109 (2)
H22A0.17510.62220.29500.164*
H22B0.21760.51290.27160.164*
H22C0.32330.60890.25960.164*
C230.6381 (5)0.7691 (3)0.4937 (2)0.0527 (11)
H23A0.62290.78270.43870.063*
H23B0.68700.83010.51860.063*
C240.7317 (5)0.6830 (3)0.4973 (2)0.0624 (13)
H24A0.74720.66710.55180.075*
H24B0.68800.62230.46930.075*
C250.8697 (6)0.7170 (4)0.4593 (3)0.0817 (16)
H25A0.85230.73700.40600.098*
H25B0.91400.77620.48900.098*
C260.9670 (7)0.6340 (5)0.4565 (4)0.115 (2)
H26A0.98460.61410.50920.172*
H26B1.05390.65850.43300.172*
H26C0.92490.57620.42560.172*
N21.0588 (4)0.7571 (2)0.01126 (18)0.0530 (10)
C310.9041 (5)0.7429 (3)0.0011 (2)0.0520 (12)
H31A0.88780.72300.05490.062*
H31B0.86570.68650.03370.062*
C320.8237 (6)0.8333 (3)0.0127 (3)0.0692 (15)
H32A0.84800.88620.02800.083*
H32B0.84900.86060.06340.083*
C330.6697 (6)0.8029 (4)0.0114 (3)0.0687 (14)
H33A0.64630.77250.03840.082*
H33B0.64620.75140.05330.082*
C340.5825 (6)0.8904 (4)0.0216 (3)0.0872 (17)
H34A0.59810.93860.02250.131*
H34B0.48520.86540.02430.131*
H34C0.60840.92330.06950.131*
C351.1257 (5)0.8400 (3)0.0433 (2)0.0609 (13)
H35A1.08340.90240.03380.073*
H35B1.22410.85120.03020.073*
C361.1145 (6)0.8204 (4)0.1303 (2)0.0744 (15)
H36A1.01860.79660.14240.089*
H36B1.17360.76740.14290.089*
C371.1579 (7)0.9143 (4)0.1792 (3)0.0940 (19)
H37A1.09550.96590.16830.113*
H37B1.25180.94010.16450.113*
C381.1560 (8)0.8966 (6)0.2670 (3)0.126 (3)
H38A1.06340.87060.28190.189*
H38B1.18230.95980.29600.189*
H38C1.22100.84800.27870.189*
C391.1139 (5)0.6570 (3)0.0027 (2)0.0585 (12)
H39A1.08750.63750.05550.070*
H39B1.06770.60610.03420.070*
C401.2683 (6)0.6535 (5)0.0050 (3)0.0916 (19)
H40A1.31610.69970.03470.110*
H40B1.29740.67630.05660.110*
C411.3106 (7)0.5460 (5)0.0049 (3)0.0931 (19)
H41A1.25230.49860.02960.112*
H41B1.40700.54350.01170.112*
C421.2974 (6)0.5127 (4)0.0866 (3)0.0813 (16)
H42A1.35570.55860.12100.122*
H42B1.32630.44500.08910.122*
H42C1.20160.51260.10280.122*
C431.0916 (5)0.7886 (3)0.0944 (2)0.0605 (13)
H43A1.06380.85690.09980.073*
H43B1.19220.79180.10140.073*
C441.0234 (5)0.7210 (3)0.1592 (2)0.0608 (13)
H44A0.92240.72050.15530.073*
H44B1.04760.65180.15370.073*
C451.0699 (6)0.7575 (4)0.2387 (2)0.0835 (17)
H45A1.04290.82590.24440.100*
H45B1.17130.76070.24130.100*
C461.0085 (7)0.6899 (4)0.3057 (3)0.0908 (18)
H46A1.04860.62570.30610.136*
H46B1.02860.72190.35460.136*
H46C0.90890.67860.29940.136*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0700 (6)0.0447 (4)0.0428 (4)0.0001 (4)0.0215 (4)0.0017 (3)
O10.073 (2)0.069 (2)0.0586 (18)0.0140 (17)0.0076 (17)0.0012 (15)
O20.093 (3)0.0441 (17)0.0495 (16)0.0074 (16)0.0318 (15)0.0045 (13)
O30.085 (3)0.0496 (19)0.0599 (18)0.0073 (16)0.0361 (16)0.0048 (14)
O40.095 (3)0.0485 (18)0.0454 (16)0.0115 (17)0.0270 (15)0.0034 (13)
O50.073 (2)0.054 (2)0.0560 (17)0.0006 (16)0.0253 (15)0.0053 (14)
O60.121 (3)0.0517 (19)0.065 (2)0.0082 (19)0.0328 (19)0.0170 (16)
O70.098 (3)0.063 (2)0.080 (2)0.024 (2)0.044 (2)0.0063 (17)
O80.115 (3)0.061 (2)0.0634 (19)0.026 (2)0.0292 (19)0.0040 (16)
O90.167 (5)0.055 (2)0.106 (3)0.019 (2)0.053 (3)0.019 (2)
C10.091 (4)0.053 (3)0.051 (3)0.008 (3)0.030 (3)0.003 (2)
C20.089 (4)0.054 (3)0.059 (3)0.004 (3)0.032 (3)0.000 (2)
C30.080 (4)0.048 (3)0.052 (3)0.002 (2)0.022 (2)0.005 (2)
C40.091 (4)0.049 (3)0.049 (2)0.010 (3)0.016 (2)0.002 (2)
C50.120 (5)0.064 (3)0.056 (3)0.029 (3)0.019 (3)0.012 (2)
C60.114 (5)0.044 (3)0.051 (3)0.006 (3)0.017 (3)0.004 (2)
N10.070 (3)0.0409 (19)0.0403 (17)0.0070 (17)0.0157 (17)0.0032 (14)
C110.069 (4)0.045 (3)0.051 (2)0.012 (2)0.012 (2)0.0056 (19)
C120.066 (4)0.062 (3)0.056 (3)0.011 (3)0.015 (2)0.004 (2)
C130.084 (4)0.070 (3)0.073 (3)0.028 (3)0.008 (3)0.004 (3)
C140.107 (5)0.100 (4)0.092 (4)0.047 (4)0.018 (3)0.000 (3)
C150.077 (4)0.050 (3)0.048 (2)0.013 (2)0.017 (2)0.011 (2)
C160.080 (4)0.063 (3)0.054 (3)0.005 (3)0.009 (2)0.002 (2)
C170.141 (7)0.098 (5)0.056 (3)0.016 (4)0.000 (4)0.004 (3)
C18A0.117 (15)0.126 (15)0.079 (10)0.024 (11)0.013 (9)0.043 (9)
C18B0.086 (8)0.107 (8)0.045 (4)0.021 (6)0.002 (4)0.001 (4)
C190.056 (3)0.046 (2)0.054 (2)0.002 (2)0.012 (2)0.0034 (19)
C200.067 (4)0.057 (3)0.049 (2)0.001 (2)0.017 (2)0.001 (2)
C210.079 (4)0.061 (3)0.073 (3)0.004 (3)0.020 (3)0.014 (2)
C220.138 (6)0.123 (5)0.055 (3)0.038 (4)0.011 (3)0.023 (3)
C230.054 (3)0.051 (3)0.053 (2)0.003 (2)0.015 (2)0.0069 (19)
C240.067 (4)0.067 (3)0.054 (3)0.011 (3)0.013 (2)0.004 (2)
C250.062 (4)0.095 (4)0.087 (4)0.010 (3)0.010 (3)0.013 (3)
C260.080 (5)0.139 (6)0.128 (5)0.038 (4)0.011 (4)0.029 (4)
N20.063 (3)0.049 (2)0.0470 (19)0.0023 (18)0.0178 (17)0.0106 (16)
C310.062 (4)0.049 (3)0.047 (2)0.006 (2)0.014 (2)0.0100 (19)
C320.098 (5)0.055 (3)0.058 (3)0.017 (3)0.025 (3)0.009 (2)
C330.070 (4)0.083 (4)0.055 (3)0.019 (3)0.012 (2)0.001 (2)
C340.092 (5)0.094 (4)0.082 (3)0.041 (4)0.013 (3)0.001 (3)
C350.064 (4)0.056 (3)0.061 (3)0.002 (2)0.014 (2)0.003 (2)
C360.077 (4)0.089 (4)0.053 (3)0.008 (3)0.009 (2)0.005 (3)
C370.109 (5)0.105 (5)0.065 (3)0.001 (4)0.003 (3)0.013 (3)
C380.132 (7)0.169 (7)0.073 (4)0.001 (5)0.006 (4)0.020 (4)
C390.070 (4)0.056 (3)0.052 (2)0.016 (2)0.014 (2)0.014 (2)
C400.088 (5)0.106 (5)0.089 (4)0.032 (4)0.039 (3)0.043 (3)
C410.101 (5)0.119 (5)0.066 (3)0.049 (4)0.014 (3)0.001 (3)
C420.092 (5)0.074 (4)0.079 (3)0.010 (3)0.003 (3)0.000 (3)
C430.072 (4)0.061 (3)0.050 (2)0.005 (2)0.026 (2)0.015 (2)
C440.077 (4)0.060 (3)0.046 (2)0.008 (2)0.022 (2)0.006 (2)
C450.110 (5)0.087 (4)0.050 (3)0.011 (3)0.020 (3)0.008 (3)
C460.108 (5)0.106 (4)0.059 (3)0.009 (4)0.021 (3)0.006 (3)
Geometric parameters (Å, º) top
V1—O11.556 (3)C16—C171.519 (6)
V1—O21.964 (3)C17—C18B1.408 (9)
V1—O31.968 (3)C17—C18A1.423 (13)
V1—O41.964 (3)C19—C201.504 (5)
V1—O51.960 (3)C20—C211.501 (6)
O2—C31.288 (5)C21—C221.498 (7)
O3—C11.299 (5)C23—C241.530 (6)
O4—C41.294 (5)C24—C251.529 (7)
O5—C61.284 (5)C25—C261.518 (8)
O6—C31.225 (5)N2—C351.509 (5)
O7—C11.225 (5)N2—C391.509 (5)
O8—C41.231 (5)N2—C311.509 (5)
O9—C61.204 (5)N2—C431.529 (5)
C1—C21.503 (6)C31—C321.520 (6)
C2—C31.509 (5)C32—C331.509 (7)
C4—C51.505 (6)C33—C341.517 (7)
C5—C61.516 (7)C35—C361.526 (6)
N1—C191.508 (5)C36—C371.498 (7)
N1—C111.517 (5)C37—C381.531 (7)
N1—C151.521 (5)C39—C401.508 (7)
N1—C231.531 (5)C40—C411.541 (8)
C11—C121.516 (6)C41—C421.490 (7)
C12—C131.540 (6)C43—C441.505 (6)
C13—C141.505 (7)C44—C451.524 (6)
C15—C161.527 (6)C45—C461.509 (7)
O1—V1—O5107.29 (15)C15—N1—C23111.4 (3)
O1—V1—O4106.85 (16)C12—C11—N1115.7 (3)
O5—V1—O486.95 (12)C11—C12—C13109.4 (4)
O1—V1—O2106.86 (16)C14—C13—C12112.5 (4)
O5—V1—O2145.85 (14)N1—C15—C16115.5 (4)
O4—V1—O283.42 (11)C17—C16—C15109.7 (4)
O1—V1—O3107.11 (15)C18B—C17—C18A74.2 (8)
O5—V1—O382.72 (13)C18B—C17—C16121.6 (6)
O4—V1—O3146.04 (14)C18A—C17—C16123.5 (8)
O2—V1—O387.22 (12)C20—C19—N1116.7 (3)
C3—O2—V1126.7 (2)C21—C20—C19111.6 (4)
C1—O3—V1126.3 (3)C22—C21—C20113.7 (4)
C4—O4—V1125.0 (3)C24—C23—N1115.1 (4)
C6—O5—V1126.1 (3)C25—C24—C23108.0 (4)
O7—C1—O3122.5 (4)C26—C25—C24111.7 (5)
O7—C1—C2120.8 (4)C35—N2—C39111.5 (3)
O3—C1—C2116.7 (4)C35—N2—C31110.9 (3)
C1—C2—C3115.7 (4)C39—N2—C31106.8 (3)
O6—C3—O2123.1 (4)C35—N2—C43106.7 (3)
O6—C3—C2120.1 (4)C39—N2—C43110.3 (3)
O2—C3—C2116.8 (4)C31—N2—C43110.8 (3)
O8—C4—O4122.5 (4)N2—C31—C32116.6 (4)
O8—C4—C5120.7 (4)C33—C32—C31110.4 (4)
O4—C4—C5116.7 (4)C32—C33—C34113.4 (5)
C4—C5—C6115.1 (4)N2—C35—C36115.6 (4)
O9—C6—O5123.9 (5)C37—C36—C35111.1 (4)
O9—C6—C5120.1 (5)C36—C37—C38112.8 (5)
O5—C6—C5116.0 (4)C40—C39—N2116.3 (4)
C19—N1—C11111.6 (3)C39—C40—C41111.4 (5)
C19—N1—C15106.2 (3)C42—C41—C40113.4 (4)
C11—N1—C15111.1 (3)C44—C43—N2115.9 (4)
C19—N1—C23110.9 (3)C43—C44—C45110.7 (4)
C11—N1—C23105.7 (3)C46—C45—C44112.7 (4)
O1—V1—O2—C372.1 (4)C19—N1—C15—C16176.2 (4)
O5—V1—O2—C3107.6 (4)C11—N1—C15—C1662.3 (5)
O4—V1—O2—C3177.8 (4)C23—N1—C15—C1655.3 (5)
O3—V1—O2—C334.9 (4)N1—C15—C16—C17176.4 (4)
O1—V1—O3—C170.2 (4)C15—C16—C17—C18B51.7 (8)
O5—V1—O3—C1176.1 (4)C15—C16—C17—C18A39.6 (12)
O4—V1—O3—C1110.5 (4)C11—N1—C19—C2050.3 (5)
O2—V1—O3—C136.6 (4)C15—N1—C19—C20171.6 (4)
O1—V1—O4—C466.6 (4)C23—N1—C19—C2067.2 (5)
O5—V1—O4—C440.5 (4)N1—C19—C20—C21169.1 (4)
O2—V1—O4—C4172.3 (4)C19—C20—C21—C22176.3 (4)
O3—V1—O4—C4112.7 (4)C19—N1—C23—C2461.3 (4)
O1—V1—O5—C669.0 (4)C11—N1—C23—C24177.5 (3)
O4—V1—O5—C637.7 (4)C15—N1—C23—C2456.8 (4)
O2—V1—O5—C6111.3 (4)N1—C23—C24—C25177.4 (3)
O3—V1—O5—C6174.7 (4)C23—C24—C25—C26177.1 (4)
V1—O3—C1—O7175.9 (4)C35—N2—C31—C3260.5 (4)
V1—O3—C1—C23.3 (6)C39—N2—C31—C32177.8 (3)
O7—C1—C2—C3133.7 (5)C43—N2—C31—C3257.8 (4)
O3—C1—C2—C347.1 (6)N2—C31—C32—C33170.5 (3)
V1—O2—C3—O6176.8 (4)C31—C32—C33—C34177.7 (4)
V1—O2—C3—C20.2 (6)C39—N2—C35—C3655.4 (5)
C1—C2—C3—O6134.0 (5)C31—N2—C35—C3663.4 (5)
C1—C2—C3—O248.9 (7)C43—N2—C35—C36175.8 (4)
V1—O4—C4—O8173.9 (4)N2—C35—C36—C37168.5 (4)
V1—O4—C4—C56.2 (7)C35—C36—C37—C38176.8 (5)
O8—C4—C5—C6132.8 (5)C35—N2—C39—C4057.7 (5)
O4—C4—C5—C647.1 (7)C31—N2—C39—C40179.0 (4)
V1—O5—C6—O9177.6 (4)C43—N2—C39—C4060.6 (5)
V1—O5—C6—C50.9 (6)N2—C39—C40—C41176.0 (4)
C4—C5—C6—O9131.4 (5)C39—C40—C41—C4270.8 (7)
C4—C5—C6—O550.1 (6)C35—N2—C43—C44174.5 (4)
C19—N1—C11—C1262.8 (4)C39—N2—C43—C4464.2 (5)
C15—N1—C11—C1255.6 (5)C31—N2—C43—C4453.7 (5)
C23—N1—C11—C12176.5 (3)N2—C43—C44—C45177.1 (4)
N1—C11—C12—C13172.5 (4)C43—C44—C45—C46177.8 (5)
C11—C12—C13—C14166.3 (4)

Experimental details

Crystal data
Chemical formula(C16H36N)2[VO(C3H2O4)2]
Mr755.95
Crystal system, space groupTriclinic, P1
Temperature (K)223
a, b, c (Å)9.6847 (9), 13.3123 (13), 17.1221 (15)
α, β, γ (°)92.613 (11), 90.303 (11), 95.348 (11)
V3)2195.5 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerStoe Image Plate Diffraction System
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
17277, 7920, 3112
Rint0.127
(sin θ/λ)max1)0.614
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.183, 0.76
No. of reflections7920
No. of parameters471
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.56

Computer programs: EXPOSE (Stoe & Cie, 1997), CELL (Stoe & Cie, 1997), INTEGRATE (Stoe & Cie, 1997), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), PLATON/PLUTON (Spek, 1990), SHELXL97.

Selected geometric parameters (Å, º) top
V1—O11.556 (3)V1—O41.964 (3)
V1—O21.964 (3)V1—O51.960 (3)
V1—O31.968 (3)
O1—V1—O5107.29 (15)O4—V1—O283.42 (11)
O1—V1—O4106.85 (16)O1—V1—O3107.11 (15)
O5—V1—O486.95 (12)O5—V1—O382.72 (13)
O1—V1—O2106.86 (16)O4—V1—O3146.04 (14)
O5—V1—O2145.85 (14)O2—V1—O387.22 (12)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds