Download citation
Download citation
link to html
In the title compound, C11H13BrN4O2, the pyrimidine and pyrazole rings make a dihedral angle of 3.8 (6)°. The pendant tetra­hydro­pyran ring is in a chair conformation and its mean plane makes an interplanar angle of 52.5 (6)° with the pyrazole ring. There is a short Br...O intermolecular contact of 2.994 (7) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802014988/ob6166sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802014988/ob6166Isup2.hkl
Contains datablock I

CCDC reference: 197480

Key indicators

  • Single-crystal X-ray study
  • T = 163 K
  • Mean [sigma](C-C) = 0.015 Å
  • R factor = 0.059
  • wR factor = 0.147
  • Data-to-parameter ratio = 12.6

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_163 Alert C Missing or Zero su (esd) on z-coordinate for . BR1 PLAT_213 Alert C Atom O1 has ADP max/min Ratio ........... 3.40 prolate General Notes
REFLT_03 From the CIF: _diffrn_reflns_theta_max 26.06 From the CIF: _reflns_number_total 1475 From the CIF: _diffrn_reflns_limit_ max hkl 12. 21. 6. From the CIF: _diffrn_reflns_limit_ min hkl -12. -14. -7. TEST1: Expected hkl limits for theta max Calculated maximum hkl 15. 21. 7. Calculated minimum hkl -15. -21. -7. ALERT: Expected hkl max differ from CIF values REFLT_03 From the CIF: _diffrn_reflns_theta_max 26.06 From the CIF: _reflns_number_total 1475 Count of symmetry unique reflns 1314 Completeness (_total/calc) 112.25% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 161 Fraction of Friedel pairs measured 0.123 Are heavy atom types Z>Si present yes WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
2 Alert Level C = Please check

Comment top

The title compound, (I), was studied in order to confirm the regioselectivity, based on 13C NMR, of the critical tetrahydropyranyl-protecting group. The crystal structure is built of isolated molecules (Fig. 1) and only weak intermolecular contacts e.g. C5—H5···O2i [symmetry code: (i) x − 1/2, 3/2 − y, z] with C5···O2i = 3.29 (1) Å. There is also a short intermolecular contact between Br1 and O1ii of 2.994 (7) Å [symmetry code: (ii) −x, 1 − y, z − 1/2]. A search of the Cambridge Structural Database (Allen & Kennard, 1993; CCDC, 2002a) gives the (closest) similar interaction of 3.024 Å in 5-bromo-11-ethylenedioxy-5-nitro-2- oxapentacyclo[7.3.03,7.O4,12O6,11]dodecane (Watson et al., 1990) and, interestingly, this is the only interaction between the molecules in one direction in the lattice (CCDC, 2002b). Two other short Br···O intermolecular distances have been reported, viz. 3.094 (Gu et al., 1986) and 3.102 Å (Tomilov et al., 1999), but in these latter cases there are further intermolecular contacts between the same molecules. There is also one close intramolecular interaction here, viz. C1'-H1'···Br1 with C1'···Br1 = 3.27 (1) Å.

The C—Br distance is 1.85 (1) Å, identical to that in 4-bromo-3-(3-pyridyl)sydnone (Hasek et al., 1979); C—Br bond distances from sp2-hybridized C atoms vary in the range 1.793–1.932 Å (CCDC, 2002a). The fused five- and six-membered rings are each planar, with average deviations of 0.008 (6) and 0.007 (7) Å, respectively; their least-squares planes form a dihedral angle of 3.8 (6)°. The pendant tetrahydropyran ring (O1/C1'–C5') is in a chair conformation [Q = 0.57 (1) Å and θ 3.4 (12)°; Boeyens, 1978] and the mean plane through this ring makes an angle of 52.5 (6) Å to the pyrazole ring.

Experimental top

The title compound was prepared as described by Stone et al. (1979) and recrystallized from methanol.

Refinement top

The _measured_fraction_theta_max was low (0.76), which follows a collection algorithm limit error on the h index. The data-to-parameter ratio and Flack (1983) parameter s.u. are adequate, though it was not possible to refine all non-H atoms with anisotropic displacement parameters. All H atoms were included in the riding-model approximation with an isotropic displacement parameter constrained to 1.2 times that of the equivalent Ueq value of their parent atom (SHELXL97; Sheldrick, 1997).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART (Siemens, 1996); data reduction: SAINT (Siemens, 1996) and SADABS (Sheldrick, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) (Farrugia, 1997). Displacement ellipsoids are drawn at the 50% probability level.
(I) top
Crystal data top
C11H13BrN4O2F(000) = 632
Mr = 313.16Dx = 1.723 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2337 reflections
a = 12.4224 (4) Åθ = 2.9–25.8°
b = 17.1489 (5) ŵ = 3.41 mm1
c = 5.6680 (1) ÅT = 163 K
V = 1207.46 (6) Å3Needle, pale yellow
Z = 40.50 × 0.06 × 0.04 mm
Data collection top
Bruker P4
diffractometer
1475 independent reflections
Radiation source: fine-focus sealed tube1188 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
Detector resolution: 8.192 pixels mm-1θmax = 26.1°, θmin = 2.9°
ω scansh = 1212
Absorption correction: multi-scan
(Blessing, 1995)
k = 1421
Tmin = 0.290, Tmax = 0.876l = 76
3279 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: constr
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.0903P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
1475 reflectionsΔρmax = 1.00 e Å3
117 parametersΔρmin = 1.45 e Å3
0 restraintsAbsolute structure: (Flack, 1983), 161 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (3)
Crystal data top
C11H13BrN4O2V = 1207.46 (6) Å3
Mr = 313.16Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 12.4224 (4) ŵ = 3.41 mm1
b = 17.1489 (5) ÅT = 163 K
c = 5.6680 (1) Å0.50 × 0.06 × 0.04 mm
Data collection top
Bruker P4
diffractometer
1475 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
1188 reflections with I > 2σ(I)
Tmin = 0.290, Tmax = 0.876Rint = 0.058
3279 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.147Δρmax = 1.00 e Å3
S = 0.99Δρmin = 1.45 e Å3
1475 reflectionsAbsolute structure: (Flack, 1983), 161 Friedel pairs
117 parametersAbsolute structure parameter: 0.00 (3)
0 restraints
Special details top

Experimental. Crystal decay was monitored by repeating the initial 10 frames at the end of the data collection (shell) and analyzing duplicate reflections. The standard 0.8 mm diameter collimator was used.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.03565 (7)0.58048 (5)0.184110.0222 (3)
O10.2046 (6)0.4822 (4)0.3585 (11)0.0215 (16)
O20.1935 (6)0.7450 (4)1.0545 (11)0.0248 (18)
N10.1944 (7)0.6425 (4)0.6482 (13)0.022 (2)*
N20.1527 (7)0.6059 (5)0.4598 (14)0.020 (2)
N40.0742 (8)0.7174 (5)0.6385 (12)0.022 (2)*
N60.0188 (8)0.7792 (5)0.9593 (13)0.026 (2)*
C30.0452 (10)0.6238 (6)0.4249 (17)0.024 (2)*
C3A0.0185 (10)0.6757 (6)0.5928 (17)0.019 (3)
C50.0675 (10)0.7644 (6)0.8066 (16)0.031 (3)*
H50.13030.79460.83490.037*
C70.1070 (9)0.7388 (6)0.9201 (14)0.020 (2)*
C7A0.1108 (9)0.6856 (5)0.7316 (14)0.018 (3)
C80.1908 (10)0.8025 (7)1.2440 (15)0.028 (3)
H8A0.20640.85431.17950.033*
H8B0.24500.78911.36300.033*
H8C0.11930.80271.31690.033*
C1'0.2200 (10)0.5608 (6)0.3048 (16)0.025 (2)*
H1'0.19520.56980.13910.030*
C2'0.3360 (10)0.5844 (6)0.3212 (17)0.030 (2)*
H2'A0.36280.57670.48410.036*
H2'B0.34410.64020.27980.036*
C3'0.4003 (10)0.5337 (6)0.1486 (19)0.034 (3)*
H3'A0.38090.54770.01550.041*
H3'B0.47820.54340.16980.041*
C4'0.3763 (8)0.4479 (5)0.191 (3)0.029 (2)
H4'A0.41010.41620.06540.035*
H4'B0.40730.43170.34420.035*
C5'0.2571 (9)0.4340 (5)0.192 (3)0.031 (2)
H5'A0.22770.44440.03300.037*
H5'B0.24280.37860.23090.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0131 (6)0.0235 (5)0.0299 (4)0.0043 (5)0.0018 (6)0.0031 (6)
O10.006 (5)0.013 (3)0.045 (4)0.003 (4)0.008 (3)0.006 (3)
O20.014 (5)0.028 (4)0.032 (3)0.002 (4)0.004 (3)0.000 (3)
N20.012 (6)0.015 (4)0.033 (4)0.006 (5)0.003 (3)0.002 (3)
C3A0.006 (8)0.020 (5)0.031 (4)0.006 (6)0.001 (4)0.004 (4)
C7A0.012 (8)0.014 (5)0.028 (5)0.005 (6)0.001 (3)0.001 (3)
C80.008 (8)0.036 (7)0.039 (6)0.006 (7)0.000 (4)0.009 (4)
C4'0.011 (7)0.026 (5)0.051 (5)0.008 (5)0.001 (7)0.000 (7)
C5'0.020 (8)0.023 (5)0.050 (5)0.001 (5)0.003 (8)0.004 (7)
Geometric parameters (Å, º) top
Br1—C31.850 (10)C8—H8A0.9800
O1—C1'1.394 (12)C8—H8B0.9800
O1—C5'1.413 (15)C8—H8C0.9800
O2—C71.322 (12)C1'—C2'1.500 (17)
O2—C81.458 (11)C1'—H1'1.0000
N1—N21.343 (11)C2'—C3'1.534 (15)
N1—C7A1.360 (12)C2'—H2'A0.9900
N2—C31.384 (14)C2'—H2'B0.9900
N2—C1'1.439 (13)C3'—C4'1.519 (14)
N4—C51.251 (12)C3'—H3'A0.9900
N4—C3A1.380 (14)C3'—H3'B0.9900
N6—C71.315 (14)C4'—C5'1.500 (15)
N6—C51.401 (14)C4'—H4'A0.9900
C3—C3A1.344 (15)C4'—H4'B0.9900
C3A—C7A1.401 (14)C5'—H5'A0.9900
C5—H50.9500C5'—H5'B0.9900
C7—C7A1.406 (13)
C1'—O1—C5'110.9 (8)O1—C1'—C2'112.3 (9)
C7—O2—C8117.4 (8)N2—C1'—C2'112.0 (8)
N2—N1—C7A103.6 (8)O1—C1'—H1'108.2
N1—N2—C3112.5 (8)N2—C1'—H1'108.2
N1—N2—C1'120.9 (9)C2'—C1'—H1'108.2
C3—N2—C1'126.3 (9)C1'—C2'—C3'107.9 (9)
C5—N4—C3A115.0 (10)C1'—C2'—H2'A110.1
C7—N6—C5116.0 (9)C3'—C2'—H2'A110.1
C3A—C3—N2106.5 (10)C1'—C2'—H2'B110.1
C3A—C3—Br1130.8 (10)C3'—C2'—H2'B110.1
N2—C3—Br1122.7 (8)H2'A—C2'—H2'B108.4
C3—C3A—N4133.0 (10)C4'—C3'—C2'110.3 (10)
C3—C3A—C7A106.0 (10)C4'—C3'—H3'A109.6
N4—C3A—C7A120.9 (9)C2'—C3'—H3'A109.6
N4—C5—N6129.6 (12)C4'—C3'—H3'B109.6
N4—C5—H5115.2C2'—C3'—H3'B109.6
N6—C5—H5115.2H3'A—C3'—H3'B108.1
N6—C7—O2122.5 (8)C5'—C4'—C3'110.4 (9)
N6—C7—C7A119.9 (10)C5'—C4'—H4'A109.6
O2—C7—C7A117.6 (10)C3'—C4'—H4'A109.6
N1—C7A—C3A111.3 (8)C5'—C4'—H4'B109.6
N1—C7A—C7130.0 (10)C3'—C4'—H4'B109.6
C3A—C7A—C7118.6 (10)H4'A—C4'—H4'B108.1
O2—C8—H8A109.5O1—C5'—C4'111.4 (11)
O2—C8—H8B109.5O1—C5'—H5'A109.3
H8A—C8—H8B109.5C4'—C5'—H5'A109.3
O2—C8—H8C109.5O1—C5'—H5'B109.3
H8A—C8—H8C109.5C4'—C5'—H5'B109.3
H8B—C8—H8C109.5H5'A—C5'—H5'B108.0
O1—C1'—N2107.9 (8)
C7A—N1—N2—C31.0 (10)C3—C3A—C7A—N11.6 (11)
C7A—N1—N2—C1'172.8 (8)N4—C3A—C7A—N1176.4 (8)
N1—N2—C3—C3A2.0 (12)C3—C3A—C7A—C7178.5 (9)
C1'—N2—C3—C3A171.4 (9)N4—C3A—C7A—C70.4 (14)
N1—N2—C3—Br1178.3 (6)N6—C7—C7A—N1174.6 (9)
C1'—N2—C3—Br18.2 (14)O2—C7—C7A—N16.5 (15)
N2—C3—C3A—N4175.6 (10)N6—C7—C7A—C3A1.6 (14)
Br1—C3—C3A—N43.9 (18)O2—C7—C7A—C3A177.3 (8)
N2—C3—C3A—C7A2.1 (11)C5'—O1—C1'—N2172.1 (9)
Br1—C3—C3A—C7A178.3 (8)C5'—O1—C1'—C2'64.0 (10)
C5—N4—C3A—C3176.2 (11)N1—N2—C1'—O1102.2 (10)
C5—N4—C3A—C7A1.3 (13)C3—N2—C1'—O184.8 (12)
C3A—N4—C5—N62.2 (15)N1—N2—C1'—C2'21.8 (12)
C7—N6—C5—N41.1 (15)C3—N2—C1'—C2'151.1 (10)
C5—N6—C7—O2177.9 (8)O1—C1'—C2'—C3'59.0 (10)
C5—N6—C7—C7A1.0 (13)N2—C1'—C2'—C3'179.5 (8)
C8—O2—C7—N63.5 (13)C1'—C2'—C3'—C4'52.3 (12)
C8—O2—C7—C7A177.6 (8)C2'—C3'—C4'—C5'51.5 (16)
N2—N1—C7A—C3A0.4 (10)C1'—O1—C5'—C4'61.1 (13)
N2—N1—C7A—C7176.8 (9)C3'—C4'—C5'—O155.2 (16)

Experimental details

Crystal data
Chemical formulaC11H13BrN4O2
Mr313.16
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)163
a, b, c (Å)12.4224 (4), 17.1489 (5), 5.6680 (1)
V3)1207.46 (6)
Z4
Radiation typeMo Kα
µ (mm1)3.41
Crystal size (mm)0.50 × 0.06 × 0.04
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.290, 0.876
No. of measured, independent and
observed [I > 2σ(I)] reflections
3279, 1475, 1188
Rint0.058
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.147, 0.99
No. of reflections1475
No. of parameters117
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.00, 1.45
Absolute structure(Flack, 1983), 161 Friedel pairs
Absolute structure parameter0.00 (3)

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996) and SADABS (Sheldrick, 1996), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
Br1—C31.850 (10)N4—C51.251 (12)
N1—N21.343 (11)N6—C71.315 (14)
N1—C7A1.360 (12)C3—C3A1.344 (15)
N2—N1—C7A103.6 (8)N1—N2—C1'120.9 (9)
Br1—C3—C3A—N43.9 (18)N1—N2—C1'—O1102.2 (10)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds