Download citation
Download citation
link to html
The structure determination of the title compound, tris­[bis­(diethyl­enetri­amine)­nickel(II)] bis­[hexa­cyano­ferrate(III)] decahydrate, [Ni(C4H13N3)2]3[Fe(CN)6]2·10H2O, reveals the presence of complex cations [Ni(dien)2]2+ and complex anions [Fe(CN)6]3−. In the cationic unit, the ligand geometry around nickel(II) is nearly octahedral, with two tridentate dien mol­ecules coordinated in mer fashion. The complex anion also shows a distorted octahedral environment. The cations and anions are linked by N—H...O and N—H...N hydrogen bonds to form a three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680201591X/ci6144sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680201591X/ci6144Isup2.hkl
Contains datablock I

CCDC reference: 198294

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.007 Å
  • H-atom completeness 80%
  • Disorder in solvent or counterion
  • R factor = 0.051
  • wR factor = 0.177
  • Data-to-parameter ratio = 24.3

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_302 Alert C Anion/Solvent Disorder ....................... 17.00 Perc. PLAT_420 Alert C D-H Without Acceptor N(11) - H(11B) ? PLAT_420 Alert C D-H Without Acceptor N(21) - H(21A) ? PLAT_420 Alert C D-H Without Acceptor N(34) - *H(34) ? PLAT_420 Alert C D-H Without Acceptor N(41) - H(41B) ? PLAT_420 Alert C D-H Without Acceptor N(44) - *H(44) ? General Notes
FORMU_01 There is a discrepancy between the atom counts in the _chemical_formula_sum and the formula from the _atom_site* data. Atom count from _chemical_formula_sum:C36 H98 Fe2 N30 Ni3 O10 Atom count from the _atom_site data: C36 H78 Fe2 N30 Ni3 O10 ABSTM_02 When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 1.056 Tmax scaled 0.743 Tmin scaled 0.549 CELLZ_01 From the CIF: _cell_formula_units_Z 4 From the CIF: _chemical_formula_sum C36 H98 Fe2 N30 Ni3 O10 TEST: Compare cell contents of formula and atom_site data atom Z*formula cif sites diff C 144.00 144.00 0.00 H 392.00 312.00 80.00 Fe 8.00 8.00 0.00 N 120.00 120.00 0.00 Ni 12.00 12.00 0.00 O 40.00 40.00 0.00 Difference between formula and atom_site contents detected. WARNING: H atoms missing from atom site list. Is this intentional? CHEMW_03 From the CIF: _cell_formula_units_Z 4 From the CIF: _chemical_formula_weight 1399.27 TEST: Calculate formula weight from _atom_site_* atom mass num sum C 12.01 36.00 432.40 H 1.01 78.00 78.62 Fe 55.85 2.00 111.69 N 14.01 30.00 420.21 Ni 58.69 3.00 176.07 O 16.00 10.00 159.99 Calculated formula weight 1378.98 The ratio of given/expected molecular weight as calculated from the _atom_site* data lies outside the range 0.99 <> 1.01
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
6 Alert Level C = Please check

Comment top

Cyanocomplexes attract the interest of both chemists and physicists due to their remarkable magnetic properties (Verdaguer et al., 1999; Ohba & Okawa, 2000; Kitazawa et al., 1996; Cernak et al., 2001). During our research in low-dimensional molecular magnetic materials based on cyanocomplexes, the title compound [Ni(dien)2]3[Fe(CN)6]2.10H2O, (I), was synthesized. It was obtained starting from NiCl2, diethylenetriamine and K3Fe(CN)6. In this work we report the preparation and structure of (I).

The asymmetric unit consists of a hexacyanoferrate(III) complex anion, one bis(diethylenetriamine)nickel(II) complex cation, one-half of the bis(diethylenetriamine)nickel(II) complex cation (the other half related by a crystallographic twofold axis) and five water molecules. The complex anion has a distorted octahedral geometry. The coordination geometry around each nickel atom is NiN6 distorted octahedral, where the two tridentate dien molecules are coordinated in mer fashion (Fig. 1).

In the crystal, the cations and anions are alternatively arranged to form layers approximately parallel to (−4 0 2). The layers which are stacked along the a-cell direction are linked by hydrogen bonds involving the water molecules (short contact distances are given in Table 2) and also by N—H···O and N—H···N hydrogen bonds (Table 3). A view of the molecular packing down the b axis is shown in Fig. 2.

Experimental top

All operations for the synthesis were carried out in the dark to avoid decomposition of hexacyanoferrate complex. Nickel chloride (0.07 g, 0.29 mmol) and diethylenetriamine (0,06 g, 0.595 mmol) were mixed in aqueous solution (50 ml). The obtained purple solution and K3Fe(CN)6 (0.098 g, 0.29 mmol) in DMF were mixed by slow diffusion. A light brown solid was filtered out and the resulting solution was allowed to stand. Black crystals suitable for X-ray analysis were obtained by slow evaporation after seven months. CHN analysis, found: C 30.50, H 6.84, N 29.70%; calculated for C36H98Fe2N30Ni3O10: C 30.90, H 7.06, N 30.03%. IR(KBr plate): νas(CN) 2118(s), 2007(w); δ(CH2) 1462(w), 1439(m) cm−1.

Refinement top

Both diethylenetriamine ligands of the cation located on a C2 axis show a disordered arrangement for the atoms C33 [C331 and C332] and C43 [C431 and C432], respectively, over two positions. Refinement of the site-occupation factors revealed a partial occupation of nearly 0.50 for each position, and this value was fixed in the final stages of the refinement. During the refinement steps, soft restraints were imposed on C431 and C432 so that the components of the anisotropic displacement parameters of both atoms were similar. Distance restraints were used for the ligand arm defined by N31, C32, C331/C332 and N34 in order to get a sensible geometry. Both C331 and C332 atoms were refined isotropically. There is a water molecule disordered over two positions O5 and O6, separated by a distance of just 1.648 (12) Å. Their site-occupation factors, with the sum constrained to be unity, refined to a value of 0.629 (8) and 0.371 (8) for O5 and O6, respectively.

The H atoms of the water molecules were neither located nor positioned geometrically. The positions of all remaining H atoms were calculated geometrically and were treated as riding with isotropic displacement parameters fixed at 1.2 times the equivalent isotropic displacement parameters of their parent atoms (C or N), except H34 and H44 whose coordinates were kept fixed at the calculated positions.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: DIRDIF99 (Beurskens et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); PLATON (Spek, 1990); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme, with 50% probability displacement ellipsoids. Water oxygen atoms have been omitted and only one conformation of each disordered dien ligand (bonded to Ni2) is shown for clarity.
[Figure 2] Fig. 2. View of packing on the (101) plane. Hydrogen atoms have been omitted for clarity.
(I) top
Crystal data top
[Ni(C4H13N3)2]3[Fe(CN)6]2·10H2OF(000) = 2960
Mr = 1399.27Dx = 1.419 Mg m3
Dm = 1.42 Mg m3
Dm measured by flotation
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 27.195 (3) Åθ = 11.6–14.2°
b = 12.602 (1) ŵ = 1.35 mm1
c = 19.747 (2) ÅT = 293 K
β = 104.51 (1)°Prism, black
V = 6551.7 (11) Å30.51 × 0.4 × 0.22 mm
Z = 4
Data collection top
Enraf Nonius CAD4
diffractometer
Rint = 0.020
ω/2θ scansθmax = 30.0°, θmin = 1.6°
Absorption correction: ψ scan
(North et al., 1968)
h = 3836
Tmin = 0.520, Tmax = 0.704k = 017
9775 measured reflectionsl = 027
9512 independent reflections2 standard reflections every 90 reflections
6070 reflections with I > 2σ(I) intensity decay: 4%
Refinement top
Refinement on F217 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.051 w = 1/[σ2(Fo2) + (0.1005P)2 + 3.0322P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.178(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.79 e Å3
9512 reflectionsΔρmin = 0.57 e Å3
391 parameters
Crystal data top
[Ni(C4H13N3)2]3[Fe(CN)6]2·10H2OV = 6551.7 (11) Å3
Mr = 1399.27Z = 4
Monoclinic, C2/cMo Kα radiation
a = 27.195 (3) ŵ = 1.35 mm1
b = 12.602 (1) ÅT = 293 K
c = 19.747 (2) Å0.51 × 0.4 × 0.22 mm
β = 104.51 (1)°
Data collection top
Enraf Nonius CAD4
diffractometer
6070 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.020
Tmin = 0.520, Tmax = 0.7042 standard reflections every 90 reflections
9775 measured reflections intensity decay: 4%
9512 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05117 restraints
wR(F2) = 0.178H-atom parameters constrained
S = 1.04Δρmax = 0.79 e Å3
9512 reflectionsΔρmin = 0.57 e Å3
391 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.153739 (18)0.51677 (4)0.04818 (3)0.04908 (13)
N10.0963 (2)0.6928 (4)0.0469 (3)0.1150 (17)
N20.15369 (15)0.4022 (3)0.09032 (17)0.0752 (9)
N30.2168 (2)0.3370 (3)0.1330 (2)0.1030 (15)
N40.14491 (16)0.6553 (4)0.1738 (2)0.0858 (11)
N50.0586 (2)0.3949 (5)0.0605 (3)0.134 (2)
N60.25714 (14)0.6216 (3)0.0561 (2)0.0765 (10)
C10.11671 (18)0.6258 (4)0.0107 (2)0.0769 (12)
C20.15449 (14)0.4421 (3)0.03746 (18)0.0567 (8)
C30.19290 (18)0.4046 (3)0.10272 (19)0.0662 (10)
C40.14876 (14)0.6016 (3)0.1285 (2)0.0618 (9)
C50.09326 (18)0.4420 (5)0.0541 (2)0.0829 (13)
C60.21750 (14)0.5841 (3)0.05090 (18)0.0545 (8)
Ni10.171048 (15)0.00904 (3)0.10503 (2)0.04315 (12)
N110.21585 (11)0.1171 (2)0.05996 (17)0.0616 (7)
H11A0.22120.17810.08440.074*
H11B0.24610.08800.06040.074*
C120.18627 (16)0.1377 (4)0.0136 (2)0.0787 (12)
H12A0.19370.20860.02750.094*
H12B0.19640.08740.04480.094*
C130.13205 (15)0.1279 (3)0.0198 (2)0.0754 (12)
H13A0.12090.18420.00640.090*
H13B0.11350.13410.06840.090*
N140.12200 (12)0.0257 (2)0.00738 (16)0.0594 (7)
H140.12990.02510.02090.071*
C150.07044 (16)0.0050 (4)0.0136 (3)0.0788 (13)
H15A0.04770.00440.03250.095*
H15B0.05840.06460.03600.095*
C160.07114 (16)0.0958 (4)0.0574 (3)0.0790 (12)
H16A0.03810.10680.06650.095*
H16B0.07890.15700.03210.095*
N170.10952 (12)0.0840 (3)0.12320 (17)0.0640 (8)
H17A0.12100.14830.14000.077*
H17B0.09600.05170.15490.077*
N210.21168 (12)0.1267 (2)0.08456 (15)0.0587 (7)
H21A0.19070.18280.07470.070*
H21B0.22450.11430.04750.070*
C220.25324 (17)0.1493 (3)0.1470 (2)0.0725 (11)
H22A0.28330.17070.13250.087*
H22B0.24340.20770.17280.087*
C230.26536 (16)0.0539 (4)0.1937 (2)0.0802 (12)
H23A0.28650.07510.23890.096*
H23B0.28430.00300.17340.096*
N240.22033 (12)0.0059 (2)0.20262 (15)0.0561 (7)
H240.20590.05340.22660.067*
C250.22230 (19)0.0943 (4)0.2391 (2)0.0898 (15)
H25A0.24410.14300.22220.108*
H25B0.23690.08310.28870.108*
C260.17200 (18)0.1409 (4)0.2289 (2)0.0805 (13)
H26A0.17520.21240.24760.097*
H26B0.15240.09970.25440.097*
N270.14506 (12)0.1442 (2)0.15521 (16)0.0617 (7)
H27A0.15190.20520.13560.074*
H27B0.11130.14020.15050.074*
Ni20.00000.53368 (5)0.25000.04854 (15)
N310.08041 (12)0.5092 (3)0.26368 (19)0.0648 (8)
H31A0.09040.53820.22760.078*
H31B0.09780.54070.30340.078*
C320.09063 (18)0.3968 (4)0.2669 (3)0.1039 (18)
H32A0.12080.38420.30440.125*0.50
H32B0.09850.37580.22360.125*0.50
H32C0.10480.37740.31540.125*0.50
H32D0.11630.38230.24170.125*0.50
C3310.05044 (15)0.3281 (5)0.2780 (5)0.081 (2)*0.50
H33A0.05300.25980.25650.097*0.50
H33B0.05550.31640.32790.097*0.50
C3320.04699 (17)0.3293 (5)0.2387 (4)0.074 (2)*0.50
H33C0.04320.32080.18880.088*0.50
H33D0.05330.25970.26010.088*0.50
N340.00000.3702 (4)0.25000.0958 (19)
H340.00450.35270.204100.115*0.50
N410.01047 (14)0.5598 (3)0.13861 (16)0.0705 (9)
H41A0.01400.52630.12350.085*
H41B0.04080.53420.11490.085*
C420.0080 (2)0.6734 (4)0.1270 (2)0.0817 (12)
H42A0.02640.69210.12640.098*0.50
H42B0.02990.69050.08140.098*0.50
H42C0.01130.68620.09270.098*0.50
H42D0.04210.70010.10780.098*0.50
C4310.0232 (4)0.7367 (7)0.1796 (5)0.078 (2)0.50
H43A0.05990.73500.17140.093*0.50
H43B0.01300.80980.17600.093*0.50
C4320.0160 (4)0.7327 (7)0.1905 (5)0.077 (2)0.50
H43C0.05260.72550.19960.093*0.50
H43D0.00770.80740.18300.093*0.50
N440.00000.6968 (3)0.25000.0606 (10)
H440.032810.71860.25710.073*0.50
O50.3299 (3)0.3243 (6)0.2161 (4)0.125 (3)0.629 (9)
O60.3788 (4)0.2552 (9)0.2049 (4)0.106 (4)0.371 (9)
O10.13696 (14)0.1335 (3)0.39314 (19)0.1025 (11)
O20.00448 (17)0.2222 (4)0.0888 (3)0.1446 (18)
O30.4181 (4)0.4840 (8)0.1936 (5)0.261 (5)
O40.0305 (2)0.0509 (5)0.1717 (3)0.163 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0501 (3)0.0511 (3)0.0487 (3)0.00174 (19)0.01739 (19)0.00090 (18)
N10.139 (4)0.113 (4)0.090 (3)0.057 (3)0.024 (3)0.023 (3)
N20.090 (2)0.079 (2)0.0551 (19)0.0106 (19)0.0157 (17)0.0048 (16)
N30.159 (4)0.053 (2)0.085 (3)0.010 (2)0.009 (3)0.0135 (19)
N40.091 (3)0.100 (3)0.073 (2)0.000 (2)0.033 (2)0.017 (2)
N50.101 (4)0.183 (6)0.132 (4)0.071 (4)0.054 (3)0.038 (4)
N60.074 (2)0.074 (2)0.091 (2)0.0179 (17)0.0368 (19)0.0099 (19)
C10.086 (3)0.080 (3)0.066 (2)0.029 (2)0.021 (2)0.005 (2)
C20.0584 (19)0.0586 (19)0.0539 (19)0.0023 (16)0.0153 (15)0.0035 (15)
C30.097 (3)0.0424 (17)0.056 (2)0.0090 (18)0.0118 (19)0.0035 (14)
C40.059 (2)0.072 (2)0.058 (2)0.0007 (17)0.0213 (16)0.0018 (17)
C50.071 (3)0.108 (4)0.078 (3)0.028 (3)0.033 (2)0.018 (3)
C60.065 (2)0.0479 (17)0.0565 (19)0.0011 (14)0.0257 (16)0.0005 (14)
Ni10.0446 (2)0.0407 (2)0.0419 (2)0.00431 (14)0.00654 (15)0.00417 (14)
N110.0599 (17)0.0546 (16)0.075 (2)0.0091 (13)0.0247 (15)0.0129 (14)
C120.104 (3)0.065 (2)0.073 (3)0.021 (2)0.034 (2)0.028 (2)
C130.092 (3)0.071 (2)0.057 (2)0.033 (2)0.008 (2)0.0119 (18)
N140.0584 (17)0.0609 (17)0.0511 (15)0.0182 (13)0.0007 (12)0.0057 (12)
C150.052 (2)0.095 (3)0.077 (3)0.013 (2)0.0056 (19)0.022 (2)
C160.056 (2)0.074 (3)0.097 (3)0.0087 (19)0.001 (2)0.015 (2)
N170.0596 (18)0.0571 (17)0.074 (2)0.0062 (14)0.0152 (15)0.0055 (15)
N210.0681 (18)0.0552 (16)0.0503 (15)0.0215 (14)0.0104 (13)0.0020 (12)
C220.077 (3)0.069 (2)0.063 (2)0.031 (2)0.0015 (19)0.0032 (18)
C230.062 (2)0.102 (3)0.067 (3)0.022 (2)0.0006 (19)0.001 (2)
N240.0600 (17)0.0598 (16)0.0438 (14)0.0031 (13)0.0039 (12)0.0026 (12)
C250.088 (3)0.105 (4)0.064 (3)0.002 (3)0.006 (2)0.032 (2)
C260.096 (3)0.077 (3)0.069 (3)0.006 (2)0.023 (2)0.031 (2)
N270.0587 (17)0.0572 (17)0.0708 (19)0.0025 (13)0.0189 (15)0.0184 (14)
Ni20.0439 (3)0.0459 (3)0.0575 (3)0.0000.0159 (2)0.000
N310.0473 (15)0.079 (2)0.070 (2)0.0055 (14)0.0190 (14)0.0050 (16)
C320.081 (3)0.099 (4)0.143 (5)0.040 (3)0.050 (3)0.029 (3)
N340.099 (4)0.046 (2)0.159 (6)0.0000.064 (4)0.000
N410.076 (2)0.083 (2)0.0543 (17)0.0052 (18)0.0197 (15)0.0051 (16)
C420.099 (3)0.084 (3)0.062 (2)0.002 (3)0.019 (2)0.020 (2)
C4310.095 (7)0.051 (4)0.083 (6)0.010 (4)0.015 (5)0.020 (4)
C4320.079 (6)0.066 (5)0.088 (6)0.008 (4)0.023 (5)0.022 (4)
N440.060 (2)0.048 (2)0.072 (3)0.0000.013 (2)0.000
O50.145 (6)0.122 (6)0.098 (5)0.015 (5)0.011 (4)0.011 (4)
O60.140 (9)0.118 (8)0.057 (5)0.024 (7)0.022 (5)0.013 (5)
O10.088 (2)0.126 (3)0.095 (2)0.009 (2)0.0265 (19)0.021 (2)
O20.109 (3)0.135 (4)0.172 (4)0.009 (3)0.003 (3)0.024 (3)
O30.234 (9)0.317 (12)0.190 (8)0.110 (8)0.028 (6)0.046 (6)
O40.176 (5)0.156 (5)0.150 (5)0.061 (4)0.028 (4)0.015 (4)
Geometric parameters (Å, º) top
Fe1—C11.915 (4)C25—H25A0.97
Fe1—C21.940 (4)C25—H25B0.97
Fe1—C31.928 (4)C26—N271.456 (5)
Fe1—C41.945 (4)C26—H26A0.97
Fe1—C51.924 (4)C26—H26B0.97
Fe1—C61.919 (4)N27—H27A0.90
N1—C11.154 (6)N27—H27B0.90
N2—C21.154 (5)Ni2—N312.157 (3)
N3—C31.145 (5)Ni2—N342.060 (5)
N4—C41.148 (5)Ni2—N412.171 (3)
N5—C51.148 (6)Ni2—N442.056 (4)
N6—C61.158 (5)Ni2—N31i2.157 (3)
Ni1—N112.162 (3)Ni2—N41i2.171 (3)
Ni1—N142.062 (3)N31—C321.443 (5)
Ni1—N172.146 (3)N31—H31A0.90
Ni1—N212.129 (3)N31—H31B0.90
Ni1—N242.062 (3)C32—C3321.453 (5)
Ni1—N272.176 (3)C32—C3311.453 (5)
N11—C121.497 (5)C32—H32A0.97
N11—H11A0.90C32—H32B0.97
N11—H11B0.90C32—H32C0.97
C12—C131.454 (5)C32—H32D0.97
C12—H12A0.97C331—N341.446 (4)
C12—H12B0.97C331—H33A0.97
C13—N141.447 (4)C331—H33B0.97
C13—H13A0.97C332—N341.446 (4)
C13—H13B0.97C332—H33C0.97
N14—C151.461 (6)C332—H33D0.97
N14—H140.91N34—C331i1.446 (4)
C15—C161.535 (7)N34—C332i1.446 (4)
C15—H15A0.97N34—H340.9112
C15—H15B0.97N41—C421.453 (6)
C16—N171.456 (5)N41—H41A0.90
C16—H16A0.97N41—H41B0.90
C16—H16B0.97C42—C4311.450 (11)
N17—H17A0.90C42—C4321.467 (11)
N17—H17B0.90C42—H42A0.97
N21—C221.477 (5)C42—H42B0.97
N21—H21A0.90C42—H42C0.97
N21—H21B0.90C42—H42D0.97
C22—C231.500 (6)C431—N441.464 (8)
C22—H22A0.97C431—H43A0.97
C22—H22B0.97C431—H43B0.97
C23—N241.416 (5)C432—N441.425 (8)
C23—H23A0.97C432—H43C0.97
C23—H23B0.97C432—H43D0.97
N24—C251.448 (5)N44—C432i1.425 (8)
N24—H240.91N44—C431i1.464 (8)
C25—C261.456 (6)N44—H440.91
O1···N6ii2.806 (6)O3···O63.101 (15)
O1···N1iii2.841 (7)O3···O53.243 (13)
O1···O3ii2.727 (11)O3···O4vi3.305 (12)
O2···N52.762 (8)O5···N33.106 (9)
O2···O42.694 (8)O5···N4ii2.998 (8)
O2···N1iv2.865 (7)O6···N2vii2.973 (10)
O3···O4v2.808 (11)O6···N4ii2.916 (10)
C1—Fe1—C691.94 (19)C25—C26—H26A109.3
C1—Fe1—C593.5 (2)N27—C26—H26A109.3
C6—Fe1—C5174.2 (2)C25—C26—H26B109.3
C1—Fe1—C3176.39 (18)N27—C26—H26B109.3
C6—Fe1—C386.54 (17)H26A—C26—H26B107.9
C5—Fe1—C388.2 (2)C26—N27—Ni1107.0 (2)
C1—Fe1—C286.41 (17)C26—N27—H27A110.3
C6—Fe1—C291.84 (15)Ni1—N27—H27A110.3
C5—Fe1—C290.62 (18)C26—N27—H27B110.3
C3—Fe1—C290.37 (16)Ni1—N27—H27B110.3
C1—Fe1—C488.13 (18)H27A—N27—H27B108.6
C6—Fe1—C488.92 (15)N44—Ni2—N34180.000 (1)
C5—Fe1—C489.13 (18)N44—Ni2—N31i98.22 (9)
C3—Fe1—C495.11 (17)N34—Ni2—N31i81.78 (9)
C2—Fe1—C4174.50 (17)N44—Ni2—N3198.22 (9)
N1—C1—Fe1177.0 (5)N34—Ni2—N3181.78 (9)
N2—C2—Fe1176.5 (3)N31i—Ni2—N31163.57 (18)
N3—C3—Fe1177.5 (4)N44—Ni2—N41i81.27 (10)
N4—C4—Fe1176.9 (4)N34—Ni2—N41i98.73 (10)
N5—C5—Fe1176.6 (6)N31i—Ni2—N41i91.15 (14)
N6—C6—Fe1176.1 (4)N31—Ni2—N41i91.34 (14)
N24—Ni1—N14179.36 (13)N44—Ni2—N4181.27 (10)
N24—Ni1—N2181.79 (11)N34—Ni2—N4198.73 (10)
N14—Ni1—N2198.59 (11)N31i—Ni2—N4191.34 (14)
N24—Ni1—N1798.35 (13)N31—Ni2—N4191.15 (14)
N14—Ni1—N1782.15 (13)N41i—Ni2—N41162.5 (2)
N21—Ni1—N1793.23 (13)C32—N31—Ni2108.9 (2)
N24—Ni1—N1198.10 (13)C32—N31—H31A109.9
N14—Ni1—N1181.37 (13)Ni2—N31—H31A109.9
N21—Ni1—N1193.16 (13)C32—N31—H31B109.9
N17—Ni1—N11163.04 (12)Ni2—N31—H31B109.9
N24—Ni1—N2781.67 (12)H31A—N31—H31B108.3
N14—Ni1—N2797.94 (12)N31—C32—C332115.3 (4)
N21—Ni1—N27163.46 (12)N31—C32—C331116.6 (4)
N17—Ni1—N2789.76 (13)N31—C32—H32A108.1
N11—Ni1—N2788.57 (13)C331—C32—H32A108.1
C12—N11—Ni1106.7 (2)N31—C32—H32B108.1
C12—N11—H11A110.4C331—C32—H32B108.1
Ni1—N11—H11A110.4H32A—C32—H32B107.3
C12—N11—H11B110.4N31—C32—H32C108.4
Ni1—N11—H11B110.4C332—C32—H32C108.4
H11A—N11—H11B108.6N31—C32—H32D108.4
C13—C12—N11110.7 (3)C332—C32—H32D108.4
C13—C12—H12A109.5H32C—C32—H32D107.5
N11—C12—H12A109.5N34—C331—C32113.6 (4)
C13—C12—H12B109.5N34—C331—H33A108.8
N11—C12—H12B109.5C32—C331—H33A108.8
H12A—C12—H12B108.1N34—C331—H33B108.8
N14—C13—C12109.1 (3)C32—C331—H33B108.8
N14—C13—H13A109.9H33A—C331—H33B107.7
C12—C13—H13A109.9N34—C332—C32113.6 (4)
N14—C13—H13B109.9N34—C332—H33C108.8
C12—C13—H13B109.9C32—C332—H33C108.8
H13A—C13—H13B108.3N34—C332—H33D108.8
C13—N14—C15117.7 (3)C32—C332—H33D108.8
C13—N14—Ni1107.4 (2)H33C—C332—H33D107.7
C15—N14—Ni1108.2 (3)C331—N34—C332i126.9 (5)
C13—N14—H14107.7C331i—N34—C332126.9 (5)
C15—N14—H14107.7C331—N34—Ni2111.6 (3)
Ni1—N14—H14107.7C331i—N34—Ni2111.6 (3)
N14—C15—C16108.6 (3)C332i—N34—Ni2110.9 (3)
N14—C15—H15A110.0C332—N34—Ni2110.9 (3)
C16—C15—H15A110.0C331—N34—H3499.7
N14—C15—H15B110.0C331i—N34—H3469.7
C16—C15—H15B110.0C332i—N34—H3499.4
H15A—C15—H15B108.4C332—N34—H3470.3
N17—C16—C15108.9 (3)Ni2—N34—H34104.1
N17—C16—H16A109.9C42—N41—Ni2108.1 (3)
C15—C16—H16A109.9C42—N41—H41A110.1
N17—C16—H16B109.9Ni2—N41—H41A110.1
C15—C16—H16B109.9C42—N41—H41B110.1
H16A—C16—H16B108.3Ni2—N41—H41B110.1
C16—N17—Ni1108.7 (3)H41A—N41—H41B108.4
C16—N17—H17A109.9C431—C42—N41113.3 (5)
Ni1—N17—H17A109.9N41—C42—C432113.3 (5)
C16—N17—H17B109.9C431—C42—H42A108.9
Ni1—N17—H17B109.9N41—C42—H42A108.9
H17A—N17—H17B108.3C431—C42—H42B108.9
C22—N21—Ni1108.8 (2)N41—C42—H42B108.9
C22—N21—H21A109.9H42A—C42—H42B107.7
Ni1—N21—H21A109.9N41—C42—H42C109.2
C22—N21—H21B109.9C432—C42—H42C108.0
Ni1—N21—H21B109.9N41—C42—H42D109.1
H21A—N21—H21B108.3C432—C42—H42D109.5
N21—C22—C23111.2 (3)H42C—C42—H42D107.6
N21—C22—H22A109.4C42—C431—N44111.1 (6)
C23—C22—H22A109.4C42—C431—H43A109.4
N21—C22—H22B109.4N44—C431—H43A109.4
C23—C22—H22B109.4C42—C431—H43B109.4
H22A—C22—H22B108.0N44—C431—H43B109.4
N24—C23—C22110.8 (4)H42D—C431—H43B105.5
N24—C23—H23A109.5H43A—C431—H43B108.0
C22—C23—H23A109.5N44—C432—C42112.4 (6)
N24—C23—H23B109.5N44—C432—H43C109.1
C22—C23—H23B109.5C42—C432—H43C109.1
H23A—C23—H23B108.1N44—C432—H43D109.1
C23—N24—C25120.6 (4)C42—C432—H43D109.1
C23—N24—Ni1107.6 (2)H43C—C432—H43D107.9
C25—N24—Ni1108.6 (3)H43D—C432—H44107.4
C23—N24—H24106.4C432—N44—C431i121.7 (5)
C25—N24—H24106.4C432i—N44—C431121.7 (5)
Ni1—N24—H24106.4C432i—N44—Ni2108.5 (4)
N24—C25—C26111.5 (4)C432—N44—Ni2108.5 (4)
N24—C25—H25A109.3C431i—N44—Ni2110.1 (4)
C26—C25—H25A109.3C431—N44—Ni2110.1 (4)
N24—C25—H25B109.3C432i—N44—H44105.5
C26—C25—H25B109.3C431—N44—H44102.5
H25A—C25—H25B108.0Ni2—N44—H44107.6
C25—C26—N27111.7 (3)
N24—Ni1—N11—C12179.2 (2)N41i—Ni2—N31—C3297.4 (3)
N14—Ni1—N11—C121.2 (2)N41—Ni2—N31—C3299.9 (3)
N21—Ni1—N11—C1297.0 (2)Ni2—N31—C32—C33219.1 (6)
N17—Ni1—N11—C1214.9 (6)Ni2—N31—C32—C33114.7 (6)
N27—Ni1—N11—C1299.4 (2)N31—C32—C331—N3429.7 (9)
Ni1—N11—C12—C1328.8 (4)N31—C32—C332—N3434.5 (8)
N11—C12—C13—N1453.7 (5)C32—C331—N34—C331i150.7 (8)
C12—C13—N14—C15173.0 (4)C32—C331—N34—Ni229.3 (8)
C12—C13—N14—Ni150.6 (4)C32—C332—N34—C332i148.3 (7)
N21—Ni1—N14—C13118.1 (2)C32—C332—N34—Ni231.7 (7)
N17—Ni1—N14—C13149.8 (3)N31i—Ni2—N34—C331163.5 (4)
N11—Ni1—N14—C1326.2 (2)N31—Ni2—N34—C33116.5 (4)
N27—Ni1—N14—C1361.1 (3)N41i—Ni2—N34—C33173.6 (4)
N21—Ni1—N14—C15113.9 (3)N41—Ni2—N34—C331106.4 (4)
N17—Ni1—N14—C1521.8 (2)N31i—Ni2—N34—C331i16.5 (4)
N11—Ni1—N14—C15154.2 (3)N31—Ni2—N34—C331i163.5 (4)
N27—Ni1—N14—C1566.9 (3)N41i—Ni2—N34—C331i106.4 (4)
C13—N14—C15—C16168.0 (3)N41—Ni2—N34—C331i73.6 (4)
Ni1—N14—C15—C1646.1 (4)N31i—Ni2—N34—C332i16.2 (4)
N14—C15—C16—N1753.4 (5)N31—Ni2—N34—C332i163.8 (4)
C15—C16—N17—Ni133.1 (4)N41i—Ni2—N34—C332i73.7 (4)
N24—Ni1—N17—C16173.4 (3)N41—Ni2—N34—C332i106.3 (4)
N14—Ni1—N17—C167.0 (3)N31i—Ni2—N34—C332163.8 (4)
N21—Ni1—N17—C1691.2 (3)N31—Ni2—N34—C33216.2 (4)
N11—Ni1—N17—C1620.7 (6)N41i—Ni2—N34—C332106.3 (4)
N27—Ni1—N17—C16105.0 (3)N41—Ni2—N34—C33273.7 (4)
N24—Ni1—N21—C224.4 (3)N44—Ni2—N41—C423.9 (3)
N14—Ni1—N21—C22175.1 (3)N34—Ni2—N41—C42176.1 (3)
N17—Ni1—N21—C22102.3 (3)N31i—Ni2—N41—C42102.0 (3)
N11—Ni1—N21—C2293.4 (3)N31—Ni2—N41—C4294.2 (3)
N27—Ni1—N21—C222.2 (6)Ni2—N41—C42—C43127.1 (6)
Ni1—N21—C22—C2319.4 (5)Ni2—N41—C42—C43218.3 (6)
N21—C22—C23—N2445.4 (5)N41—C42—C431—N4445.1 (9)
C22—C23—N24—C25173.0 (4)N41—C42—C432—N4442.2 (9)
C22—C23—N24—Ni147.7 (4)C42—C432—N44—C432i136.0 (8)
N21—Ni1—N24—C2328.4 (3)C42—C432—N44—Ni244.0 (8)
N17—Ni1—N24—C23120.5 (3)C42—C431—N44—C431i140.2 (8)
N11—Ni1—N24—C2363.6 (3)C42—C431—N44—Ni239.8 (8)
N27—Ni1—N24—C23151.0 (3)N31i—Ni2—N44—C432i64.4 (5)
N21—Ni1—N24—C25160.5 (3)N31—Ni2—N44—C432i115.6 (5)
N17—Ni1—N24—C25107.4 (3)N41i—Ni2—N44—C432i25.5 (5)
N11—Ni1—N24—C2568.5 (3)N41—Ni2—N44—C432i154.5 (5)
N27—Ni1—N24—C2518.9 (3)N31i—Ni2—N44—C432115.6 (5)
C23—N24—C25—C26167.1 (4)N31—Ni2—N44—C43264.4 (5)
Ni1—N24—C25—C2642.3 (5)N41i—Ni2—N44—C432154.5 (5)
N24—C25—C26—N2750.1 (6)N41—Ni2—N44—C43225.5 (5)
C25—C26—N27—Ni130.8 (5)N31i—Ni2—N44—C431i108.9 (5)
N24—Ni1—N27—C266.3 (3)N31—Ni2—N44—C431i71.1 (5)
N14—Ni1—N27—C26174.2 (3)N41i—Ni2—N44—C431i19.0 (5)
N21—Ni1—N27—C268.4 (6)N41—Ni2—N44—C431i161.0 (5)
N17—Ni1—N27—C2692.2 (3)N31i—Ni2—N44—C43171.1 (5)
N11—Ni1—N27—C26104.7 (3)N31—Ni2—N44—C431108.9 (5)
N44—Ni2—N31—C32178.7 (3)N41i—Ni2—N44—C431161.0 (5)
N34—Ni2—N31—C321.3 (3)N41—Ni2—N44—C43119.0 (5)
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x, y+1, z+1/2; (iv) x, y+1, z; (v) x+1/2, y+1/2, z+1/2; (vi) x+1/2, y+1/2, z; (vii) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11A···N30.902.243.122 (5)168
N11—H11B···N2vii0.902.643.455 (5)151
N14—H14···O1viii0.912.223.121 (5)168
N17—H17A···N4ix0.902.603.498 (6)172
N17—H17B···O40.902.293.075 (6)146
N21—H21B···N6vii0.902.233.101 (5)164
N24—H24···O5ii0.912.273.182 (8)178
N27—H27A···N30.902.433.214 (6)145
N27—H27B···O40.902.593.421 (7)153
N31—H31A···N40.902.513.342 (5)154
N31—H31B···N2iii0.902.373.264 (5)170
N41—H41A···N50.902.553.417 (7)161
N44—H44···O6v0.912.383.276 (11)169
Symmetry codes: (ii) x+1/2, y1/2, z+1/2; (iii) x, y+1, z+1/2; (v) x+1/2, y+1/2, z+1/2; (vii) x+1/2, y+1/2, z; (viii) x, y, z1/2; (ix) x, y1, z.

Experimental details

Crystal data
Chemical formula[Ni(C4H13N3)2]3[Fe(CN)6]2·10H2O
Mr1399.27
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)27.195 (3), 12.602 (1), 19.747 (2)
β (°) 104.51 (1)
V3)6551.7 (11)
Z4
Radiation typeMo Kα
µ (mm1)1.35
Crystal size (mm)0.51 × 0.4 × 0.22
Data collection
DiffractometerEnraf Nonius CAD4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.520, 0.704
No. of measured, independent and
observed [I > 2σ(I)] reflections
9775, 9512, 6070
Rint0.020
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.178, 1.04
No. of reflections9512
No. of parameters391
No. of restraints17
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.79, 0.57

Computer programs: CAD-4 EXPRESS (Enraf Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), DIRDIF99 (Beurskens et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997); PLATON (Spek, 1990), WinGX publication routines (Farrugia, 1999).

Selected interatomic distances (Å) top
Fe1—C11.915 (4)Ni1—N172.146 (3)
Fe1—C21.940 (4)Ni1—N212.129 (3)
Fe1—C31.928 (4)Ni1—N242.062 (3)
Fe1—C41.945 (4)Ni1—N272.176 (3)
Fe1—C51.924 (4)Ni2—N312.157 (3)
Fe1—C61.919 (4)Ni2—N342.060 (5)
Ni1—N112.162 (3)Ni2—N412.171 (3)
Ni1—N142.062 (3)Ni2—N442.056 (4)
O1···N6i2.806 (6)O3···O63.101 (15)
O1···N1ii2.841 (7)O3···O53.243 (13)
O1···O3i2.727 (11)O3···O4v3.305 (12)
O2···N52.762 (8)O5···N33.106 (9)
O2···O42.694 (8)O5···N4i2.998 (8)
O2···N1iii2.865 (7)O6···N2vi2.973 (10)
O3···O4iv2.808 (11)O6···N4i2.916 (10)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y+1, z+1/2; (iii) x, y+1, z; (iv) x+1/2, y+1/2, z+1/2; (v) x+1/2, y+1/2, z; (vi) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11A···N30.902.243.122 (5)167.5
N11—H11B···N2vi0.902.643.455 (5)150.9
N14—H14···O1vii0.912.223.121 (5)168.2
N17—H17A···N4viii0.902.603.498 (6)172.1
N17—H17B···O40.902.293.075 (6)145.5
N21—H21B···N6vi0.902.233.101 (5)164.2
N24—H24···O5i0.912.273.182 (8)178.3
N27—H27A···N30.902.433.214 (6)145.1
N27—H27B···O40.902.593.421 (7)152.9
N31—H31A···N40.902.513.342 (5)154.3
N31—H31B···N2ii0.902.373.264 (5)169.8
N41—H41A···N50.902.553.417 (7)161.2
N44—H44···O6iv0.912.383.276 (11)169.1
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y+1, z+1/2; (iv) x+1/2, y+1/2, z+1/2; (vi) x+1/2, y+1/2, z; (vii) x, y, z1/2; (viii) x, y1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds