Download citation
Download citation
link to html
The title compound, C23H28N2O5, contains a linear intramol­ecular hydrogen bond between the hydroxy group and the carbonyl O atom of the amide moiety. The phthal­imide ring system is planar. Two short C—H...O contacts link the mol­ecules to form highly indented layers parallel to the ab plane.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802006736/na6155sup1.cif
Contains datablocks 3, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802006736/na61553sup2.hkl
Contains datablock 3

CCDC reference: 185798

Key indicators

  • Single-crystal X-ray study
  • T = 143 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.053
  • wR factor = 0.110
  • Data-to-parameter ratio = 10.3

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

REFLT_03 From the CIF: _diffrn_reflns_theta_max 27.52 From the CIF: _reflns_number_total 2895 Count of symmetry unique reflns 2900 Completeness (_total/calc) 99.83% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.

Comment top

In a continuation of our interest in the synthesis of chiral tetrahydroisoquinolines as alkaloid analogues (Faltz et al., 1997; Faltz & Liebscher, 1998), we attempted to synthesize alternative precursors, such as (4), by reaction of o-lithiated 1,2-dimethoxybenzene, (1), with phthalimido-protected alanine amides, (2). The outcome of the reaction depends on the substituents R1 and R2 attached to the amide N atom. If the diethylamide (2) (R1 = R2 = Et) was used, the attack of lithiated (1) occurred at the phthalimido carbonyl group affording (3), whereas the Weinreb amide (2) (R1 = Me, R2 = OMe) reacted at the amide carbonyl group to form the ketone (4). The configuration of the new stereogenic center in (3) was established by this X-ray crystal analysis.

An analogous introduction of organic substituents to the phthalimido group has been reported at phthalimido-substituted α-amino esters (Wittig et al., 1955; Shklyaev et al., 1984; Griesbeck & Oelgemoeller, 1999). These products are of pharmaceutical interest (Dugger et al. 1979).

The structure of (3) is shown in Fig. 1. The molecule displays a linear intramolecular hydrogen bond between the hydroxy group and the carbonyl O atom of the amide moiety. The phthalimide ring system is planar (mean deviation of ninr atoms = 0.019 Å).

Apart from the intramolecular hydrogen bond, two short C—H···O contacts link the molecules to form highly indented layers parallel to the ab plane (Fig. 2).

Experimental top

For the preparation of compound (3), n-BuLi (1.6M in hexane, 0.0033 mol) was added to a solution of 1,2-dimethoxybenzene (0.414 g, 0.003 mol) in dry tetrahydrofuran (THF; 15 ml) at 273 K. In order to complete the ortho-lithiation of 1,2-dimethoxybenzene, the solution was allowed to stand at room temperature for 20 h. After cooling to 273 K, (2S)-2-(1,3-dioxo-1,3-dihydroisoindol-2-yl)-N,N-diethylpropanamide, (2) (R1 = R2 = Et) (0.822 g, 0.003 mol), was added. The mixture was allowed to react at room temperature for 2 h, was then hydrolyzed with water (about 2 ml) and extracted twice with Et2O. The combined organic layers were washed with dilute hydrochloric acid (1 M), dried with Na2SO4 and concentrated under vacuum. The remainder was dissolved in a small amount of hexane/ethyl acetate (1:1). After standing in the open air overnight, the product crystallized in analytically pure form; a crystal suitable for X-ray measurements was selected directly from the main product without further recrystallization. M.p. 455–456 K; [α]20D +189.5°; 1H NMR (CDCl3, p.p.m., δ): 1.09 (m, 6H, 2CH3CH2), 1.38 (t, J = 7.2 Hz, 3H, CH3—CH), 2.90 (s, 3H, CH3O), 3.44 (m, 4H, 2CH3CH2), 3.74 (s, 3H, CH3O), 5.44 (q, J = 7.2 Hz, 1H, CH), 6.87–7.83 (m, 7H, C6H4, C6H3), 8.17 (s, 1H, OH); 13C NMR (CDCl3, p.p.m., δ): 12.8 (CH), 14.1 (CH3), 15.1 (CH3), 41.5 (CH2), 43.0 (CH2), 50.2 (CH), 55.7 (CH3), 59.0 (CH3), 88.7 (C), 112.9 (CH), 120.3 (CH), 121.7 (CH), 122.2 (CH), 123.2 (CH), 128.1 (CH), 130.0 (C), 135.6 (C), 136.6 (CH), 146.2 (C), 151.7 (C), 152.7 (C), 169.3 (C), 174.2 (C). Spectral data for 2-[2-(2,3-dimethoxyphenyl)-1-methyl-2-oxoethyl]isoindole-1,3-dione, (4): 1H NMR (CDCl3, p.p.m., δ): 1.15 (t, J = 7.2 Hz, 3H), 3.54 (s, 3H), 3.75 (s, 3H), 4.01 (q, J = 7.2 Hz, 1H), 6.78–8.05 (m, 7H); [α]20D +0.55°, i.e. partially racemized.

Refinement top

The hydroxyl H atom was refined freely. Methyl H atoms were identified in difference syntheses, idealized and refined as rigid groups allowed to rotate but not tip. Other H atoms were included using a riding model. No Friedel opposite reflections were measured because the Friedel differences must be insignificant. The Flack parameter is therefore indeterminate. To improve stability of refinement, the displacement factors were restrained using the SHELXL commands DELU and SIMU.

Computing details top

Data collection: DIF4 (Stoe & Cie, 1992); cell refinement: DIF4; data reduction: REDU4 (Stoe & Cie, 1992); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecule of the title compound in the crystal. Ellipsoids represent 50% probability levels.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed parallel to the c axis. Hydrogen bonds are indicated by dashed lines. There are two such layers per c axis repeat, related by the 21 axis parallel to a.
(2S,1'S)-2-[1-(2,3-Dimethoxyphenyl)-1-hydroxy-3-oxo-1,3-dihydroisoindol- 2-yl]-N,N-diethylpropionamide top
Crystal data top
C23H28N2O5Dx = 1.225 Mg m3
Mr = 412.47Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 52 reflections
a = 10.921 (2) Åθ = 10–11.5°
b = 12.905 (3) ŵ = 0.09 mm1
c = 15.868 (4) ÅT = 143 K
V = 2236.4 (9) Å3Flattened octahedron, colourless
Z = 40.4 × 0.4 × 0.3 mm
F(000) = 880
Data collection top
Stoe STADI-4
diffractometer
Rint = 0.000
Radiation source: fine-focus sealed tubeθmax = 27.5°, θmin = 3.0°
Graphite monochromatorh = 140
ω/θ scansk = 160
2895 measured reflectionsl = 200
2895 independent reflections3 standard reflections every 60 min
2188 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0301P)2 + 0.7278P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
2895 reflectionsΔρmax = 0.19 e Å3
281 parametersΔρmin = 0.18 e Å3
271 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0069 (8)
Crystal data top
C23H28N2O5V = 2236.4 (9) Å3
Mr = 412.47Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.921 (2) ŵ = 0.09 mm1
b = 12.905 (3) ÅT = 143 K
c = 15.868 (4) Å0.4 × 0.4 × 0.3 mm
Data collection top
Stoe STADI-4
diffractometer
Rint = 0.000
2895 measured reflections3 standard reflections every 60 min
2895 independent reflections intensity decay: 1%
2188 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.053271 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.19 e Å3
2895 reflectionsΔρmin = 0.18 e Å3
281 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2121 (3)0.3099 (2)0.50412 (18)0.0278 (7)
H10.16640.25500.53560.033*
C20.1212 (3)0.3668 (3)0.4477 (2)0.0346 (7)
H2A0.05740.39870.48250.042*
H2B0.08360.31760.40840.042*
H2C0.16420.42070.41580.042*
C30.3104 (3)0.2563 (2)0.44967 (19)0.0316 (7)
C40.3776 (3)0.1148 (3)0.3612 (2)0.0471 (9)
H4A0.37970.03900.37100.056*
H4B0.46000.14270.37370.056*
C50.3470 (4)0.1352 (4)0.2703 (2)0.0620 (12)
H5A0.26340.11150.25860.074*
H5B0.40460.09780.23400.074*
H5C0.35290.20970.25890.074*
C60.1828 (3)0.0975 (3)0.4426 (2)0.0449 (9)
H6A0.15790.05500.39350.054*
H6B0.11310.14280.45770.054*
C70.2113 (4)0.0263 (3)0.5165 (3)0.0613 (12)
H7A0.28140.01780.50240.074*
H7B0.13990.01730.52850.074*
H7C0.23080.06810.56630.074*
C110.3881 (3)0.5027 (2)0.63213 (18)0.0282 (6)
C120.4005 (3)0.4114 (3)0.67604 (19)0.0301 (7)
C130.4696 (3)0.4056 (3)0.7496 (2)0.0395 (8)
H130.47850.34220.77940.047*
C140.5250 (3)0.4957 (3)0.7777 (2)0.0475 (9)
H140.57190.49460.82810.057*
C150.5129 (3)0.5872 (3)0.7330 (2)0.0465 (9)
H150.55340.64770.75270.056*
C160.4427 (3)0.5925 (3)0.6599 (2)0.0378 (8)
H160.43290.65600.63030.045*
C170.3083 (3)0.4862 (2)0.55451 (18)0.0270 (6)
C180.3322 (3)0.3296 (2)0.63104 (18)0.0267 (7)
C210.2016 (3)0.5627 (2)0.55357 (19)0.0282 (6)
C220.1213 (3)0.5684 (2)0.62133 (19)0.0288 (7)
C230.0268 (3)0.6424 (3)0.6209 (2)0.0387 (8)
C240.0181 (3)0.7127 (3)0.5553 (2)0.0488 (9)
H240.04360.76460.55600.059*
C250.0991 (4)0.7074 (3)0.4892 (2)0.0528 (10)
H250.09270.75550.44410.063*
C260.1894 (3)0.6330 (3)0.4877 (2)0.0412 (8)
H260.24400.62970.44110.049*
C270.1520 (4)0.5374 (3)0.76851 (19)0.0453 (10)
H27A0.22060.58640.76710.054*
H27B0.17150.48030.80700.054*
H27C0.07810.57310.78820.054*
C280.1497 (4)0.7099 (4)0.6912 (3)0.0775 (15)
H28A0.11660.78050.69300.093*
H28B0.19920.69740.74170.093*
H28C0.20080.70170.64090.093*
N10.2730 (2)0.37620 (19)0.56566 (15)0.0251 (5)
N20.2880 (3)0.1622 (2)0.41888 (17)0.0370 (7)
O10.4070 (2)0.30355 (18)0.43292 (14)0.0382 (6)
O20.3777 (2)0.4995 (2)0.47987 (13)0.0344 (5)
H20.394 (4)0.432 (3)0.463 (3)0.083 (16)*
O30.3280 (2)0.23709 (16)0.64681 (14)0.0378 (6)
O40.13140 (19)0.49712 (17)0.68540 (12)0.0310 (5)
O50.0513 (2)0.63737 (19)0.68843 (16)0.0472 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0255 (15)0.0316 (16)0.0264 (15)0.0004 (14)0.0033 (13)0.0038 (13)
C20.0283 (16)0.0437 (18)0.0318 (16)0.0033 (15)0.0057 (15)0.0038 (15)
C30.0294 (16)0.0384 (17)0.0269 (15)0.0045 (15)0.0036 (15)0.0033 (14)
C40.040 (2)0.048 (2)0.053 (2)0.0086 (19)0.0002 (19)0.0218 (18)
C50.055 (3)0.082 (3)0.049 (2)0.003 (3)0.007 (2)0.018 (2)
C60.0379 (18)0.0425 (19)0.054 (2)0.0066 (17)0.0081 (19)0.0157 (18)
C70.056 (3)0.051 (2)0.077 (3)0.009 (2)0.002 (2)0.005 (2)
C110.0227 (15)0.0335 (15)0.0285 (14)0.0045 (14)0.0036 (13)0.0057 (14)
C120.0248 (16)0.0384 (17)0.0270 (15)0.0035 (14)0.0002 (13)0.0026 (14)
C130.0353 (19)0.054 (2)0.0297 (16)0.0070 (18)0.0094 (16)0.0046 (16)
C140.0337 (19)0.070 (2)0.0391 (19)0.005 (2)0.0097 (16)0.0171 (19)
C150.0342 (19)0.056 (2)0.049 (2)0.0083 (19)0.0006 (18)0.0192 (19)
C160.0335 (18)0.0383 (18)0.0417 (19)0.0062 (16)0.0007 (16)0.0054 (16)
C170.0288 (15)0.0284 (15)0.0238 (13)0.0001 (13)0.0049 (13)0.0021 (13)
C180.0239 (15)0.0326 (16)0.0236 (14)0.0037 (14)0.0006 (13)0.0003 (13)
C210.0314 (16)0.0264 (14)0.0269 (14)0.0020 (13)0.0015 (14)0.0009 (13)
C220.0283 (16)0.0291 (15)0.0289 (15)0.0006 (14)0.0030 (14)0.0019 (13)
C230.0318 (17)0.0415 (19)0.0428 (18)0.0011 (16)0.0027 (16)0.0052 (16)
C240.042 (2)0.0429 (19)0.061 (2)0.0169 (18)0.002 (2)0.0082 (19)
C250.052 (2)0.053 (2)0.054 (2)0.014 (2)0.001 (2)0.024 (2)
C260.039 (2)0.0441 (19)0.0400 (18)0.0040 (17)0.0040 (17)0.0130 (16)
C270.053 (3)0.055 (2)0.0282 (17)0.003 (2)0.0005 (17)0.0058 (16)
C280.051 (3)0.077 (3)0.105 (4)0.027 (3)0.024 (3)0.004 (3)
N10.0270 (12)0.0279 (13)0.0204 (12)0.0003 (11)0.0018 (11)0.0002 (11)
N20.0328 (15)0.0399 (15)0.0383 (15)0.0026 (13)0.0001 (13)0.0105 (13)
O10.0322 (12)0.0416 (13)0.0410 (13)0.0014 (11)0.0079 (11)0.0072 (11)
O20.0371 (13)0.0374 (12)0.0285 (11)0.0004 (12)0.0108 (10)0.0043 (11)
O30.0454 (14)0.0316 (12)0.0365 (12)0.0024 (11)0.0065 (11)0.0062 (10)
O40.0319 (12)0.0353 (11)0.0259 (10)0.0000 (11)0.0019 (9)0.0010 (10)
O50.0394 (14)0.0505 (15)0.0519 (14)0.0111 (13)0.0115 (12)0.0074 (13)
Geometric parameters (Å, º) top
C1—N11.459 (4)C14—C151.384 (5)
C1—C21.526 (4)C14—H140.9500
C1—C31.542 (4)C15—C161.391 (5)
C1—H11.0000C15—H150.9500
C2—H2A0.9800C16—H160.9500
C2—H2B0.9800C17—O21.416 (3)
C2—H2C0.9800C17—N11.481 (4)
C3—O11.247 (4)C17—C211.528 (4)
C3—N21.332 (4)C18—O31.221 (3)
C4—N21.472 (4)C18—N11.362 (4)
C4—C51.505 (5)C21—C221.389 (4)
C4—H4A0.9900C21—C261.391 (4)
C4—H4B0.9900C22—O41.375 (4)
C5—H5A0.9800C22—C231.406 (4)
C5—H5B0.9800C23—O51.371 (4)
C5—H5C0.9800C23—C241.384 (5)
C6—N21.469 (4)C24—C251.374 (5)
C6—C71.522 (5)C24—H240.9500
C6—H6A0.9900C25—C261.377 (5)
C6—H6B0.9900C25—H250.9500
C7—H7A0.9800C26—H260.9500
C7—H7B0.9800C27—O41.436 (4)
C7—H7C0.9800C27—H27A0.9800
C11—C121.376 (4)C27—H27B0.9800
C11—C161.376 (4)C27—H27C0.9800
C11—C171.523 (4)C28—O51.426 (4)
C12—C131.392 (4)C28—H28A0.9800
C12—C181.476 (4)C28—H28B0.9800
C13—C141.384 (5)C28—H28C0.9800
C13—H130.9500O2—H20.94 (4)
N1—C1—C2114.0 (2)C16—C15—H15119.3
N1—C1—C3108.7 (2)C11—C16—C15117.7 (3)
C2—C1—C3109.9 (2)C11—C16—H16121.2
N1—C1—H1108.0C15—C16—H16121.2
C2—C1—H1108.0O2—C17—N1110.8 (2)
C3—C1—H1108.0O2—C17—C11110.7 (2)
C1—C2—H2A109.5N1—C17—C11100.7 (2)
C1—C2—H2B109.5O2—C17—C21108.7 (2)
H2A—C2—H2B109.5N1—C17—C21114.9 (2)
C1—C2—H2C109.5C11—C17—C21110.7 (2)
H2A—C2—H2C109.5O3—C18—N1124.8 (3)
H2B—C2—H2C109.5O3—C18—C12128.2 (3)
O1—C3—N2121.5 (3)N1—C18—C12107.0 (3)
O1—C3—C1119.3 (3)C22—C21—C26119.2 (3)
N2—C3—C1119.1 (3)C22—C21—C17120.6 (3)
N2—C4—C5112.0 (3)C26—C21—C17120.1 (3)
N2—C4—H4A109.2O4—C22—C21119.1 (3)
C5—C4—H4A109.2O4—C22—C23121.1 (3)
N2—C4—H4B109.2C21—C22—C23119.7 (3)
C5—C4—H4B109.2O5—C23—C24125.2 (3)
H4A—C4—H4B107.9O5—C23—C22114.9 (3)
C4—C5—H5A109.5C24—C23—C22120.0 (3)
C4—C5—H5B109.5C25—C24—C23119.8 (3)
H5A—C5—H5B109.5C25—C24—H24120.1
C4—C5—H5C109.5C23—C24—H24120.1
H5A—C5—H5C109.5C24—C25—C26120.7 (3)
H5B—C5—H5C109.5C24—C25—H25119.7
N2—C6—C7112.4 (3)C26—C25—H25119.7
N2—C6—H6A109.1C25—C26—C21120.6 (3)
C7—C6—H6A109.1C25—C26—H26119.7
N2—C6—H6B109.1C21—C26—H26119.7
C7—C6—H6B109.1O4—C27—H27A109.5
H6A—C6—H6B107.9O4—C27—H27B109.5
C6—C7—H7A109.5H27A—C27—H27B109.5
C6—C7—H7B109.5O4—C27—H27C109.5
H7A—C7—H7B109.5H27A—C27—H27C109.5
C6—C7—H7C109.5H27B—C27—H27C109.5
H7A—C7—H7C109.5O5—C28—H28A109.5
H7B—C7—H7C109.5O5—C28—H28B109.5
C12—C11—C16121.1 (3)H28A—C28—H28B109.5
C12—C11—C17110.2 (3)O5—C28—H28C109.5
C16—C11—C17128.7 (3)H28A—C28—H28C109.5
C11—C12—C13121.6 (3)H28B—C28—H28C109.5
C11—C12—C18108.5 (3)C18—N1—C1117.8 (2)
C13—C12—C18129.9 (3)C18—N1—C17113.0 (2)
C14—C13—C12117.5 (3)C1—N1—C17126.9 (2)
C14—C13—H13121.2C3—N2—C6124.6 (3)
C12—C13—H13121.2C3—N2—C4119.0 (3)
C15—C14—C13120.7 (3)C6—N2—C4116.3 (3)
C15—C14—H14119.7C17—O2—H2104 (3)
C13—C14—H14119.7C22—O4—C27116.7 (2)
C14—C15—C16121.4 (3)C23—O5—C28117.5 (3)
C14—C15—H15119.3
N1—C1—C3—O133.8 (4)C21—C22—C23—O5176.4 (3)
C2—C1—C3—O191.6 (3)O4—C22—C23—C24179.5 (3)
N1—C1—C3—N2148.9 (3)C21—C22—C23—C243.5 (5)
C2—C1—C3—N285.8 (3)O5—C23—C24—C25177.3 (3)
C16—C11—C12—C130.8 (5)C22—C23—C24—C252.5 (5)
C17—C11—C12—C13179.8 (3)C23—C24—C25—C260.3 (6)
C16—C11—C12—C18180.0 (3)C24—C25—C26—C210.9 (6)
C17—C11—C12—C180.5 (3)C22—C21—C26—C250.1 (5)
C11—C12—C13—C140.6 (5)C17—C21—C26—C25175.1 (3)
C18—C12—C13—C14179.6 (3)O3—C18—N1—C17.6 (5)
C12—C13—C14—C150.9 (5)C12—C18—N1—C1171.8 (2)
C13—C14—C15—C161.6 (6)O3—C18—N1—C17171.8 (3)
C12—C11—C16—C151.3 (5)C12—C18—N1—C177.5 (3)
C17—C11—C16—C15179.3 (3)C2—C1—N1—C18164.5 (3)
C14—C15—C16—C111.7 (5)C3—C1—N1—C1872.6 (3)
C12—C11—C17—O2113.7 (3)C2—C1—N1—C1733.7 (4)
C16—C11—C17—O266.9 (4)C3—C1—N1—C1789.2 (3)
C12—C11—C17—N13.6 (3)O2—C17—N1—C18110.3 (3)
C16—C11—C17—N1175.8 (3)C11—C17—N1—C186.9 (3)
C12—C11—C17—C21125.6 (3)C21—C17—N1—C18125.9 (3)
C16—C11—C17—C2153.8 (4)O2—C17—N1—C152.2 (4)
C11—C12—C18—O3174.5 (3)C11—C17—N1—C1169.4 (3)
C13—C12—C18—O34.7 (6)C21—C17—N1—C171.6 (4)
C11—C12—C18—N14.9 (3)O1—C3—N2—C6173.4 (3)
C13—C12—C18—N1176.0 (3)C1—C3—N2—C69.3 (4)
O2—C17—C21—C22177.7 (3)O1—C3—N2—C42.3 (5)
N1—C17—C21—C2257.5 (4)C1—C3—N2—C4175.0 (3)
C11—C17—C21—C2255.8 (4)C7—C6—N2—C391.1 (4)
O2—C17—C21—C262.8 (4)C7—C6—N2—C484.7 (4)
N1—C17—C21—C26127.6 (3)C5—C4—N2—C393.6 (4)
C11—C17—C21—C26119.1 (3)C5—C4—N2—C690.4 (4)
C26—C21—C22—O4178.3 (3)C21—C22—O4—C27121.9 (3)
C17—C21—C22—O46.7 (4)C23—C22—O4—C2762.0 (4)
C26—C21—C22—C232.2 (5)C24—C23—O5—C280.4 (5)
C17—C21—C22—C23177.2 (3)C22—C23—O5—C28179.5 (3)
O4—C22—C23—O50.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.94 (4)1.72 (4)2.656 (3)173 (4)
C15—H15···O3i0.952.363.224 (4)152
C28—H28B···O3ii0.982.323.244 (5)157
C4—H4A···O5iii0.992.583.437 (4)145
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+1/2, z+3/2; (iii) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC23H28N2O5
Mr412.47
Crystal system, space groupOrthorhombic, P212121
Temperature (K)143
a, b, c (Å)10.921 (2), 12.905 (3), 15.868 (4)
V3)2236.4 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.4 × 0.4 × 0.3
Data collection
DiffractometerStoe STADI-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2895, 2895, 2188
Rint0.000
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.110, 1.12
No. of reflections2895
No. of parameters281
No. of restraints271
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.18

Computer programs: DIF4 (Stoe & Cie, 1992), DIF4, REDU4 (Stoe & Cie, 1992), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), XP (Siemens, 1994), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.94 (4)1.72 (4)2.656 (3)173 (4)
C15—H15···O3i0.952.363.224 (4)152
C28—H28B···O3ii0.982.323.244 (5)157
C4—H4A···O5iii0.992.583.437 (4)145
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+1/2, z+3/2; (iii) x+1/2, y+1/2, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds