Download citation
Download citation
link to html
The structure of the title compound, C42H56N2O2, comprises a centrosymmetric mol­ecule, with only half of the mol­ecule in the asymmetric unit and with an inversion centre in the middle of the squarate ring. The squaraine moiety is planar and extensively delocalized, with the dihedral angle between the squarate and indoline planes being 3.9 (2)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802015155/cf6197sup1.cif
Contains datablocks InSq6, default

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802015155/cf6197InSq6sup2.hkl
Contains datablock InSq6

CCDC reference: 197482

Key indicators

  • Single-crystal X-ray study
  • T = 150 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.070
  • wR factor = 0.208
  • Data-to-parameter ratio = 19.2

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry
Yellow Alert Alert Level C:
RINTA_01 Alert C The value of Rint is greater than 0.10 Rint given 0.125
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

The 1-alkyl derivatives of 2,4-bis(3,3-dimethylindolin-2-ylidenemethyl)cyclobutenediylio-1,3-diolate (InSq) have been studied for a variety of photophysical effects (for example, Kuramoto et al., 1989; Dirk & Kuzyk, 1990; Terpetschnig et al., 1993; Zhang et al., 1997). In several other studies of squaraine dyes, the only known crystal structure of an InSq derivative, InSq1 (Kobayashi et al., 1986), was cited and a discussion of molecular behaviour based on the non-planar conformation of this structure given. In the structure of InSq1, one indolinyl ring is twisted by ca 25° away from the plane of the central ring, while the other ring is twisted by ca 8°. Certainly, before the structures of InSq2 (Natsukawa & Nakazumi, 1993), InSq3 (Tong & Bi-Xian, 1999), InSq4 and InSq5 (Lynch & Byriel, 1999) were published, the structure of InSq1 was the only guide as to the conformation of any InSq derivative. The significance of these latter InSq structures is that they are all planar across the bis(indolinylidene)squarate moiety, a characteristic of all other known squaraine structures (Lynch & Byriel, 1999).

As part of a series of studies on the structural aspects of squaraine dyes, the 1-octyl derivative of InSq, InSq6, was prepared and the structure determined (Fig. 1). Similar to InSq2–InSq5, InSq6 is planar, with the dihedral angle between the squarate and indoline planes being 3.9 (2)°. However, unlike InSq2 and InSq3, InSq6 is solvent-free and displays a similar packing mode to InSq4 and InSq5, with only half of the molecule in the asymmetric unit. The paper reporting the structures of InSq4 and InSq5 also reviewed the role of C—H···O close contacts in the packing of all known squaraine structures at that time. The results suggested that most solvent-free structures had the planar molecules stacked in rows of columns, with the individual molecules forming C—H···O close contacts with another molecule in either an adjacent column of a different row (of opposing direction) or the next column in the same row. InSq6 displays the same ribbon network arrangement as InSq5, through C—H···O close contacts, but InSq6 is not stacked. This rearrangement in the structure may be necessary to compensate for the extended alkyl chain, although no other N-octyl (or longer) squaraine analogue has been studied for comparison, so the obvious bulkiness of the alkyl chain may only be part of the reason for the difference in packing.

In conclusion, five of the six known structures of InSq derivatives are planar across the central ring system, suggesting that this is a more representative conformation than that of InSq1. This has a bearing on the discussion of the structure–property relationships of this squaraine analogue.

Experimental top

The title compound was prepared according to the literature procedures described by Lynch & Byriel (1999), and crystals were grown from a chloroform solution.

Refinement top

All H atoms were included in the refinement at calculated positions as riding models, with C—H set to 0.95 (Ar—H), 0.99 (CH2) and 0.98 Å (CH3). The high Rint value of 0.125 is the result of weak high-angle data.

Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON97 (Spek, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular configuration and atom-numbering scheme for the title compound, showing 50% probability ellipsoids. [Symmetry code: (a) 1 − x, −y, 1 − z.]
2,4-Bis(3,3-dimethyl-1-octylindolin-2-ylidenemethyl)cyclobutenediylio-1,3- diolate top
Crystal data top
C42H56N2O2F(000) = 676
Mr = 620.89Dx = 1.154 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.2547 (4) ÅCell parameters from 7704 reflections
b = 16.2169 (8) Åθ = 2.9–27.5°
c = 12.2437 (7) ŵ = 0.07 mm1
β = 103.569 (2)°T = 150 K
V = 1786.28 (16) Å3Plate, blue
Z = 20.20 × 0.07 × 0.02 mm
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
4051 independent reflections
Radiation source: Bruker Nonius FR591 rotating-anode1951 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.125
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
ϕ and ω scansh = 1111
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1721
Tmin = 0.986, Tmax = 0.999l = 1515
16116 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.208H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.1015P)2]
where P = (Fo2 + 2Fc2)/3
4051 reflections(Δ/σ)max < 0.001
211 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C42H56N2O2V = 1786.28 (16) Å3
Mr = 620.89Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.2547 (4) ŵ = 0.07 mm1
b = 16.2169 (8) ÅT = 150 K
c = 12.2437 (7) Å0.20 × 0.07 × 0.02 mm
β = 103.569 (2)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
4051 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
1951 reflections with I > 2σ(I)
Tmin = 0.986, Tmax = 0.999Rint = 0.125
16116 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0700 restraints
wR(F2) = 0.208H-atom parameters constrained
S = 0.98Δρmax = 0.39 e Å3
4051 reflectionsΔρmin = 0.33 e Å3
211 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.73301 (18)0.05283 (12)0.54000 (17)0.0354 (5)
N10.3602 (2)0.19835 (14)0.74619 (18)0.0249 (6)
C10.6064 (3)0.02261 (17)0.5168 (2)0.0257 (6)
C20.4719 (3)0.04398 (17)0.5540 (2)0.0232 (6)
C30.4603 (3)0.10813 (17)0.6279 (2)0.0241 (6)
H30.54800.14040.65000.030*
C40.3462 (3)0.13357 (16)0.6749 (2)0.0218 (6)
C50.1888 (3)0.09826 (16)0.6581 (2)0.0226 (6)
C60.1240 (3)0.15398 (17)0.7339 (2)0.0239 (6)
C70.0145 (3)0.15433 (18)0.7562 (2)0.0305 (7)
H70.08790.11550.72170.038*
C80.0448 (3)0.2133 (2)0.8309 (3)0.0371 (8)
H80.13990.21400.84780.046*
C90.0604 (3)0.27039 (18)0.8807 (2)0.0335 (7)
H90.03670.30970.93130.042*
C100.2007 (3)0.27128 (18)0.8578 (2)0.0300 (7)
H100.27370.31070.89110.037*
C110.2290 (3)0.21187 (17)0.7840 (2)0.0236 (6)
C120.4870 (3)0.25518 (17)0.7725 (2)0.0285 (7)
H1210.58030.22330.78210.036*
H1220.48840.28340.84440.036*
C130.4804 (3)0.31896 (19)0.6817 (3)0.0352 (8)
H1310.39140.35400.67640.044*
H1320.47070.29080.60850.044*
C140.6186 (3)0.37325 (19)0.7050 (3)0.0376 (8)
H1410.70690.33850.70630.047*
H1420.63120.39880.78010.047*
C150.6098 (3)0.44087 (19)0.6174 (3)0.0419 (8)
H1510.52080.47510.61570.052*
H1520.59770.41510.54250.052*
C160.7467 (3)0.4964 (2)0.6397 (3)0.0463 (9)
H1610.73240.53880.57980.058*
H1620.75330.52550.71180.058*
C170.8917 (3)0.4533 (2)0.6448 (3)0.0450 (9)
H1710.91290.41650.71110.056*
H1720.97170.49520.65610.056*
C180.8968 (4)0.4029 (2)0.5416 (3)0.0500 (9)
H1810.82000.35920.53190.063*
H1820.87220.43900.47470.063*
C191.0461 (4)0.3633 (2)0.5480 (3)0.0527 (9)
H1911.12350.40580.56130.066*
H1921.04480.33500.47700.066*
H1931.06690.32330.60970.066*
C200.1036 (3)0.10860 (18)0.5353 (2)0.0288 (7)
H2010.00140.09520.52830.036*
H2020.14550.07150.48760.036*
H2030.11240.16580.51170.036*
C210.1891 (3)0.00806 (17)0.6958 (2)0.0283 (7)
H2110.24520.00320.77400.035*
H2120.23560.02640.64780.035*
H2130.08660.01030.68950.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0257 (10)0.0377 (13)0.0443 (13)0.0092 (9)0.0114 (9)0.0154 (10)
N10.0242 (12)0.0251 (14)0.0266 (13)0.0055 (9)0.0083 (10)0.0028 (11)
C10.0277 (14)0.0249 (17)0.0252 (16)0.0005 (12)0.0073 (12)0.0024 (13)
C20.0219 (13)0.0232 (16)0.0250 (16)0.0006 (11)0.0064 (11)0.0002 (12)
C30.0216 (13)0.0246 (16)0.0255 (16)0.0047 (11)0.0043 (11)0.0002 (13)
C40.0260 (13)0.0194 (15)0.0193 (14)0.0021 (11)0.0036 (11)0.0019 (12)
C50.0219 (13)0.0207 (16)0.0253 (15)0.0020 (11)0.0057 (11)0.0001 (12)
C60.0259 (14)0.0233 (16)0.0230 (15)0.0012 (11)0.0067 (11)0.0033 (12)
C70.0273 (15)0.0291 (18)0.0353 (18)0.0024 (12)0.0080 (13)0.0025 (14)
C80.0317 (16)0.041 (2)0.043 (2)0.0029 (14)0.0171 (14)0.0019 (16)
C90.0401 (17)0.0292 (18)0.0337 (18)0.0066 (13)0.0139 (13)0.0038 (14)
C100.0348 (16)0.0259 (17)0.0290 (17)0.0040 (12)0.0071 (12)0.0025 (14)
C110.0243 (14)0.0233 (16)0.0235 (15)0.0014 (11)0.0063 (11)0.0000 (12)
C120.0286 (14)0.0284 (18)0.0279 (16)0.0084 (12)0.0055 (12)0.0109 (13)
C130.0306 (15)0.0363 (19)0.0385 (19)0.0043 (13)0.0078 (13)0.0033 (15)
C140.0356 (16)0.039 (2)0.0394 (19)0.0055 (13)0.0115 (14)0.0014 (16)
C150.0384 (17)0.041 (2)0.048 (2)0.0036 (14)0.0128 (15)0.0047 (17)
C160.0409 (17)0.043 (2)0.057 (2)0.0085 (15)0.0147 (16)0.0031 (18)
C170.0401 (18)0.043 (2)0.054 (2)0.0095 (15)0.0150 (16)0.0083 (18)
C180.056 (2)0.049 (2)0.045 (2)0.0064 (17)0.0114 (16)0.0077 (18)
C190.066 (2)0.045 (2)0.048 (2)0.0041 (17)0.0155 (17)0.0033 (18)
C200.0288 (14)0.0308 (17)0.0255 (16)0.0012 (12)0.0037 (12)0.0026 (14)
C210.0314 (15)0.0212 (16)0.0335 (17)0.0022 (11)0.0102 (12)0.0021 (13)
Geometric parameters (Å, º) top
O1—C11.240 (3)C13—C141.523 (4)
N1—C41.352 (3)C13—H1310.99
N1—C111.414 (3)C13—H1320.99
N1—C121.467 (3)C14—C151.523 (4)
C1—C21.464 (3)C14—H1410.99
C1—C2i1.466 (4)C14—H1420.99
C2—C31.399 (4)C15—C161.526 (4)
C2—C1i1.466 (4)C15—H1510.99
C3—C41.379 (3)C15—H1520.99
C3—H30.95C16—C171.502 (4)
C4—C51.534 (3)C16—H1610.99
C5—C61.516 (4)C16—H1620.99
C5—C211.534 (4)C17—C181.515 (4)
C5—C201.534 (4)C17—H1710.99
C6—C71.372 (3)C17—H1720.99
C6—C111.387 (4)C18—C191.509 (4)
C7—C81.396 (4)C18—H1810.99
C7—H70.95C18—H1820.99
C8—C91.378 (4)C19—H1910.98
C8—H80.95C19—H1920.98
C9—C101.392 (4)C19—H1930.98
C9—H90.95C20—H2010.98
C10—C111.387 (4)C20—H2020.98
C10—H100.95C20—H2030.98
C12—C131.510 (4)C21—H2110.98
C12—H1210.99C21—H2120.98
C12—H1220.99C21—H2130.98
C4—N1—C11111.9 (2)H131—C13—H132107.9
C4—N1—C12125.4 (2)C13—C14—C15112.3 (2)
C11—N1—C12122.3 (2)C13—C14—H141109.1
O1—C1—C2131.5 (3)C15—C14—H141109.1
O1—C1—C2i137.4 (2)C13—C14—H142109.1
C2—C1—C2i91.2 (2)C15—C14—H142109.1
C3—C2—C1125.2 (2)H141—C14—H142107.9
C3—C2—C1i145.9 (2)C14—C15—C16113.2 (3)
C1—C2—C1i88.8 (2)C14—C15—H151108.9
C4—C3—C2132.4 (2)C16—C15—H151108.9
C4—C3—H3113.8C14—C15—H152108.9
C2—C3—H3113.8C16—C15—H152108.9
N1—C4—C3122.4 (2)H151—C15—H152107.7
N1—C4—C5108.7 (2)C17—C16—C15115.4 (3)
C3—C4—C5128.9 (2)C17—C16—H161108.4
C6—C5—C21111.0 (2)C15—C16—H161108.4
C6—C5—C20110.4 (2)C17—C16—H162108.4
C21—C5—C20111.3 (2)C15—C16—H162108.4
C6—C5—C4101.3 (2)H161—C16—H162107.5
C21—C5—C4112.4 (2)C16—C17—C18114.8 (3)
C20—C5—C4110.1 (2)C16—C17—H171108.6
C7—C6—C11120.0 (3)C18—C17—H171108.6
C7—C6—C5130.3 (3)C16—C17—H172108.6
C11—C6—C5109.7 (2)C18—C17—H172108.6
C6—C7—C8118.3 (3)H171—C17—H172107.6
C6—C7—H7120.8C19—C18—C17113.2 (3)
C8—C7—H7120.8C19—C18—H181108.9
C9—C8—C7121.3 (3)C17—C18—H181108.9
C9—C8—H8119.3C19—C18—H182108.9
C7—C8—H8119.3C17—C18—H182108.9
C8—C9—C10120.9 (3)H181—C18—H182107.8
C8—C9—H9119.5C18—C19—H191109.5
C10—C9—H9119.5C18—C19—H192109.5
C11—C10—C9116.9 (3)H191—C19—H192109.5
C11—C10—H10121.6C18—C19—H193109.5
C9—C10—H10121.6H191—C19—H193109.5
C6—C11—C10122.6 (2)H192—C19—H193109.5
C6—C11—N1108.5 (2)C5—C20—H201109.5
C10—C11—N1129.0 (2)C5—C20—H202109.5
N1—C12—C13112.1 (2)H201—C20—H202109.5
N1—C12—H121109.2C5—C20—H203109.5
C13—C12—H121109.2H201—C20—H203109.5
N1—C12—H122109.2H202—C20—H203109.5
C13—C12—H122109.2C5—C21—H211109.5
H121—C12—H122107.9C5—C21—H212109.5
C12—C13—C14111.7 (2)H211—C21—H212109.5
C12—C13—H131109.3C5—C21—H213109.5
C14—C13—H131109.3H211—C21—H213109.5
C12—C13—H132109.3H212—C21—H213109.5
C14—C13—H132109.3
O1—C1—C2—C30.6 (5)C11—C6—C7—C80.8 (4)
C2i—C1—C2—C3179.0 (3)C5—C6—C7—C8179.7 (3)
O1—C1—C2—C1i179.6 (4)C6—C7—C8—C90.6 (5)
C2i—C1—C2—C1i0.0C7—C8—C9—C100.1 (5)
C1—C2—C3—C4176.4 (3)C8—C9—C10—C110.6 (4)
C1i—C2—C3—C45.4 (6)C7—C6—C11—C100.3 (4)
C11—N1—C4—C3179.4 (2)C5—C6—C11—C10179.9 (2)
C12—N1—C4—C37.6 (4)C7—C6—C11—N1179.5 (2)
C11—N1—C4—C51.2 (3)C5—C6—C11—N10.1 (3)
C12—N1—C4—C5171.8 (2)C9—C10—C11—C60.4 (4)
C2—C3—C4—N1179.6 (3)C9—C10—C11—N1179.9 (3)
C2—C3—C4—C51.1 (5)C4—N1—C11—C60.9 (3)
N1—C4—C5—C61.1 (3)C12—N1—C11—C6172.4 (2)
C3—C4—C5—C6179.6 (3)C4—N1—C11—C10179.4 (3)
N1—C4—C5—C21119.5 (2)C12—N1—C11—C107.4 (4)
C3—C4—C5—C2161.1 (3)C4—N1—C12—C1379.1 (3)
N1—C4—C5—C20115.8 (2)C11—N1—C12—C1393.2 (3)
C3—C4—C5—C2063.6 (4)N1—C12—C13—C14175.4 (2)
C21—C5—C6—C760.4 (4)C12—C13—C14—C15176.9 (2)
C20—C5—C6—C763.4 (4)C13—C14—C15—C16179.6 (3)
C4—C5—C6—C7179.9 (3)C14—C15—C16—C1758.6 (4)
C21—C5—C6—C11120.1 (2)C15—C16—C17—C1855.8 (4)
C20—C5—C6—C11116.1 (2)C16—C17—C18—C19177.7 (3)
C4—C5—C6—C110.6 (3)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H201···O1ii0.982.593.561 (3)172
C20—H202···O1i0.982.373.263 (3)151
C21—H212···O1i0.982.423.287 (3)147
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC42H56N2O2
Mr620.89
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)9.2547 (4), 16.2169 (8), 12.2437 (7)
β (°) 103.569 (2)
V3)1786.28 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.20 × 0.07 × 0.02
Data collection
DiffractometerBruker Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.986, 0.999
No. of measured, independent and
observed [I > 2σ(I)] reflections
16116, 4051, 1951
Rint0.125
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.208, 0.98
No. of reflections4051
No. of parameters211
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.33

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), DENZO and COLLECT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON97 (Spek, 1997), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H201···O1i0.982.593.561 (3)172
C20—H202···O1ii0.982.373.263 (3)151
C21—H212···O1ii0.982.423.287 (3)147
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds