Download citation
Download citation
link to html
In the crystal structure of the title mol­ecule, [NiZnI2(C17H16N2O2)(C3H7NO)2], Ni2+ and Zn2+ ions are bridged by the two phenolic O atoms of the N,N′-bis­(salicyl­idene)-2,2-di­methyl-1,3-propane­diaminate (salpd2−, C17H16N2O22−) ligand. The Ni2+ ion has an irregular octahedral geometry involving two phenolic O and two iminic N atoms of the salpd2− in the equatorial plane. The compound includes two DMF (di­methyl­form­amide) solvent mol­ecules coordinated to the Ni2+ ion at the apical position. The coordination around the Zn2+ ion is distorted tetrahedral, involving two bridging O atoms and two I atoms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802007493/ob6128sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802007493/ob6128Isup2.hkl
Contains datablock I

CCDC reference: 185759

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.014 Å
  • R factor = 0.032
  • wR factor = 0.086
  • Data-to-parameter ratio = 10.5

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_213 Alert C Atom C19B has ADP max/min Ratio ........... 3.60 prolate General Notes
REFLT_03 From the CIF: _diffrn_reflns_theta_max 27.66 From the CIF: _reflns_number_total 3420 Count of symmetry unique reflns 3416 Completeness (_total/calc) 100.12% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 4 Fraction of Friedel pairs measured 0.001 Are heavy atom types Z>Si present yes WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

Schiff base complexes are one of the most important stereochemical models in main group and transition metal coordination chemistry. Oxygen-bridged polynuclear complexes of the transition series are of interest because of their magnetic properties. These complexes may be homo- or heteronuclear. The ligand stereochemistry around the metal ions and the structure of the O-atom bridges influence the magnetic exchange interactions.

Mononuclear and polynuclear metal complexes based on Schiff base ligands have been the subject of considerable interest in our laboratory, e.g. [Zn(C13H9N2O3)2] (Tatar, Ülkü & Atakol, 1999), [NiZnBr2(C17H16N2O2)(C3H7NO)(CH4O)] (Tatar, Atakol & Arıcı, 2002), [Co{Ni(C17H16N2O2)(NO2)(C3H7NO)}2] (Atakol et al., 1999), [{Zn2ClN3(C17H16N2O2)}2] (Tatar, Ülkü et al., 2002).

In the present study, the synthesis and structure of a heterodinuclear nickel(II)–zinc(II) complex of a Schiff base ligand, [NiZnI2(C17H16N2O2)(C3H7NO)2], (I), is reported. ZnI2 was added to the square-planar complex of N,N'-bis(salicylidene)-1,3-propanediamine and nickel(II) (Drew et al., 1985) to form a heterodinuclear complex. The structure includes one octahedron and one tetrahedron which share one edge. The coordination polyhedron around the Ni2+ ion is a distorted octahedron (Fig. 1). Two iminic N and two phenolic O atoms of the salpd2- ligand constitute the basal plane of the octahedron, while the O atoms of the two DMF groups occupy apical positions and complete the sixfold coordination. The average Ni—O and Ni—N distances in the basal plane are 2.017 (5) and 2.020 (6) Å, while the Ni—O3 and Ni—O4 distances in the apical position are 2.124 (5) and 2.137 (5) Å, respectively. The Ni2+ ion is located 0.0177 (8) Å from the best coordination plane consisting of atoms O1, O2, N1 and N2. The dihedral angle between the Ni/O1/C1/C6/C7/N2 and Ni/O2/C17/C12/C11/N1 chelate rings is 2.58 (14)°. All the chelate rings around Ni except for one, are planar. The Ni/N2/C8/C9/C10/N1 ring is in a half-chair conformation, the C9 atom is located 0.70 (1) Å from the best plane defined by other five atoms.

The Zn2+ ion has a distorted tetrahedral coordination, which is common for terminal a zinc(II) ion in dimeric complexes. The I1—Zn—I2 and O1—Zn—O2 angles are 117.51 (3) and 80.19 (18)°, respectively. I1/Zn/I2 plane and the least-squares plane defined by the salpd-2 ligand are almost perpendicular to one another; the dihedral angle is 85.42 (5)°. The bridging plane is not completely planar, the dihedral angle between the planes through atoms O1/Zn/O2 and O1/Ni/O2 is 8.95 (16)°. The Ni···Zn distance [3.0695 (11) Å] is long for a direct interaction. A comparison of the dihedral angle (ϕ) between the O—M1—O and O—M2—O bridging planes, where M indicatesa metal ion (Zn2+, Ni2+ or Cu2+), along with the related M—O distance ranges, O—M—O angle ranges and M—M distances, are given in Table 3 for the four oxygen-bridged dimeric complexes reported previously. From this table, the remarkable similarity of the five structures is obvious.

The title molecule as a whole is fairly planar except for the DMF groups, the I atoms and atom C9, with a dihedral angle of 3.57 (11)° between the planes through O1/C1—C8/N2 and O2/C10—C17/N1. The bond lengths and angles within the ligands show no unusual values. There is an intramolecular hydrogen bond given in Table 2. Fig. 2 gives a perspective view of the crystal packing.

Experimental top

N,N'-Bis(salicylidene)-1,3-propanediamine (0.565 g, 2 mmol) was dissolved in 50 ml hot EtOH. To this solution was added 10 ml 20% ammonia and a solution of NiCl2·6H2O (0.475 g, 2 mmol) in hot water (30 ml). The mixture was set aside for 2 h. The light-green complex which resulted was filtered off and dried in an oven at 423 K. This complex (0.338 g, 1 mmol) was dissolved in hot DMF (50 ml) with stirring. To this solution was added a solution of ZnI2 (0.320 g, 1 mmol) in hot MeOH (10 ml). This resulting mixture was set aside for 5 d and light-blue crystals were filtered off and dried in air.

Refinement top

All non-H atoms were refined with anisotropic displacement parameters. The H atoms were positioned geometrically from the corresponding C atoms, with Ueq(H) = 1.2Ueq(C), and a riding model was used during the refinement process. One of the DMF groups has a disordered atom (C19), the atom with suffix A has occupancy 0.45. Two components of C19 were refined with anisotropic displacement parameters and their H atoms were positioned geometrically.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure and atomic numbering scheme of (I) (40% probability displacement ellipsoids) (Farrugia, 1997).
[Figure 2] Fig. 2. Packing diagram of complex (I) (Spek, 2000).
(I) top
Crystal data top
[ZnI2Ni(C17H16N2O2)(C3H7NO)2]F(000) = 1568
Mr = 804.39Dx = 1.822 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 15 reflections
a = 10.6018 (11) Åθ = 10.4–12.1°
b = 15.3204 (15) ŵ = 3.60 mm1
c = 18.2690 (17) ÅT = 295 K
β = 98.727 (12)°Prism, light blue
V = 2933.0 (5) Å30.4 × 0.4 × 0.3 mm
Z = 4
Data collection top
Enraf-Nonius CAD-4
diffractometer
3064 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 27.7°, θmin = 2.4°
ω/2θ scansh = 130
Absorption correction: ψ scan
(North et al., 1968)
k = 019
Tmin = 0.270, Tmax = 0.340l = 2323
3420 measured reflections3 standard reflections every 120 min
3420 independent reflections intensity decay: 2%
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0505P)2 + 4.1535P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.032(Δ/σ)max = 0.001
wR(F2) = 0.086Δρmax = 1.03 e Å3
S = 1.06Δρmin = 0.51 e Å3
3420 reflectionsAbsolute structure: (Flack, 1983), 175 Friedel pairs
327 parametersAbsolute structure parameter: 0.00 (2)
2 restraints
Crystal data top
[ZnI2Ni(C17H16N2O2)(C3H7NO)2]V = 2933.0 (5) Å3
Mr = 804.39Z = 4
Monoclinic, CcMo Kα radiation
a = 10.6018 (11) ŵ = 3.60 mm1
b = 15.3204 (15) ÅT = 295 K
c = 18.2690 (17) Å0.4 × 0.4 × 0.3 mm
β = 98.727 (12)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
3064 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.270, Tmax = 0.3403 standard reflections every 120 min
3420 measured reflections intensity decay: 2%
3420 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.086Δρmax = 1.03 e Å3
S = 1.06Δρmin = 0.51 e Å3
3420 reflectionsAbsolute structure: (Flack, 1983), 175 Friedel pairs
327 parametersAbsolute structure parameter: 0.00 (2)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni0.97854 (7)0.59200 (5)0.59778 (4)0.04186 (18)
Zn0.82479 (7)0.68329 (5)0.70505 (4)0.04389 (17)
O11.0023 (4)0.6440 (3)0.7005 (3)0.0453 (10)
O20.8061 (4)0.6463 (3)0.5997 (2)0.0432 (9)
I20.69518 (6)0.58517 (5)0.77662 (3)0.0850 (2)
I10.81354 (7)0.84679 (3)0.72695 (4)0.0792 (2)
O30.9198 (5)0.4711 (3)0.6384 (3)0.0577 (12)
C21.0960 (8)0.6782 (5)0.8224 (4)0.0594 (19)
H21.01950.70220.83170.071*
O41.0432 (5)0.7071 (3)0.5487 (3)0.0593 (12)
C11.1023 (6)0.6432 (4)0.7527 (4)0.0475 (15)
C61.2201 (7)0.6068 (4)0.7397 (5)0.0531 (17)
C110.8118 (9)0.5599 (5)0.4579 (4)0.0601 (19)
H110.79920.53670.41030.072*
C160.5916 (8)0.6869 (6)0.5620 (5)0.068 (2)
H160.58940.71460.60720.081*
C170.7052 (7)0.6469 (4)0.5483 (4)0.0474 (15)
C120.7033 (8)0.6071 (5)0.4792 (4)0.0536 (17)
N21.1634 (6)0.5535 (4)0.6118 (4)0.0586 (15)
N10.9195 (7)0.5463 (4)0.4949 (3)0.0545 (14)
C51.3229 (8)0.6064 (6)0.7985 (6)0.074 (3)
H51.39950.58110.79080.088*
C101.0099 (11)0.4931 (6)0.4612 (6)0.079 (3)
H10A0.98170.48960.40830.095*
H10B1.01060.43430.48110.095*
C31.2000 (10)0.6782 (6)0.8782 (5)0.074 (3)
H31.19320.7030.92390.089*
C91.1415 (11)0.5292 (7)0.4750 (6)0.088 (3)
H9A1.13670.5920.46790.105*
H9B1.18930.50550.43830.105*
C150.4849 (11)0.6857 (9)0.5101 (7)0.091 (3)
H150.41090.71160.52150.11*
C130.5899 (11)0.6097 (7)0.4268 (5)0.080 (3)
H130.58930.58430.38050.096*
C140.4817 (10)0.6488 (9)0.4431 (6)0.091 (3)
H140.40760.64980.40860.109*
N41.0847 (6)0.8506 (4)0.5459 (4)0.0600 (17)
N30.9285 (7)0.3697 (4)0.7290 (4)0.0610 (15)
C180.9597 (8)0.4425 (4)0.6998 (4)0.0562 (17)
H181.01960.47680.72920.067*
C231.1577 (11)0.8470 (6)0.4863 (7)0.083 (3)
H23A1.1880.90440.4770.124*
H23B1.1050.82560.44260.124*
H23C1.22910.80860.49930.124*
C71.2414 (8)0.5683 (5)0.6709 (6)0.066 (2)
H71.32520.55160.66910.079*
C211.0328 (7)0.7812 (5)0.5710 (4)0.0548 (16)
H210.98420.78930.60890.066*
C81.2147 (11)0.5107 (7)0.5514 (6)0.089 (3)
H8A1.21530.44820.55970.107*
H8B1.30240.52930.55250.107*
C200.9846 (15)0.3400 (8)0.8028 (6)0.101 (4)
H20A0.94720.28510.81320.151*
H20B0.96840.38240.83890.151*
H20C1.0750.33280.80470.151*
C221.0725 (14)0.9369 (6)0.5780 (10)0.117 (5)
H22A1.11730.97890.55250.176*
H22B1.10840.93590.62950.176*
H22C0.9840.95260.57290.176*
C41.3148 (10)0.6413 (6)0.8658 (7)0.088 (3)
H41.38490.64060.90310.106*
C19A0.873 (3)0.3007 (18)0.6812 (19)0.077 (8)0.45
H1910.85810.25080.71050.115*0.45
H1920.93050.2850.64750.115*0.45
H1930.79370.32020.65370.115*0.45
C19B0.808 (4)0.3273 (19)0.695 (2)0.138 (17)0.55
H1940.79610.2740.72120.207*0.55
H1950.81110.31470.64420.207*0.55
H1960.73740.36590.69880.207*0.55
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0479 (4)0.0340 (4)0.0466 (4)0.0031 (3)0.0166 (3)0.0040 (3)
Zn0.0494 (4)0.0449 (4)0.0384 (3)0.0125 (3)0.0102 (3)0.0042 (3)
O10.043 (2)0.043 (2)0.049 (2)0.0068 (18)0.0043 (19)0.0024 (18)
O20.045 (2)0.047 (2)0.039 (2)0.0083 (19)0.0094 (18)0.0042 (17)
I20.0849 (4)0.0977 (5)0.0825 (4)0.0155 (3)0.0450 (3)0.0393 (3)
I10.1140 (5)0.0503 (3)0.0738 (4)0.0287 (3)0.0157 (3)0.0023 (2)
O30.069 (3)0.040 (2)0.065 (3)0.002 (2)0.016 (2)0.012 (2)
C20.064 (5)0.052 (4)0.057 (4)0.000 (3)0.010 (4)0.003 (3)
O40.072 (3)0.044 (3)0.066 (3)0.006 (2)0.023 (3)0.005 (2)
C10.044 (3)0.031 (3)0.065 (4)0.005 (2)0.001 (3)0.011 (3)
C60.046 (4)0.034 (3)0.081 (5)0.002 (3)0.012 (3)0.011 (3)
C110.086 (6)0.048 (4)0.048 (4)0.017 (4)0.015 (4)0.004 (3)
C160.049 (4)0.083 (6)0.070 (5)0.017 (4)0.005 (4)0.004 (4)
C170.048 (3)0.047 (3)0.047 (3)0.005 (3)0.004 (3)0.016 (3)
C120.067 (5)0.049 (3)0.046 (3)0.021 (3)0.009 (3)0.003 (3)
N20.055 (4)0.051 (3)0.075 (4)0.011 (3)0.027 (3)0.011 (3)
N10.077 (4)0.041 (3)0.050 (3)0.006 (3)0.023 (3)0.002 (2)
C50.046 (4)0.057 (5)0.110 (8)0.004 (4)0.010 (5)0.018 (5)
C100.107 (7)0.061 (5)0.079 (6)0.007 (5)0.045 (5)0.022 (4)
C30.086 (7)0.060 (5)0.066 (5)0.005 (4)0.021 (5)0.003 (4)
C90.105 (8)0.076 (6)0.095 (7)0.016 (6)0.058 (6)0.006 (5)
C150.061 (6)0.116 (9)0.092 (7)0.009 (6)0.003 (5)0.006 (6)
C130.097 (8)0.090 (6)0.048 (4)0.030 (6)0.008 (5)0.004 (4)
C140.061 (6)0.137 (10)0.067 (6)0.007 (6)0.017 (5)0.015 (6)
N40.046 (3)0.041 (3)0.096 (5)0.002 (2)0.019 (3)0.016 (3)
N30.069 (4)0.053 (3)0.063 (4)0.003 (3)0.016 (3)0.017 (3)
C180.068 (4)0.038 (3)0.064 (4)0.002 (3)0.012 (4)0.002 (3)
C230.083 (6)0.076 (6)0.096 (7)0.011 (5)0.032 (5)0.022 (5)
C70.045 (4)0.044 (4)0.112 (7)0.008 (3)0.023 (4)0.023 (4)
C210.051 (4)0.049 (4)0.067 (4)0.001 (3)0.014 (3)0.015 (3)
C80.092 (7)0.087 (7)0.101 (7)0.042 (6)0.053 (6)0.013 (5)
C200.138 (11)0.091 (7)0.075 (6)0.003 (7)0.019 (7)0.024 (5)
C220.120 (10)0.042 (5)0.205 (15)0.002 (5)0.073 (10)0.008 (7)
C40.068 (6)0.073 (6)0.110 (8)0.017 (5)0.031 (6)0.010 (6)
C19A0.10 (2)0.048 (12)0.081 (14)0.009 (13)0.000 (15)0.019 (10)
C19B0.15 (3)0.08 (2)0.15 (3)0.08 (2)0.05 (3)0.06 (2)
Geometric parameters (Å, º) top
Ni—N12.014 (6)C3—H30.93
Ni—O22.014 (4)C9—C81.517 (16)
Ni—O12.019 (5)C9—H9A0.97
Ni—N22.025 (6)C9—H9B0.97
Ni—O32.124 (5)C15—C141.345 (18)
Ni—O42.137 (5)C15—H150.93
Ni—Zn3.0695 (11)C13—C141.366 (17)
Zn—O21.986 (4)C13—H130.93
Zn—O11.989 (4)C14—H140.93
Zn—I22.5303 (9)N4—C211.312 (9)
Zn—I12.5424 (9)N4—C231.429 (13)
O1—C11.315 (8)N4—C221.459 (13)
O2—C171.312 (8)N3—C181.302 (10)
O3—C181.218 (9)N3—C19A1.44 (3)
C2—C31.383 (12)N3—C201.460 (13)
C2—C11.391 (12)N3—C19B1.48 (3)
C2—H20.93C18—H180.93
O4—C211.218 (9)C23—H23A0.96
C1—C61.421 (11)C23—H23B0.96
C6—C51.409 (12)C23—H23C0.96
C6—C71.436 (13)C7—H70.93
C11—N11.253 (11)C21—H210.93
C11—C121.461 (12)C8—H8A0.97
C11—H110.93C8—H8B0.97
C16—C151.362 (14)C20—H20A0.96
C16—C171.407 (11)C20—H20B0.96
C16—H160.93C20—H20C0.96
C17—C121.399 (10)C22—H22A0.96
C12—C131.419 (12)C22—H22B0.96
N2—C71.278 (12)C22—H22C0.96
N2—C81.458 (11)C4—H40.93
N1—C101.463 (11)C19A—H1910.96
C5—C41.356 (17)C19A—H1920.96
C5—H50.93C19A—H1930.96
C10—C91.487 (15)C19B—H1940.96
C10—H10A0.97C19B—H1950.96
C10—H10B0.97C19B—H1960.96
C3—C41.391 (17)
N1—Ni—O290.3 (2)C8—C9—H9A108.5
N1—Ni—O1169.0 (2)C10—C9—H9B108.5
O2—Ni—O178.80 (18)C8—C9—H9B108.5
N1—Ni—N2100.0 (3)H9A—C9—H9B107.5
O2—Ni—N2169.0 (2)C14—C15—C16122.9 (11)
O1—Ni—N290.9 (2)C14—C15—H15118.5
N1—Ni—O387.5 (2)C16—C15—H15118.5
O2—Ni—O392.2 (2)C14—C13—C12121.2 (9)
O1—Ni—O391.2 (2)C14—C13—H13119.4
N2—Ni—O391.8 (2)C12—C13—H13119.4
N1—Ni—O488.2 (2)C15—C14—C13118.5 (9)
O2—Ni—O490.9 (2)C15—C14—H14120.8
O1—Ni—O493.5 (2)C13—C14—H14120.8
N2—Ni—O485.9 (2)C21—N4—C23122.6 (7)
O3—Ni—O4174.7 (2)C21—N4—C22121.8 (9)
O2—Zn—O180.19 (18)C23—N4—C22115.6 (8)
O2—Zn—I2110.41 (14)C18—N3—C19A119.1 (14)
O1—Zn—I2115.68 (13)C18—N3—C20123.6 (9)
O2—Zn—I1115.67 (12)C19A—N3—C20113.8 (14)
O1—Zn—I1111.82 (13)C18—N3—C19B117.5 (12)
I2—Zn—I1117.51 (3)C20—N3—C19B116.8 (15)
C1—O1—Zn129.5 (5)O3—C18—N3127.7 (8)
C1—O1—Ni130.1 (4)O3—C18—H18116.2
Zn—O1—Ni99.96 (19)N3—C18—H18116.2
C17—O2—Zn130.0 (4)N4—C23—H23A109.5
C17—O2—Ni129.3 (4)N4—C23—H23B109.5
Zn—O2—Ni100.22 (19)H23A—C23—H23B109.5
C18—O3—Ni123.7 (5)N4—C23—H23C109.5
C3—C2—C1122.1 (9)H23A—C23—H23C109.5
C3—C2—H2119H23B—C23—H23C109.5
C1—C2—H2119N2—C7—C6130.2 (7)
C21—O4—Ni125.2 (5)N2—C7—H7114.9
O1—C1—C2121.0 (7)C6—C7—H7114.9
O1—C1—C6121.0 (7)O4—C21—N4125.1 (8)
C2—C1—C6118.0 (7)O4—C21—H21117.5
C5—C6—C1118.1 (8)N4—C21—H21117.5
C5—C6—C7117.3 (8)N2—C8—C9114.5 (7)
C1—C6—C7124.6 (7)N2—C8—H8A108.6
N1—C11—C12128.9 (7)C9—C8—H8A108.6
N1—C11—H11115.5N2—C8—H8B108.6
C12—C11—H11115.5C9—C8—H8B108.6
C15—C16—C17120.9 (9)H8A—C8—H8B107.6
C15—C16—H16119.6N3—C20—H20A109.5
C17—C16—H16119.6N3—C20—H20B109.5
O2—C17—C12122.8 (7)H20A—C20—H20B109.5
O2—C17—C16120.1 (7)N3—C20—H20C109.5
C12—C17—C16117.1 (7)H20A—C20—H20C109.5
C17—C12—C13119.4 (8)H20B—C20—H20C109.5
C17—C12—C11123.5 (7)N4—C22—H22A109.5
C13—C12—C11117.0 (7)N4—C22—H22B109.5
C7—N2—C8116.9 (8)H22A—C22—H22B109.5
C7—N2—Ni123.0 (6)N4—C22—H22C109.5
C8—N2—Ni120.0 (6)H22A—C22—H22C109.5
C11—N1—C10117.8 (7)H22B—C22—H22C109.5
C11—N1—Ni125.1 (5)C5—C4—C3119.1 (8)
C10—N1—Ni117.1 (6)C5—C4—H4120.5
C4—C5—C6122.8 (9)C3—C4—H4120.5
C4—C5—H5118.6N3—C19A—H191109.5
C6—C5—H5118.6N3—C19A—H192109.5
N1—C10—C9112.2 (7)H191—C19A—H192109.5
N1—C10—H10A109.2N3—C19A—H193109.5
C9—C10—H10A109.2H191—C19A—H193109.5
N1—C10—H10B109.2H192—C19A—H193109.5
C9—C10—H10B109.2N3—C19B—H194109.5
H10A—C10—H10B107.9N3—C19B—H195109.5
C2—C3—C4119.9 (10)H194—C19B—H195109.5
C2—C3—H3120N3—C19B—H196109.5
C4—C3—H3120H194—C19B—H196109.5
C10—C9—C8114.9 (9)H195—C19B—H196109.5
C10—C9—H9A108.5
O2—Zn—O1—C1180.0 (5)O2—C17—C12—C13179.3 (7)
I2—Zn—O1—C172.0 (5)C16—C17—C12—C130.7 (10)
I1—Zn—O1—C166.1 (5)O2—C17—C12—C111.1 (10)
O2—Zn—O1—Ni7.00 (18)C16—C17—C12—C11177.4 (7)
I2—Zn—O1—Ni101.03 (16)N1—C11—C12—C170.5 (12)
I1—Zn—O1—Ni120.85 (13)N1—C11—C12—C13177.7 (8)
N1—Ni—O1—C1171.2 (10)N1—Ni—N2—C7179.8 (6)
O2—Ni—O1—C1179.9 (5)O2—Ni—N2—C719.4 (15)
N2—Ni—O1—C13.9 (5)O1—Ni—N2—C70.8 (6)
O3—Ni—O1—C187.9 (5)O3—Ni—N2—C792.0 (6)
O4—Ni—O1—C189.8 (5)O4—Ni—N2—C792.7 (6)
N1—Ni—O1—Zn1.8 (12)N1—Ni—N2—C83.5 (7)
O2—Ni—O1—Zn6.93 (18)O2—Ni—N2—C8157.2 (10)
N2—Ni—O1—Zn176.9 (2)O1—Ni—N2—C8177.4 (7)
O3—Ni—O1—Zn85.1 (2)O3—Ni—N2—C891.3 (7)
O4—Ni—O1—Zn97.2 (2)O4—Ni—N2—C883.9 (7)
O1—Zn—O2—C17179.4 (5)C12—C11—N1—C10177.2 (7)
I2—Zn—O2—C1765.5 (5)C12—C11—N1—Ni2.7 (11)
I1—Zn—O2—C1771.0 (5)O2—Ni—N1—C112.4 (6)
O1—Zn—O2—Ni7.02 (19)O1—Ni—N1—C1111.0 (15)
I2—Zn—O2—Ni106.86 (15)N2—Ni—N1—C11174.0 (6)
I1—Zn—O2—Ni116.61 (13)O3—Ni—N1—C1194.7 (6)
N1—Ni—O2—C171.0 (5)O4—Ni—N1—C1188.5 (6)
O1—Ni—O2—C17179.4 (5)O2—Ni—N1—C10177.4 (6)
N2—Ni—O2—C17160.0 (11)O1—Ni—N1—C10168.9 (10)
O3—Ni—O2—C1788.6 (5)N2—Ni—N1—C106.2 (6)
O4—Ni—O2—C1787.2 (5)O3—Ni—N1—C1085.2 (6)
N1—Ni—O2—Zn171.4 (2)O4—Ni—N1—C1091.6 (6)
O1—Ni—O2—Zn6.95 (19)C1—C6—C5—C41.8 (12)
N2—Ni—O2—Zn27.5 (12)C7—C6—C5—C4179.4 (8)
O3—Ni—O2—Zn83.9 (2)C11—N1—C10—C9137.9 (9)
O4—Ni—O2—Zn100.4 (2)Ni—N1—C10—C942.2 (10)
N1—Ni—O3—C18158.6 (7)C1—C2—C3—C41.1 (13)
O2—Ni—O3—C18111.2 (6)N1—C10—C9—C878.6 (11)
O1—Ni—O3—C1832.3 (6)C17—C16—C15—C141.5 (18)
N2—Ni—O3—C1858.6 (7)C17—C12—C13—C141.4 (14)
N1—Ni—O4—C21139.9 (7)C11—C12—C13—C14176.9 (9)
O2—Ni—O4—C2149.6 (6)C16—C15—C14—C131 (2)
O1—Ni—O4—C2129.3 (6)C12—C13—C14—C150.6 (17)
N2—Ni—O4—C21119.9 (7)Ni—O3—C18—N3179.6 (7)
Zn—O1—C1—C24.4 (9)C19A—N3—C18—O321.1 (19)
Ni—O1—C1—C2175.4 (5)C20—N3—C18—O3178.3 (10)
Zn—O1—C1—C6175.7 (4)C19B—N3—C18—O319 (2)
Ni—O1—C1—C64.7 (8)C8—N2—C7—C6178.3 (8)
C3—C2—C1—O1179.9 (7)Ni—N2—C7—C65.0 (11)
C3—C2—C1—C60.1 (11)C5—C6—C7—N2173.4 (8)
O1—C1—C6—C5178.7 (6)C1—C6—C7—N25.2 (12)
C2—C1—C6—C51.3 (10)Ni—O4—C21—N4172.1 (6)
O1—C1—C6—C70.1 (10)C23—N4—C21—O42.1 (14)
C2—C1—C6—C7179.9 (7)C22—N4—C21—O4177.2 (10)
Zn—O2—C17—C12170.7 (5)C7—N2—C8—C9154.5 (9)
Ni—O2—C17—C120.4 (9)Ni—N2—C8—C922.4 (12)
Zn—O2—C17—C167.8 (9)C10—C9—C8—N266.6 (12)
Ni—O2—C17—C16178.1 (6)C6—C5—C4—C30.9 (14)
C15—C16—C17—O2178.0 (9)C2—C3—C4—C50.6 (14)
C15—C16—C17—C120.6 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O40.972.593.279 (12)128

Experimental details

Crystal data
Chemical formula[ZnI2Ni(C17H16N2O2)(C3H7NO)2]
Mr804.39
Crystal system, space groupMonoclinic, Cc
Temperature (K)295
a, b, c (Å)10.6018 (11), 15.3204 (15), 18.2690 (17)
β (°) 98.727 (12)
V3)2933.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)3.60
Crystal size (mm)0.4 × 0.4 × 0.3
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.270, 0.340
No. of measured, independent and
observed [I > 2σ(I)] reflections
3420, 3420, 3064
Rint0.000
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.086, 1.06
No. of reflections3420
No. of parameters327
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.03, 0.51
Absolute structure(Flack, 1983), 175 Friedel pairs
Absolute structure parameter0.00 (2)

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Ni—N12.014 (6)Zn—O21.986 (4)
Ni—O22.014 (4)Zn—O11.989 (4)
Ni—O12.019 (5)Zn—I22.5303 (9)
Ni—N22.025 (6)Zn—I12.5424 (9)
Ni—O32.124 (5)N3—C19A1.44 (3)
Ni—O42.137 (5)N3—C19B1.48 (3)
Ni—Zn3.0695 (11)
N1—Ni—O290.3 (2)O2—Zn—I1115.67 (12)
N1—Ni—O1169.0 (2)O1—Zn—I1111.82 (13)
O2—Ni—O178.80 (18)I2—Zn—I1117.51 (3)
N1—Ni—N2100.0 (3)C1—O1—Zn129.5 (5)
O2—Ni—N2169.0 (2)C1—O1—Ni130.1 (4)
O1—Ni—N290.9 (2)Zn—O1—Ni99.96 (19)
N1—Ni—O387.5 (2)C17—O2—Zn130.0 (4)
O2—Ni—O392.2 (2)C17—O2—Ni129.3 (4)
O1—Ni—O391.2 (2)Zn—O2—Ni100.22 (19)
N2—Ni—O391.8 (2)C18—O3—Ni123.7 (5)
N1—Ni—O488.2 (2)C21—O4—Ni125.2 (5)
O2—Ni—O490.9 (2)C7—N2—Ni123.0 (6)
O1—Ni—O493.5 (2)C8—N2—Ni120.0 (6)
N2—Ni—O485.9 (2)C11—N1—Ni125.1 (5)
O3—Ni—O4174.7 (2)C10—N1—Ni117.1 (6)
O2—Zn—O180.19 (18)C19A—N3—C20113.8 (14)
O2—Zn—I2110.41 (14)C20—N3—C19B116.8 (15)
O1—Zn—I2115.68 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O40.972.593.279 (12)128
Structural data and dihedral angle ϕ (Å; °) for four homo- and heterodinuclear Zn complexes top
ComplexM···MM—OO—M—Oϕ
(I)3.0695 (11)1.986 (4)–2.019 (5)78.80 (18)–80.19 (18)8.95 (16)
(II)3.0757 (6)1.938 (3)–2.010 (3)75.0 (1)–78.1 (1)14.0 (4)
(III)3.0917 (15)1.995 (6)–2.031 (6)78.2 (2)–79.8 (2)11.1 (3)
(IV)3.161 (1)1.991 (3)–2.058 (3)75.90 (10)–78.56 (10)3.07 (1)
Notes: (I) [NiZnI2(salpd)(dmf)2] (the title compound); (II) [CuZnCl2(salpd)] (Tatar, Atakol & Ülkü, 1999); (III) [NiZnBr2(salpd)(dmf)(MeOH)] (Tatar, Atakol & Arıcı, 2002); (IV) [Zn2Cl2(salpd)(dmf)] (Tatar, Atakol & Ülkü, 2002).
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds