Download citation
Download citation
link to html
The structure of [(H2O)7CeCl2Ce(H2O)7]Cl4, or [Ce2Cl2(H2O)14]Cl4, has been redetermined at 120 K and refined in space group P\overline 1 (No. 2) with a centrosymmetric cation. Refinements in space groups P\overline 1 and P1 (No. 1) are discussed.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802014794/mg6012sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802014794/mg6012Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 120 K
  • Mean [sigma](Ce-O) = 0.003 Å
  • R factor = 0.030
  • wR factor = 0.080
  • Data-to-parameter ratio = 13.0

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Amber Alert Alert Level B:
CHEMS_01 Alert B The sum formula contains elements in the wrong order. H precedes Ce Sequence must be C, H, then alphabetical.
Author response: Don't see the problem. H atoms are first in the list as required (no C). Is software confusing C and Ce?

Yellow Alert Alert Level C:
PLAT_731 Alert C Bond Calc 0.84(6), Rep 0.83(2) .... 3.00 s.u-Ratio O1 -H1A 1.555 1.555 PLAT_731 Alert C Bond Calc 0.83(6), Rep 0.83(2) .... 3.00 s.u-Ratio O1 -H1B 1.555 1.555 PLAT_731 Alert C Bond Calc 0.83(6), Rep 0.83(2) .... 3.00 s.u-Ratio O2 -H2A 1.555 1.555 PLAT_731 Alert C Bond Calc 0.83(5), Rep 0.83(2) .... 2.50 s.u-Ratio O2 -H2B 1.555 1.555 PLAT_731 Alert C Bond Calc 0.85(6), Rep 0.84(2) .... 3.00 s.u-Ratio O3 -H3A 1.555 1.555 PLAT_731 Alert C Bond Calc 0.83(5), Rep 0.83(2) .... 2.50 s.u-Ratio O3 -H3B 1.555 1.555 PLAT_731 Alert C Bond Calc 0.83(5), Rep 0.84(2) .... 2.50 s.u-Ratio O4 -H4A 1.555 1.555 PLAT_731 Alert C Bond Calc 0.83(6), Rep 0.83(2) .... 3.00 s.u-Ratio O4 -H4B 1.555 1.555 PLAT_731 Alert C Bond Calc 0.83(5), Rep 0.83(2) .... 2.50 s.u-Ratio O5 -H5B 1.555 1.555 PLAT_731 Alert C Bond Calc 0.85(5), Rep 0.85(2) .... 2.50 s.u-Ratio O6 -H6A 1.555 1.555 PLAT_731 Alert C Bond Calc 0.83(5), Rep 0.84(2) .... 2.50 s.u-Ratio O7 -H7A 1.555 1.555 PLAT_731 Alert C Bond Calc 0.84(5), Rep 0.84(2) .... 2.50 s.u-Ratio O7 -H7B 1.555 1.555 PLAT_735 Alert C D-H Calc 0.84(6), Rep 0.83(2) .... 3.00 s.u-Ratio O1 -H1A 1.555 1.555 PLAT_735 Alert C D-H Calc 0.83(6), Rep 0.83(2) .... 3.00 s.u-Ratio O1 -H1B 1.555 1.555 PLAT_735 Alert C D-H Calc 0.83(6), Rep 0.83(2) .... 3.00 s.u-Ratio O2 -H2A 1.555 1.555 PLAT_735 Alert C D-H Calc 0.83(5), Rep 0.83(2) .... 2.50 s.u-Ratio O2 -H2B 1.555 1.555 PLAT_735 Alert C D-H Calc 0.85(6), Rep 0.84(2) .... 3.00 s.u-Ratio O3 -H3A 1.555 1.555 PLAT_735 Alert C D-H Calc 0.83(5), Rep 0.83(2) .... 2.50 s.u-Ratio O3 -H3B 1.555 1.555 PLAT_735 Alert C D-H Calc 0.83(5), Rep 0.84(2) .... 2.50 s.u-Ratio O4 -H4A 1.555 1.555 PLAT_735 Alert C D-H Calc 0.83(5), Rep 0.84(2) .... 2.50 s.u-Ratio O4 -H4A 1.555 1.555 PLAT_735 Alert C D-H Calc 0.83(6), Rep 0.83(2) .... 3.00 s.u-Ratio O4 -H4B 1.555 1.555 PLAT_735 Alert C D-H Calc 0.83(5), Rep 0.83(2) .... 2.50 s.u-Ratio O5 -H5B 1.555 1.555 PLAT_735 Alert C D-H Calc 0.85(5), Rep 0.85(2) .... 2.50 s.u-Ratio O6 -H6A 1.555 1.555 PLAT_735 Alert C D-H Calc 0.83(5), Rep 0.84(2) .... 2.50 s.u-Ratio O7 -H7A 1.555 1.555 PLAT_735 Alert C D-H Calc 0.84(5), Rep 0.84(2) .... 2.50 s.u-Ratio O7 -H7B 1.555 1.555 PLAT_736 Alert C H...A Calc 2.30(6), Rep 2.30(2) .... 3.00 s.u-Ratio H3A -CL3 1.555 1.556 PLAT_736 Alert C H...A Calc 2.04(5), Rep 2.04(2) .... 2.50 s.u-Ratio H3B -O1 1.555 2.557 PLAT_736 Alert C H...A Calc 2.23(5), Rep 2.23(2) .... 2.50 s.u-Ratio H4A -O3 1.555 2.657 PLAT_736 Alert C H...A Calc 2.49(3), Rep 2.489(12) .... 2.50 s.u-Ratio H6B -O6 1.555 2.666 PLAT_736 Alert C H...A Calc 2.43(5), Rep 2.43(2) .... 2.50 s.u-Ratio H7B -CL3 1.555 1.556
0 Alert Level A = Potentially serious problem
1 Alert Level B = Potential problem
30 Alert Level C = Please check

Comment top

The structure of CeCl3·7H2O has been reported (Peterson et al., 1979) along with the isomorphous La (Habenschuss & Spedding, 1979) and Pr compounds (Habenschuss & Spedding, 1978). These heptahydrates are only found for the early rare earths; the later rare earths form hexahydrates. The La and Pr compounds were refined in space group P1 (No. 2), whereas the Ce compound was refined in P1 (No. 1), this latter decision being heavily influenced by the observation of a piezoelectric effect in the La compound (Bakakin et al., 1974). The structures of MCl3·7H2O all contain nine-coordinate M derived from seven water molecules and two bridging Cl atoms forming a dimeric 4+ cation. Inspection of the non-H coordinates of the Ce compound clearly shows that those related by the (pseudo) `centre of symmetry' lie within 3σ for many of the atoms (approximately 2/3 of the 30 non-H x, y, and z pairs).

The problem of whether to refine in a centrosymmetric space group or not, as well as identifying the crystal system and Laue group, has been well addressed: `··· it simply cannot be determined, by diffraction methods alone, whether a particular structure is centrosymmetric or only approximately so' (Marsh, 1995, 1999). Marsh adopts a pragmatic view in which a centrosymmetric space group should be used if at all possible; only if it is found to be unsatisfactory should the noncentrosymmetric space group be explored, recognizing the well known problems that will probably occur. Warnings against the Hamilton R ratio test (Hamilton, 1965) to resolve the centre of symmetry problem have also been voiced (Baur & Tillmanns, 1986; Marsh, 1995, 1997).

The redetermined structure was solved in space group P1. Note that the unit cell is a reduced cell (type I with all angles acute). The coordination around Ce is a capped square antiprism, with O2 as the capping atom (Fig. 1). All the H atoms are involved in either O—H···O [shortest 2.860 (4) Å] or mainly O—H···Cl [shortest 3.034 (3) Å] hydrogen bonding. Peterson et al. (1979) also commented on short H···H contacts.

In the corresponding refinement in the noncentrosymmetric space group P1, the s.u. values for Ce—O were ca 0.01 Å, with the difference between (pseudo)symmetry related Ce—O distances ranging from 0.01 (O3/O4) to 0.13 Å (O13/O14) [Peterson et al. (1979) atom labelling scheme]. As noted before (Marsh, 1995), the mean of the pairs of (pseudo)centrosymmetric bond lengths in P1 are close to the single value in P1. For example, using our data, the mean of Ce1—O1 [2.549 (12) Å] and Ce2—O2 [2.449 (11) Å] in P1 is similar to the corresponding Ce1—O6 distance [2.494 (3) Å] in P1.

Taking the crystallographic data in isolation, it is clear that the refinement in P1 is more satisfactory, providing as good a fit to the data without the refinement problems encountered in P1.

Experimental top

The title compound was prepared fortuitously during attempts to recrystallize CeCl3(Ph3PO)3 from hot acetone by slow cooling and allowing the room-temperature solution to evaporate.

Refinement top

For the refinement in P1, a solution readily emerged and a later electron-density map showed plausible positions for all H atoms [d(O—H) = 0.78–1.05 Å and reasonable H—O—H angles]. H-atom positions were refined ith restraints on d(O—H) [target value of 0.84 (2) Å], two anti-bumping restraints to control short H.·H contacts (on H6B···H6B' and H4A···H3A" of 2.0 Å), and a common refined anisotropic displacement parameter. Inclusion of an extinction correction led to a modest improvement, giving an R1 (all data) value of 0.032.

For the refinement in P1, the reflection intensities were transformed to the cell reported by Peterson et al. (1979). Refinement proceeded using their published coordinates with anisotropic non-H atoms and fixed H atoms. Problems were experienced with non-positive definite anisotropic anisotropic displacement parameter values for several O atoms and large correlation coefficients (ca 0.90). Convergence was slow, yielding an R1 (all data) value of 0.036 but retaining the unsatisfactory anisotropic displacement parameter values.

Computing details top

Data collection: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); cell refinement: COLLECT and DENZO; data reduction: COLLECT and DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976).

Figures top
[Figure 1] Fig. 1. The molecular structure of the [Ce2Cl2(H2O)14]4+ cation refined in P1, showing the atom-labelling scheme. Note that the cation has a centre of symmetry (symmetry operation: −x, −y, 2 − z). Ellipsoids are drawn at the 70% probability level and H atoms have been omitted for clarity.
Di-mu-chloro-bis[heptaaquacerium(III)] tetrachloride top
Crystal data top
[Ce2Cl2(H2O)14]Cl4Z = 1
Mr = 745.16F(000) = 358
Triclinic, P1Dx = 2.304 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9018 (5) ÅCell parameters from 5200 reflections
b = 8.2096 (10) Åθ = 2.9–27.5°
c = 9.1877 (10) ŵ = 4.98 mm1
α = 70.521 (7)°T = 120 K
β = 73.142 (6)°Block, colourless
γ = 81.660 (5)°0.26 × 0.20 × 0.20 mm
V = 536.98 (10) Å3
Data collection top
Nonius KappaCCD area-detector
diffractometer
1879 independent reflections
Radiation source: Nonius rotating anode1849 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ϕ and ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 99
Tmin = 0.287, Tmax = 0.369k = 99
7877 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.049P)2 + 0.908P]
where P = (Fo2 + 2Fc2)/3
S = 1.17(Δ/σ)max = 0.004
1879 reflectionsΔρmax = 2.28 e Å3
144 parametersΔρmin = 2.39 e Å3
15 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.029 (2)
Crystal data top
[Ce2Cl2(H2O)14]Cl4γ = 81.660 (5)°
Mr = 745.16V = 536.98 (10) Å3
Triclinic, P1Z = 1
a = 7.9018 (5) ÅMo Kα radiation
b = 8.2096 (10) ŵ = 4.98 mm1
c = 9.1877 (10) ÅT = 120 K
α = 70.521 (7)°0.26 × 0.20 × 0.20 mm
β = 73.142 (6)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
1879 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
1849 reflections with I > 2σ(I)
Tmin = 0.287, Tmax = 0.369Rint = 0.053
7877 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03015 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.17Δρmax = 2.28 e Å3
1879 reflectionsΔρmin = 2.39 e Å3
144 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

d(O—H) was restrained to 0.84 Å and two anti-bumping restraints included to short H···H distances. All H atoms were given a common refined adp.

The max. and min. features in the difference electron-density map are ca 1 Å from the Ce atom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ce10.21775 (2)0.18631 (3)0.82399 (2)0.00634 (17)
Cl10.14623 (12)0.17924 (12)0.98564 (12)0.0097 (3)
Cl20.78962 (13)0.22189 (13)0.46539 (13)0.0125 (3)
Cl30.34275 (13)0.38684 (13)0.21261 (13)0.0128 (3)
O10.0731 (4)0.0816 (4)0.6630 (4)0.0127 (6)
O20.0307 (4)0.4217 (4)0.6751 (4)0.0131 (7)
O30.2303 (4)0.0936 (4)1.1152 (4)0.0122 (6)
O40.5201 (4)0.2292 (4)0.8417 (4)0.0146 (7)
O50.4510 (4)0.0093 (4)0.6985 (4)0.0132 (7)
O60.3850 (4)0.3509 (4)0.5503 (4)0.0131 (7)
O70.2202 (4)0.4603 (4)0.8867 (4)0.0167 (7)
H1A0.011 (7)0.149 (7)0.606 (7)0.033 (5)*
H1B0.126 (8)0.004 (6)0.637 (8)0.033 (5)*
H2A0.059 (5)0.462 (8)0.728 (7)0.033 (5)*
H2B0.084 (7)0.510 (5)0.618 (7)0.033 (5)*
H3A0.255 (8)0.174 (6)1.143 (8)0.033 (5)*
H3B0.136 (5)0.052 (8)1.175 (7)0.033 (5)*
H4A0.601 (6)0.152 (6)0.844 (8)0.033 (5)*
H4B0.562 (8)0.309 (6)0.855 (8)0.033 (5)*
H5A0.462 (8)0.117 (3)0.739 (7)0.033 (5)*
H5B0.537 (6)0.025 (8)0.622 (5)0.033 (5)*
H6A0.357 (8)0.372 (8)0.463 (5)0.033 (5)*
H6B0.494 (3)0.361 (2)0.523 (8)0.033 (5)*
H7A0.197 (8)0.548 (5)0.816 (6)0.033 (5)*
H7B0.255 (8)0.455 (9)0.966 (5)0.033 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ce10.0038 (2)0.0089 (2)0.0061 (2)0.00300 (11)0.00032 (12)0.00166 (13)
Cl10.0066 (5)0.0099 (5)0.0106 (5)0.0021 (4)0.0003 (4)0.0018 (4)
Cl20.0081 (5)0.0132 (5)0.0167 (6)0.0018 (4)0.0023 (4)0.0056 (4)
Cl30.0117 (5)0.0149 (5)0.0132 (5)0.0017 (4)0.0040 (4)0.0050 (4)
O10.0109 (15)0.0137 (16)0.0168 (17)0.0020 (12)0.0070 (12)0.0073 (13)
O20.0088 (15)0.0128 (16)0.0127 (16)0.0019 (12)0.0003 (12)0.0011 (13)
O30.0108 (15)0.0176 (17)0.0096 (16)0.0082 (12)0.0014 (12)0.0038 (13)
O40.0075 (15)0.0186 (17)0.0208 (17)0.0031 (12)0.0045 (13)0.0082 (14)
O50.0066 (15)0.0120 (15)0.0171 (17)0.0029 (12)0.0022 (12)0.0030 (13)
O60.0064 (15)0.0200 (17)0.0104 (16)0.0042 (12)0.0002 (12)0.0018 (13)
O70.0189 (17)0.0144 (16)0.0201 (19)0.0005 (13)0.0094 (14)0.0061 (14)
Geometric parameters (Å, º) top
Ce1—O12.520 (3)O2—H2B0.83 (2)
Ce1—O22.524 (3)O3—H3A0.84 (2)
Ce1—O32.554 (3)O3—H3B0.83 (2)
Ce1—O42.523 (3)O4—H4A0.84 (2)
Ce1—O52.540 (3)O4—H4B0.83 (2)
Ce1—O62.494 (3)O5—H5A0.84 (2)
Ce1—O72.505 (3)O5—H5B0.83 (2)
Ce1—Cl1i2.8979 (10)O6—H6A0.85 (2)
Ce1—Cl12.9264 (10)O6—H6B0.83 (2)
O1—H1A0.83 (2)O7—H7A0.84 (2)
O1—H1B0.83 (2)O7—H7B0.84 (2)
O2—H2A0.83 (2)
O6—Ce1—O784.21 (11)O1—Ce1—Cl170.99 (8)
O6—Ce1—O181.02 (10)O4—Ce1—Cl1107.49 (8)
O7—Ce1—O1137.56 (10)O2—Ce1—Cl1128.49 (7)
O6—Ce1—O472.83 (11)O5—Ce1—Cl168.40 (7)
O7—Ce1—O468.64 (11)O3—Ce1—Cl168.24 (7)
O1—Ce1—O4140.84 (10)Cl1i—Ce1—Cl173.92 (3)
O6—Ce1—O266.65 (10)Ce1i—Cl1—Ce1106.08 (3)
O7—Ce1—O270.18 (11)Ce1—O1—H1A121 (5)
O1—Ce1—O267.42 (10)Ce1—O1—H1B114 (5)
O4—Ce1—O2123.90 (10)H1A—O1—H1B119 (7)
O6—Ce1—O569.09 (10)Ce1—O2—H2A118 (5)
O7—Ce1—O5135.21 (10)Ce1—O2—H2B114 (5)
O1—Ce1—O574.32 (10)H2A—O2—H2B102 (6)
O4—Ce1—O569.39 (10)Ce1—O3—H3A114 (5)
O2—Ce1—O5124.57 (11)Ce1—O3—H3B110 (5)
O6—Ce1—O3141.08 (10)H3A—O3—H3B110 (6)
O7—Ce1—O374.08 (11)Ce1—O4—H4A123 (4)
O4—Ce1—O369.30 (10)Ce1—O4—H4B133 (4)
O2—Ce1—O3130.68 (10)H4A—O4—H4B104 (6)
O5—Ce1—O3104.73 (10)Ce1—O5—H5A124 (5)
O6—Ce1—Cl1i136.56 (7)Ce1—O5—H5B125 (4)
O7—Ce1—Cl1i84.37 (8)H5A—O5—H5B110 (6)
O1—Ce1—Cl1i79.75 (7)Ce1—O6—H6A128 (5)
O4—Ce1—Cl1i138.74 (8)Ce1—O6—H6B124 (4)
O2—Ce1—Cl1i70.04 (7)H6A—O6—H6B104 (6)
O5—Ce1—Cl1i139.40 (7)Ce1—O7—H7A112 (5)
O3—Ce1—Cl1i73.70 (7)Ce1—O7—H7B119 (5)
O6—Ce1—Cl1133.84 (8)H7A—O7—H7B128 (7)
O7—Ce1—Cl1140.38 (8)
Symmetry code: (i) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl2ii0.83 (2)2.36 (3)3.139 (3)155 (6)
O1—H1B···Cl2iii0.83 (2)2.22 (3)3.034 (3)165 (6)
O2—H2A···Cl3iv0.83 (2)2.41 (3)3.196 (3)159 (6)
O2—H2B···Cl2v0.83 (2)2.35 (3)3.141 (3)162 (6)
O3—H3A···Cl3vi0.84 (2)2.30 (2)3.147 (3)176 (6)
O3—H3B···O1i0.83 (2)2.04 (2)2.860 (4)172 (6)
O4—H4A···O3vii0.84 (2)2.23 (2)3.050 (5)167 (6)
O4—H4A···Cl1vii0.84 (2)2.94 (6)3.364 (3)114 (5)
O4—H4B···Cl3v0.83 (2)2.53 (3)3.315 (3)157 (6)
O5—H5A···Cl3iii0.84 (2)2.50 (4)3.247 (3)149 (6)
O5—H5B···Cl20.83 (2)2.53 (3)3.284 (3)153 (6)
O6—H6A···Cl30.85 (2)2.30 (3)3.128 (3)166 (6)
O6—H6B···O6v0.83 (2)2.49 (1)2.993 (6)120 (1)
O6—H6B···Cl20.83 (2)2.44 (2)3.174 (3)148 (1)
O7—H7A···Cl2v0.84 (2)2.62 (3)3.426 (4)161 (6)
O7—H7B···Cl3vi0.84 (2)2.43 (2)3.252 (4)170 (6)
Symmetry codes: (i) x, y, z+2; (ii) x1, y, z; (iii) x+1, y, z+1; (iv) x, y+1, z+1; (v) x+1, y+1, z+1; (vi) x, y, z+1; (vii) x+1, y, z+2.

Experimental details

Crystal data
Chemical formula[Ce2Cl2(H2O)14]Cl4
Mr745.16
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)7.9018 (5), 8.2096 (10), 9.1877 (10)
α, β, γ (°)70.521 (7), 73.142 (6), 81.660 (5)
V3)536.98 (10)
Z1
Radiation typeMo Kα
µ (mm1)4.98
Crystal size (mm)0.26 × 0.20 × 0.20
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.287, 0.369
No. of measured, independent and
observed [I > 2σ(I)] reflections
7877, 1879, 1849
Rint0.053
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.080, 1.17
No. of reflections1879
No. of parameters144
No. of restraints15
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.28, 2.39

Computer programs: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997), COLLECT and DENZO, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976).

Selected geometric parameters (Å, º) top
Ce1—O12.520 (3)Ce1—O62.494 (3)
Ce1—O22.524 (3)Ce1—O72.505 (3)
Ce1—O32.554 (3)Ce1—Cl1i2.8979 (10)
Ce1—O42.523 (3)Ce1—Cl12.9264 (10)
Ce1—O52.540 (3)
O6—Ce1—O266.65 (10)O2—Ce1—O3130.68 (10)
O7—Ce1—O270.18 (11)O2—Ce1—Cl1i70.04 (7)
O1—Ce1—O267.42 (10)O2—Ce1—Cl1128.49 (7)
O4—Ce1—O2123.90 (10)Cl1i—Ce1—Cl173.92 (3)
O2—Ce1—O5124.57 (11)
Symmetry code: (i) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl2ii0.83 (2)2.36 (3)3.139 (3)155 (6)
O1—H1B···Cl2iii0.83 (2)2.22 (3)3.034 (3)165 (6)
O2—H2A···Cl3iv0.83 (2)2.41 (3)3.196 (3)159 (6)
O2—H2B···Cl2v0.83 (2)2.35 (3)3.141 (3)162 (6)
O3—H3A···Cl3vi0.84 (2)2.30 (2)3.147 (3)176 (6)
O3—H3B···O1i0.83 (2)2.04 (2)2.860 (4)172 (6)
O4—H4A···O3vii0.84 (2)2.23 (2)3.050 (5)167 (6)
O4—H4B···Cl3v0.83 (2)2.53 (3)3.315 (3)157 (6)
O5—H5A···Cl3iii0.84 (2)2.50 (4)3.247 (3)149 (6)
O5—H5B···Cl20.83 (2)2.53 (3)3.284 (3)153 (6)
O6—H6A···Cl30.85 (2)2.30 (3)3.128 (3)166 (6)
O6—H6B···O6v0.83 (2)2.489 (12)2.993 (6)120.1 (11)
O6—H6B···Cl20.83 (2)2.44 (2)3.174 (3)147.7 (10)
O7—H7B···Cl3vi0.84 (2)2.43 (2)3.252 (4)170 (6)
Symmetry codes: (i) x, y, z+2; (ii) x1, y, z; (iii) x+1, y, z+1; (iv) x, y+1, z+1; (v) x+1, y+1, z+1; (vi) x, y, z+1; (vii) x+1, y, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds