Download citation
Download citation
link to html
4-Cyclo­hexyl-5-[hydroxy-bis(4-methoxy­phenyl)­methyl]-2,2-di­phenyl-1,3-dioxa-4-azonia-2-borata-4-cyclo­pentene, C34H36BNO5, contains a five-membered heterocyclic ring with a B-envelope conformation. Bond lengths and angles are similar to those in related hydro­xamatoboron chelates.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802016124/cf6204sup1.cif
Contains datablocks global, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802016124/cf6204IIsup2.hkl
Contains datablock II

CCDC reference: 198955

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.040
  • wR factor = 0.038
  • Data-to-parameter ratio = 10.0

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

In the course of our investigations of hydroxamic acids as bi- or polydentate ligands in the formation of boron complexes (Kliegel et al., 1996, and references therein; Kliegel et al., 2001), we chose the 2,2-diaryl derivative of an N-alkyl glycolohydroxamic acid, (I), for the chelatization of the diphenylborenium (Ph2B+) ion. The crystalline compound obtained from the reaction of (I) with diphenylborinic acid (anhydride) shows an elemental composition and spectroscopic data corresponding with any of the structural alternatives (II)–(IV). In the 1H NMR spectrum of the colorless substance, however, the chemical shift of the OH-proton signal at relatively high field (δ = 3.15 p.p.m.) points to an alcoholic hydroxy group [as in (II)], rather than to hydroxamic acid moieties [as in (III) or (IV)], which normally give OH signals at a lower field. The molecular structure (II) would harmonize with the five-membered BONCO chelate ring systems established for the diphenylboron chelate of an N-unsubstituted 2,2-dialkylglycolohydroxamic acid and other hydroxamatoboron complexes (Kliegel et al., 1996, and references therein; Kliegel et al., 2001). A six-membered BONCCO ring, as in the possible structure (III), had been found in the difluoroboron chelate of an N,O-disubstituted 2,2-diphenylglycolohydroxamic acid (Kliegel, Schumacher, Rettig & Trotter, 1991), and the five-membered BOCCO ring system, as in the alternative structure (IV), is realised in the difluoroboron chelates of other derivatives of 2,2-diary1glycolohydroxamic acids (Kliegel et al., 1992). The X-ray analysis confirms the molecular structure (II), a typical hydroxamatoboron complex, the general geometry of which is very similar to that of related compounds (Kliegel et al., 1996, and references therein; Kliegel et al., 2001). The preference of the hydroxamate group as the ligand for the Ph2B+ ion is in agreement with the findings for the diphenylboron chelates of hydroxamic acids containing additional 2-hydroxy groups as possible nucleophilic ligands in the carbonic acid part (Kliegel et al., 1996) or in the hydroxylamine part (Kliegel, Schumacher, Tajerbashi et al., 1991).

The five-membered BONCO ring has a pronounced B-envelope conformation with approximate planarity of the ONCO ring portion [dihedral angle 4.2 (2)°]. A considerable double-bond character of the C1—N1 bond [1.299 (3) Å], with an estimated (Häfelinger, 1970) and calculated (Paolini, 1990) π-bond order of 0.77 and 0.82, respectively, justifies the depicted chemical formula (II), with a predominant C=N double bond, representing the most important canonical structure. However, the C1—O2 bond [1.292 (2) Å] retains about 55% of its double-bond character. The two O—B bonds show an abnormally large difference of 0.083 Å [B—O(N) = 1.515 (3), B—O(C) = 1.598 (3) Å], compared to other hydroxamatoboron complexes, where differences are between 0.001 and 0.035 Å (Kliegel et al., 1996, and references therein; Kliegel et al., 2001). The considerably longer (C)O—B bond [1.598 (3) Å] points to the weaker donor property of the carbonyl group in this O,O-bidentate hydroxamate ligand.

Molecules of the chelate (II) are linked along a glide plane by O3—H1···O5 hydrogen bonds (Table 2).

Experimental top

N-Cyclohexyl-2,2-bis(4-methoxyphenyl)glycolohydroxamic acid (Geffken & Lauterbach, 1985) (1.16 g, 3 mmol) and diphenylborinic acid anhydride [oxybis(diphenylborane)] (0.52 g, 1.5 mmol) were dissolved in a small amount of absolute ethanol by slight heating. During cooling of the solution crystallization commenced spontaneously or after addition of petroleum ether. Yield of (II): 1.18 g (72%) of colorless crystals (with nacrous lustre), m.p. 417–419 K (from ethanol). IR (KBr): 3450 (O—H), 1610, 1595, 1585 (C=N/C=O, C=C). 1H NMR (90 MHz, CDCl3—TMS), δ (p.p.m.): 0.75–2.25 (m, (CH2)5), 3.15 (s, exchangeable, OH), 3.78 (s, 2 OCH3), 3.75–4.30 (m, N—CH), 6.73–6.97 (m, 4 aromatic H), 7.12–7.60 (m, 14 aromatic H). Analysis calculated for C34H36BNO5: C 74.32, H 6.60, N 2.55%; found: C 74.25, H 6.65, N 2.65%. The compound gives a blue color reaction with diphenylcarbazone in methanolic solution, indicating the presence of a diphenylboron moiety (Neu, 1960; Friese & Umland, 1978). Crystals suitable for X-ray crystallography were obtained by slow crystallization from ethanol.

Refinement top

The O-bound H atom was refined freely; other H atoms were riding on their parent atoms (C—H 0.95 Å).

Computing details top

Data collection: CAD-4 Diffractometer Control Software (Enraf-Nonius, 1978); cell refinement: CAD-4 Diffractometer Control Software; data reduction: local programs (Rettig, 1978); program(s) used to solve structure: MULTAN80 (Main et al., 1980); program(s) used to refine structure: ORFLS (Busing et al., 1962); software used to prepare material for publication: TEXSAN (Molecular Structure Corporation, 1989).

Figures top
[Figure 1] Fig. 1. View of the molecule (33% displacement ellipsoids).
(II) top
Crystal data top
C34H36BNO5Dx = 1.234 Mg m3
Mr = 549.45Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 25 reflections
a = 24.106 (2) Åθ = 18.0–21.4°
b = 20.763 (2) ŵ = 0.08 mm1
c = 11.8193 (7) ÅT = 294 K
V = 5915.7 (8) Å3Prism, colorless
Z = 80.30 × 0.30 × 0.20 mm
F(000) = 2336
Data collection top
Enraf-Nonius CAD-4
diffractometer
3752 reflections with I > 3σ(I)
Radiation source: X-ray tubeRint = 0.0
Graphite monochromatorθmax = 27.5°, θmin = 0.0°
ω–2θ scansh = 031
Absorption correction: ψ scan
(Rettig, 1978)
k = 027
Tmin = 0.97, Tmax = 0.98l = 015
6740 measured reflections3 standard reflections every 150 reflections
6740 independent reflections intensity decay: 1.4%
Refinement top
Refinement on F0 restraints
Least-squares matrix: full0 constraints
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.038Weighting scheme based on measured s.u.'s w = 1/[σ2(Fo) + 0.0004Fo2]
S = 1.96(Δ/σ)max = 0.03
3752 reflectionsΔρmax = 0.16 e Å3
375 parametersΔρmin = 0.22 e Å3
Crystal data top
C34H36BNO5V = 5915.7 (8) Å3
Mr = 549.45Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 24.106 (2) ŵ = 0.08 mm1
b = 20.763 (2) ÅT = 294 K
c = 11.8193 (7) Å0.30 × 0.30 × 0.20 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
3752 reflections with I > 3σ(I)
Absorption correction: ψ scan
(Rettig, 1978)
Rint = 0.0
Tmin = 0.97, Tmax = 0.983 standard reflections every 150 reflections
6740 measured reflections intensity decay: 1.4%
6740 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.038H atoms treated by a mixture of independent and constrained refinement
S = 1.96Δρmax = 0.16 e Å3
3752 reflectionsΔρmin = 0.22 e Å3
375 parameters
Special details top

Experimental. The scan width was (0.75 + 0.35tanθ)° with a variable ω scan speed (1.5–10°/min). Scan time:background time ratio was 2:1.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.43507 (5)0.58472 (6)0.48595 (11)0.047 (1)
O20.36278 (5)0.59787 (6)0.35542 (10)0.042 (1)
O30.27573 (6)0.63936 (7)0.58510 (11)0.047 (1)
O40.20608 (6)0.34675 (6)0.51257 (12)0.055 (1)
O50.19209 (6)0.76473 (6)0.13399 (12)0.054 (1)
N10.38255 (6)0.58995 (8)0.53435 (13)0.042 (1)
C10.34457 (8)0.59949 (9)0.45817 (16)0.037 (1)
C20.38079 (9)0.58496 (10)0.65829 (17)0.046 (1)
C30.39859 (12)0.51844 (12)0.6972 (2)0.057 (1)
C40.39464 (13)0.51511 (15)0.8258 (2)0.068 (2)
C50.42963 (13)0.56632 (16)0.8798 (2)0.077 (2)
C60.41336 (14)0.63290 (15)0.8395 (2)0.074 (2)
C70.41586 (13)0.63727 (14)0.7105 (2)0.061 (1)
C80.28233 (7)0.60589 (9)0.48028 (15)0.038 (1)
C90.42251 (8)0.49636 (10)0.33347 (19)0.045 (1)
C100.40276 (10)0.47285 (13)0.2310 (2)0.062 (1)
C110.39484 (11)0.40760 (14)0.2117 (3)0.078 (2)
C120.40714 (11)0.36412 (15)0.2945 (3)0.081 (2)
C130.42861 (11)0.38500 (13)0.3948 (3)0.072 (2)
C140.43610 (9)0.45032 (11)0.4138 (2)0.054 (1)
C150.46392 (8)0.61749 (10)0.28625 (17)0.048 (1)
C160.48860 (10)0.59833 (13)0.1863 (2)0.063 (1)
C170.51942 (13)0.64048 (16)0.1198 (3)0.084 (2)
C180.52716 (13)0.70252 (16)0.1540 (3)0.092 (2)
C190.50430 (14)0.72245 (14)0.2539 (3)0.098 (2)
C200.47331 (11)0.68075 (12)0.3190 (3)0.078 (2)
C210.26087 (7)0.53642 (9)0.49016 (15)0.038 (1)
C220.22888 (9)0.51754 (10)0.58098 (18)0.047 (1)
C230.21003 (10)0.45452 (10)0.59107 (19)0.050 (1)
C240.22316 (8)0.40955 (9)0.51017 (17)0.043 (1)
C250.25597 (9)0.42776 (10)0.41950 (19)0.051 (1)
C260.27445 (9)0.48996 (10)0.40964 (19)0.047 (1)
C270.25587 (8)0.64562 (9)0.38566 (15)0.038 (1)
C280.21429 (8)0.62326 (10)0.31629 (18)0.047 (1)
C290.19115 (9)0.66164 (10)0.23249 (19)0.051 (1)
C300.20999 (8)0.72353 (9)0.21760 (17)0.042 (1)
C310.25089 (9)0.74747 (10)0.28844 (18)0.047 (1)
C320.27338 (9)0.70921 (9)0.37074 (18)0.045 (1)
C330.16474 (12)0.32983 (14)0.5937 (2)0.061 (2)
C340.15439 (14)0.73990 (16)0.0515 (3)0.070 (2)
B10.42515 (10)0.57198 (11)0.3613 (2)0.044 (1)
H10.2488 (11)0.6672 (12)0.578 (2)0.071 (8)*
H20.34350.59150.68170.055*
H30.37490.48690.66460.068*
H40.43580.51070.67430.068*
H50.35710.52100.84790.082*
H60.40710.47400.85050.082*
H70.42510.56420.95960.092*
H80.46740.55880.86120.092*
H90.37660.64200.86380.089*
H100.43810.66360.87100.089*
H110.45320.63240.68640.073*
H120.40230.67810.68700.073*
H130.39440.50250.17220.074*
H140.38090.39320.14090.094*
H150.40080.31950.28240.097*
H160.43840.35480.45170.086*
H170.45100.46400.48410.065*
H180.48440.55500.16210.076*
H190.53510.62600.05060.101*
H200.54820.73150.10900.110*
H210.50980.76550.27870.118*
H220.45800.69570.38820.094*
H230.21960.54810.63770.056*
H240.18800.44250.65420.060*
H250.26580.39690.36360.061*
H260.29690.50160.34680.056*
H270.20110.58050.32600.056*
H280.16240.64520.18570.061*
H290.26340.79060.27980.056*
H300.30140.72620.41870.054*
H310.17820.33850.66770.073*
H320.13220.35440.58030.073*
H330.15630.28530.58710.073*
H340.12170.72520.08810.084*
H350.14520.77290.00090.084*
H360.17130.70500.01250.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0374 (7)0.0574 (9)0.0456 (8)0.0033 (6)0.0016 (6)0.0029 (7)
O20.0435 (8)0.0450 (8)0.0372 (8)0.0057 (6)0.0001 (6)0.0025 (6)
O30.0546 (9)0.0472 (8)0.0392 (8)0.0141 (7)0.0042 (7)0.0107 (6)
O40.0703 (10)0.0392 (8)0.0561 (9)0.0036 (7)0.0102 (8)0.0008 (7)
O50.0598 (9)0.0470 (8)0.0550 (9)0.0029 (7)0.0171 (8)0.0111 (7)
N10.0394 (10)0.0480 (10)0.0398 (10)0.0038 (7)0.0018 (8)0.0013 (8)
C10.0438 (11)0.0306 (10)0.0374 (11)0.0029 (8)0.0033 (9)0.0027 (8)
C20.0430 (12)0.0573 (13)0.0378 (12)0.0018 (10)0.0035 (10)0.0022 (10)
C30.0648 (17)0.0559 (15)0.0507 (14)0.0056 (13)0.0042 (12)0.0049 (11)
C40.0722 (19)0.077 (2)0.0554 (16)0.0092 (15)0.0006 (14)0.0150 (14)
C50.073 (2)0.114 (3)0.0438 (16)0.0030 (17)0.0077 (14)0.0081 (14)
C60.083 (2)0.093 (2)0.0478 (15)0.0183 (17)0.0009 (14)0.0148 (15)
C70.0742 (19)0.0641 (17)0.0458 (15)0.0082 (14)0.0010 (13)0.0066 (12)
C80.0416 (11)0.0389 (11)0.0339 (10)0.0056 (8)0.0011 (9)0.0052 (8)
C90.0364 (11)0.0471 (12)0.0510 (13)0.0055 (9)0.0016 (10)0.0038 (10)
C100.0583 (15)0.0576 (15)0.0691 (17)0.0099 (12)0.0043 (13)0.0117 (15)
C110.0659 (17)0.071 (2)0.097 (2)0.0070 (14)0.0123 (16)0.0325 (18)
C120.0615 (17)0.0506 (16)0.132 (3)0.0029 (13)0.0008 (18)0.0219 (19)
C130.0638 (16)0.0500 (16)0.102 (2)0.0069 (13)0.0041 (16)0.0069 (16)
C140.0488 (13)0.0480 (14)0.0653 (16)0.0038 (10)0.0044 (12)0.0006 (12)
C150.0427 (12)0.0453 (12)0.0555 (13)0.0058 (9)0.0008 (10)0.0010 (10)
C160.0712 (16)0.0554 (15)0.0633 (16)0.0017 (13)0.0170 (13)0.0009 (13)
C170.093 (2)0.082 (2)0.078 (2)0.0038 (17)0.0338 (17)0.0077 (16)
C180.086 (2)0.073 (2)0.118 (3)0.0017 (17)0.035 (2)0.027 (2)
C190.095 (2)0.0548 (17)0.143 (3)0.0118 (16)0.049 (2)0.002 (2)
C200.0770 (18)0.0540 (15)0.102 (2)0.0108 (12)0.0340 (17)0.0109 (15)
C210.0396 (11)0.0377 (11)0.0352 (11)0.0065 (8)0.0021 (9)0.0007 (8)
C220.0595 (13)0.0439 (12)0.0389 (11)0.0060 (10)0.0092 (11)0.0052 (10)
C230.0647 (14)0.0447 (13)0.0392 (12)0.0024 (10)0.0118 (11)0.0047 (11)
C240.0493 (12)0.0380 (11)0.0431 (11)0.0038 (9)0.0019 (10)0.0033 (9)
C250.0604 (14)0.0426 (13)0.0487 (13)0.0006 (10)0.0107 (11)0.0108 (10)
C260.0533 (13)0.0463 (13)0.0422 (12)0.0015 (10)0.0116 (11)0.0039 (10)
C270.0385 (11)0.0350 (11)0.0393 (11)0.0036 (8)0.0006 (9)0.0034 (8)
C280.0481 (13)0.0367 (12)0.0558 (13)0.0082 (10)0.0087 (11)0.0057 (10)
C290.0467 (13)0.0488 (13)0.0574 (14)0.0082 (10)0.0163 (11)0.0045 (11)
C300.0449 (12)0.0386 (11)0.0428 (11)0.0037 (9)0.0025 (9)0.0037 (9)
C310.0585 (13)0.0325 (11)0.0500 (13)0.0030 (11)0.0079 (11)0.0009 (10)
C320.0493 (12)0.0376 (12)0.0470 (12)0.0023 (9)0.0111 (11)0.0076 (9)
C330.080 (2)0.0500 (15)0.0526 (16)0.0088 (14)0.0088 (14)0.0071 (13)
C340.0689 (19)0.073 (2)0.0686 (18)0.0073 (16)0.0265 (16)0.0153 (17)
B10.0404 (13)0.0467 (14)0.0444 (14)0.0067 (10)0.0009 (11)0.0029 (11)
Geometric parameters (Å, º) top
O1—N11.393 (2)C10—C111.387 (4)
O1—B11.515 (3)C11—C121.364 (5)
O2—C11.292 (2)C12—C131.364 (5)
O2—B11.598 (3)C13—C141.386 (4)
O3—C81.429 (2)C15—C161.382 (3)
O3—H10.87 (3)C15—C201.388 (3)
O4—C241.368 (2)C15—B11.598 (3)
O4—C331.427 (3)C16—C171.391 (4)
O5—C301.376 (2)C17—C181.363 (5)
O5—C341.429 (3)C18—C191.367 (5)
N1—C11.299 (2)C19—C201.378 (4)
N1—C21.469 (2)C21—C221.379 (3)
C1—C81.529 (3)C21—C261.394 (3)
C2—C31.518 (3)C22—C231.390 (3)
C2—C71.508 (4)C23—C241.373 (3)
C3—C41.525 (4)C24—C251.385 (3)
C4—C51.500 (4)C25—C261.371 (3)
C5—C61.514 (4)C27—C281.376 (3)
C6—C71.528 (4)C27—C321.397 (3)
C8—C211.537 (3)C28—C291.388 (3)
C8—C271.529 (3)C29—C301.374 (3)
C9—C101.390 (4)C30—C311.386 (3)
C9—C141.386 (3)C31—C321.368 (3)
C9—B11.605 (3)
O1···C14i3.403 (3)O4···C31iv3.513 (2)
O2···C33ii3.502 (3)O4···C6ii3.557 (4)
O3···O5iii2.892 (2)O4···C29v3.595 (3)
O3···C31iii3.414 (2)C10···C23ii3.522 (4)
O4···C32iv3.348 (2)C30···C33ii3.534 (4)
O4···C30v3.478 (2)C31···C33ii3.466 (4)
N1—O1—B1105.6 (1)C16—C15—B1123.8 (2)
C1—O2—B1106.7 (1)C20—C15—B1120.0 (2)
C8—O3—H1109 (2)C15—C16—C17122.1 (2)
C24—O4—C33117.3 (2)C16—C17—C18120.0 (3)
C30—O5—C34117.7 (2)C17—C18—C19119.1 (3)
O1—N1—C1111.6 (1)C18—C19—C20120.7 (3)
O1—N1—C2115.5 (1)C15—C20—C19121.8 (3)
C1—N1—C2133.0 (2)C8—C21—C22121.0 (2)
O2—C1—N1114.1 (2)C8—C21—C26121.2 (2)
O2—C1—C8119.8 (2)C22—C21—C26117.8 (2)
N1—C1—C8125.9 (2)C21—C22—C23121.1 (2)
N1—C2—C3111.0 (2)C22—C23—C24120.3 (2)
N1—C2—C7109.9 (2)O4—C24—C23124.4 (2)
C3—C2—C7111.9 (2)O4—C24—C25116.6 (2)
C2—C3—C4109.0 (2)C23—C24—C25119.0 (2)
C3—C4—C5110.9 (2)C24—C25—C26120.6 (2)
C4—C5—C6111.6 (3)C21—C26—C25121.2 (2)
C5—C6—C7111.0 (2)C8—C27—C28123.9 (2)
C2—C7—C6110.1 (2)C8—C27—C32118.4 (2)
O3—C8—C1107.4 (1)C28—C27—C32117.6 (2)
O3—C8—C21110.7 (1)C27—C28—C29121.6 (2)
O3—C8—C27109.0 (1)C28—C29—C30119.7 (2)
C1—C8—C21105.2 (1)O5—C30—C29124.7 (2)
C1—C8—C27109.3 (1)O5—C30—C31115.7 (2)
C21—C8—C27114.9 (1)C29—C30—C31119.6 (2)
C10—C9—C14115.8 (2)C30—C31—C32120.2 (2)
C10—C9—B1122.4 (2)C27—C32—C31121.2 (2)
C14—C9—B1121.6 (2)O1—B1—O297.6 (1)
C9—C10—C11122.2 (3)O1—B1—C9112.1 (2)
C10—C11—C12119.9 (3)O1—B1—C15110.1 (2)
C11—C12—C13119.7 (3)O2—B1—C9106.4 (2)
C12—C13—C14120.1 (3)O2—B1—C15109.1 (2)
C9—C14—C13122.2 (3)C9—B1—C15119.2 (2)
C16—C15—C20116.2 (2)
O1—N1—C1—O24.2 (2)C3—C4—C5—C657.2 (3)
O1—N1—C1—C8178.5 (2)C4—C3—C2—C758.2 (3)
O1—N1—C2—C364.9 (2)C4—C5—C6—C755.5 (3)
O1—N1—C2—C759.4 (2)C8—C1—O2—B1164.8 (2)
O1—B1—O2—C118.1 (2)C8—C21—C22—C23179.1 (2)
O1—B1—C9—C10166.5 (2)C8—C21—C26—C25179.0 (2)
O1—B1—C9—C148.7 (3)C8—C27—C28—C29179.1 (2)
O1—B1—C15—C16142.9 (2)C8—C27—C32—C31179.3 (2)
O1—B1—C15—C2038.7 (3)C9—C10—C11—C120.7 (4)
O2—C1—N1—C2177.0 (2)C9—C14—C13—C120.1 (4)
O2—C1—C8—O3149.9 (2)C9—B1—C15—C1611.3 (3)
O2—C1—C8—C2192.1 (2)C9—B1—C15—C20170.3 (2)
O2—C1—C8—C2731.8 (2)C10—C9—C14—C132.3 (3)
O2—B1—O1—N119.7 (2)C10—C9—B1—C1562.8 (3)
O2—B1—C9—C1060.9 (2)C10—C11—C12—C131.8 (4)
O2—B1—C9—C14114.3 (2)C11—C10—C9—C142.7 (3)
O2—B1—C15—C16111.1 (2)C11—C10—C9—B1172.8 (2)
O2—B1—C15—C2067.3 (3)C11—C12—C13—C142.2 (4)
O3—C8—C1—N136.2 (2)C13—C14—C9—B1173.2 (2)
O3—C8—C21—C2213.4 (2)C14—C9—B1—C15122.0 (2)
O3—C8—C21—C26164.6 (2)C15—C16—C17—C181.5 (4)
O3—C8—C27—C28122.2 (2)C15—C20—C19—C180.2 (5)
O3—C8—C27—C3255.5 (2)C16—C15—C20—C191.6 (4)
O4—C24—C23—C22179.4 (2)C16—C17—C18—C190.0 (5)
O4—C24—C25—C26179.3 (2)C17—C16—C15—C202.3 (4)
O5—C30—C29—C28176.7 (2)C17—C16—C15—B1176.1 (2)
O5—C30—C31—C32176.8 (2)C17—C18—C19—C200.7 (5)
N1—O1—B1—C991.5 (2)C19—C20—C15—B1176.9 (3)
N1—O1—B1—C15133.3 (2)C21—C8—C27—C282.7 (3)
N1—C1—O2—B19.8 (2)C21—C8—C27—C32179.7 (2)
N1—C1—C8—C2181.8 (2)C21—C22—C23—C240.1 (3)
N1—C1—C8—C27154.3 (2)C21—C26—C25—C240.0 (3)
N1—C2—C3—C4178.5 (2)C22—C21—C8—C27110.5 (2)
N1—C2—C7—C6179.1 (2)C22—C21—C26—C250.9 (3)
C1—O2—B1—C997.7 (2)C22—C23—C24—C250.8 (3)
C1—O2—B1—C15132.5 (2)C23—C22—C21—C261.0 (3)
C1—N1—O1—B116.9 (2)C23—C24—O4—C3310.8 (3)
C1—N1—C2—C3116.4 (2)C23—C24—C25—C260.9 (3)
C1—N1—C2—C7119.3 (2)C25—C24—O4—C33169.4 (2)
C1—C8—C21—C22129.2 (2)C26—C21—C8—C2771.5 (2)
C1—C8—C21—C2648.8 (2)C27—C28—C29—C300.1 (3)
C1—C8—C27—C28120.6 (2)C27—C32—C31—C300.1 (3)
C1—C8—C27—C3261.7 (2)C28—C27—C32—C311.4 (3)
C2—N1—O1—B1164.2 (2)C28—C29—C30—C311.7 (3)
C2—N1—C1—C82.8 (3)C29—C28—C27—C321.4 (3)
C2—C3—C4—C557.6 (3)C29—C30—O5—C345.0 (3)
C2—C7—C6—C554.7 (3)C29—C30—C31—C321.7 (3)
C3—C2—C7—C657.1 (3)C31—C30—O5—C34173.4 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1, z1/2; (iii) x, y+3/2, z+1/2; (iv) x+1/2, y1/2, z; (v) x+1/2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC34H36BNO5
Mr549.45
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)294
a, b, c (Å)24.106 (2), 20.763 (2), 11.8193 (7)
V3)5915.7 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(Rettig, 1978)
Tmin, Tmax0.97, 0.98
No. of measured, independent and
observed [I > 3σ(I)] reflections
6740, 6740, 3752
Rint0.0
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.038, 1.96
No. of reflections3752
No. of parameters375
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.22

Computer programs: CAD-4 Diffractometer Control Software (Enraf-Nonius, 1978), CAD-4 Diffractometer Control Software, local programs (Rettig, 1978), MULTAN80 (Main et al., 1980), ORFLS (Busing et al., 1962), TEXSAN (Molecular Structure Corporation, 1989).

Selected geometric parameters (Å, º) top
O1—N11.393 (2)C10—C111.387 (4)
O1—B11.515 (3)C11—C121.364 (5)
O2—C11.292 (2)C12—C131.364 (5)
O2—B11.598 (3)C13—C141.386 (4)
O3—C81.429 (2)C15—C161.382 (3)
O4—C241.368 (2)C15—C201.388 (3)
O4—C331.427 (3)C15—B11.598 (3)
O5—C301.376 (2)C16—C171.391 (4)
O5—C341.429 (3)C17—C181.363 (5)
N1—C11.299 (2)C18—C191.367 (5)
N1—C21.469 (2)C19—C201.378 (4)
C1—C81.529 (3)C21—C221.379 (3)
C2—C31.518 (3)C21—C261.394 (3)
C2—C71.508 (4)C22—C231.390 (3)
C3—C41.525 (4)C23—C241.373 (3)
C4—C51.500 (4)C24—C251.385 (3)
C5—C61.514 (4)C25—C261.371 (3)
C6—C71.528 (4)C27—C281.376 (3)
C8—C211.537 (3)C27—C321.397 (3)
C8—C271.529 (3)C28—C291.388 (3)
C9—C101.390 (4)C29—C301.374 (3)
C9—C141.386 (3)C30—C311.386 (3)
C9—B11.605 (3)C31—C321.368 (3)
N1—O1—B1105.6 (1)C16—C15—B1123.8 (2)
C1—O2—B1106.7 (1)C20—C15—B1120.0 (2)
C24—O4—C33117.3 (2)C15—C16—C17122.1 (2)
C30—O5—C34117.7 (2)C16—C17—C18120.0 (3)
O1—N1—C1111.6 (1)C17—C18—C19119.1 (3)
O1—N1—C2115.5 (1)C18—C19—C20120.7 (3)
C1—N1—C2133.0 (2)C15—C20—C19121.8 (3)
O2—C1—N1114.1 (2)C8—C21—C22121.0 (2)
O2—C1—C8119.8 (2)C8—C21—C26121.2 (2)
N1—C1—C8125.9 (2)C22—C21—C26117.8 (2)
N1—C2—C3111.0 (2)C21—C22—C23121.1 (2)
N1—C2—C7109.9 (2)C22—C23—C24120.3 (2)
C3—C2—C7111.9 (2)O4—C24—C23124.4 (2)
C2—C3—C4109.0 (2)O4—C24—C25116.6 (2)
C3—C4—C5110.9 (2)C23—C24—C25119.0 (2)
C4—C5—C6111.6 (3)C24—C25—C26120.6 (2)
C5—C6—C7111.0 (2)C21—C26—C25121.2 (2)
C2—C7—C6110.1 (2)C8—C27—C28123.9 (2)
O3—C8—C1107.4 (1)C8—C27—C32118.4 (2)
O3—C8—C21110.7 (1)C28—C27—C32117.6 (2)
O3—C8—C27109.0 (1)C27—C28—C29121.6 (2)
C1—C8—C21105.2 (1)C28—C29—C30119.7 (2)
C1—C8—C27109.3 (1)O5—C30—C29124.7 (2)
C21—C8—C27114.9 (1)O5—C30—C31115.7 (2)
C10—C9—C14115.8 (2)C29—C30—C31119.6 (2)
C10—C9—B1122.4 (2)C30—C31—C32120.2 (2)
C14—C9—B1121.6 (2)C27—C32—C31121.2 (2)
C9—C10—C11122.2 (3)O1—B1—O297.6 (1)
C10—C11—C12119.9 (3)O1—B1—C9112.1 (2)
C11—C12—C13119.7 (3)O1—B1—C15110.1 (2)
C12—C13—C14120.1 (3)O2—B1—C9106.4 (2)
C9—C14—C13122.2 (3)O2—B1—C15109.1 (2)
C16—C15—C20116.2 (2)C9—B1—C15119.2 (2)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds