Download citation
Download citation
link to html
The crystal structure of the title complex, C5H9N2+·C12H10O4P, is reported. The C5N2H9+ cation and PO2(OC6H5)2 anion are linked by N—H...O hydrogen bonds and form chains along the b axis. The geometry around the P atom indicates a distorted tetrahedron.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802016501/cv6144sup1.cif
Contains datablocks global, 2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802016501/cv61442sup2.hkl
Contains datablock 2

CCDC reference: 198961

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.048
  • wR factor = 0.130
  • Data-to-parameter ratio = 14.5

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_353 Alert C Long N-H Bond (0.87A) N(1) - H(1) = 1.06 Ang.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

Anticancer chemotherapy is very important issue in both medicinal chemistry and pharmacology (Lippert, 1999). The aim of this work was the synthesis and investigation of the chemical properties and biological activity of the novel compounds phosphonate esters of diazole: the development of the synthesis method for these compounds, determinations of the structure by means of spectroscopic as well as X-ray methods, and the evaluation of their bio-active properties (Okada et al., 2001; Rinke et al., 2001; Boduszek, 1996). Knowledge of the structure will help to design and sythesize new ligands for Pt complexes.

The X-ray studies confirm that the title compound, (2), exists in the crystal state in the ionic form. The C5N2H9+ cation and (OC6H5)2PO2 anion are linked by N—H···O hydrogen bonds (Table 2, Fig. 2). The combination of two hydrogen bonds provides a second level motif of type C22(7) (Bernstein et al., 1995). Finally, the molecules form chains along the b axis (Fig. 3).

Moreover, aromatic π-π-stacking interactions between pyrazole rings were found, which additionally stabilize the molecular arrangement of the structure. The distance between the centroids of the pyrazole rings Cg···Cgi [symmetry code (i): −x, 1 − y, 1 − z] is 4.21 (1) Å. The perpendicular distance between rings is 3.64 (1) Å.

The bonds and angles around the P atom indicate a slight distortion of the tetrahedron, with the angles varying from 104.24 (9) to 120.31 (11)° (see table 1). The two bond distances P1–O1 and P1–O2 are almost equal in length [1.471 (2) and 1.477 (2) Å, respectively], thus confirming the delocalized bonds in the solid state.

The benzene and pyrazole rings are planar within experimental error. The dihedral angle between benzene rings is 83.2 (1)°. Bond distances and angles are in a good agreement with expected values (Allen et al., 1987).

Experimental top

The spectroscopy (1H, 13 C, 31P NMR, IR) and elemental analysis showed that the diphenyl 3,5- dimethyl-1–1pyrazolylphosphonate (1) is formed in the reaction of 3,5-dimethyl pyrazole with diphenyl chlorophosphate in presence of anhydrous pyridine. In the presence of water, compound (1) is rapidly converted into the compound (2).

Refinement top

All H atoms from methyl and phenyl groups were geometrically placed. All methyl H atoms were constrained to their parent atom as a rigid body (C—H = 0.96 Å), and the Uiso values were refined as 1.5 Ueq of the parent C atom. All phenyl H atoms and H4 atom from the pyrazole ring were constrained to their parent atoms as a rigid body (C—H = 0.93 Å), and the Uiso values were refined as 1.2 Ueq of the parent C atom. All other H atoms (H1, H2) were located in the difference map and refined isotropically.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1989); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1989); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1998); software used to prepare material for publication: PARST97 (Nardelli, 1996).

Figures top
[Figure 1] Fig. 1. The ORTEP drawing of title compound, with atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Hydrogen bonds between molecules [symmetry code: (ii) −x + 1/2, y + 1/2, −z + 1/2]. All H-atoms except H1 and H2 are omitted for clarity.
[Figure 3] Fig. 3. The chains of molecules along the b axis of the unit cell, linked by hydrogen bonds. All H-atoms except H1 and H2 are omitted for clarity.
3,5-dimethyl-2H-pyrazol-1-ium phosphonic acid diphenyl ester top
Crystal data top
C5H9N2+·C12H10O2PF(000) = 728
Mr = 346.31Dx = 1.332 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 8.890 (1) ÅCell parameters from 25 reflections
b = 10.970 (2) Åθ = 20.2–27.9°
c = 17.714 (1) ŵ = 1.62 mm1
β = 90.41 (1)°T = 293 K
V = 1727.5 (4) Å3Block, colorless
Z = 40.6 × 0.4 × 0.3 mm
Data collection top
AFC-5S Rigaku
diffractometer
2118 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 72.8°, θmin = 4.7°
ω scanh = 010
Absorption correction: analytical
(De Meulenaer & Tompa, 1965)
k = 013
Tmin = 0.507, Tmax = 0.667l = 2121
3507 measured reflections3 standard reflections every 150 reflections
3283 independent reflections intensity decay: <2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0891P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.87(Δ/σ)max < 0.001
3283 reflectionsΔρmax = 0.22 e Å3
227 parametersΔρmin = 0.42 e Å3
0 restraints
Crystal data top
C5H9N2+·C12H10O2PV = 1727.5 (4) Å3
Mr = 346.31Z = 4
Monoclinic, P21/nCu Kα radiation
a = 8.890 (1) ŵ = 1.62 mm1
b = 10.970 (2) ÅT = 293 K
c = 17.714 (1) Å0.6 × 0.4 × 0.3 mm
β = 90.41 (1)°
Data collection top
AFC-5S Rigaku
diffractometer
2118 reflections with I > 2σ(I)
Absorption correction: analytical
(De Meulenaer & Tompa, 1965)
Rint = 0.020
Tmin = 0.507, Tmax = 0.6673 standard reflections every 150 reflections
3507 measured reflections intensity decay: <2%
3283 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 0.87Δρmax = 0.22 e Å3
3283 reflectionsΔρmin = 0.42 e Å3
227 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.13145 (7)0.72841 (6)0.25491 (3)0.05600 (19)
O10.11587 (18)0.77752 (17)0.17762 (8)0.0675 (5)
O20.14138 (19)0.59602 (15)0.26744 (10)0.0685 (5)
O30.00381 (17)0.77317 (15)0.30720 (8)0.0611 (4)
C310.0760 (3)0.8856 (2)0.30381 (12)0.0555 (5)
C320.0012 (3)0.9940 (2)0.29080 (13)0.0622 (6)
H320.10100.99390.28000.075*
C330.0803 (3)1.1027 (2)0.29405 (14)0.0693 (7)
H330.03041.17600.28580.083*
C340.2324 (3)1.1033 (3)0.30947 (15)0.0764 (7)
H340.28481.17650.31210.092*
C350.3056 (3)0.9942 (3)0.32098 (15)0.0748 (7)
H350.40810.99400.33120.090*
C360.2288 (3)0.8858 (3)0.31746 (14)0.0667 (6)
H360.27950.81260.32430.080*
O40.27701 (17)0.79599 (14)0.28854 (8)0.0600 (4)
C410.3277 (3)0.7833 (2)0.36324 (13)0.0582 (6)
C420.3927 (3)0.6778 (3)0.38754 (16)0.0768 (8)
H420.39970.61000.35620.092*
C430.4493 (3)0.6756 (3)0.46241 (19)0.0918 (10)
H430.49580.60560.48080.110*
C440.4358 (3)0.7761 (4)0.50814 (17)0.0904 (10)
H440.47250.77380.55740.109*
C450.3696 (4)0.8779 (3)0.48164 (17)0.0933 (10)
H450.36050.94540.51300.112*
C460.3157 (3)0.8834 (3)0.40929 (15)0.0774 (8)
H460.27100.95450.39140.093*
N20.0494 (2)0.4359 (2)0.36779 (12)0.0635 (5)
H20.077 (3)0.497 (3)0.3375 (16)0.089 (9)*
N10.1395 (2)0.34567 (19)0.39204 (11)0.0622 (5)
H10.238 (4)0.317 (3)0.3639 (18)0.117 (11)*
C50.0695 (3)0.2850 (2)0.44690 (13)0.0640 (6)
C5010.1367 (4)0.1732 (3)0.48168 (18)0.0907 (9)
H5010.10040.16420.53230.136*
H5020.24430.18060.48270.136*
H5030.10860.10310.45240.136*
C40.0674 (3)0.3404 (2)0.45804 (14)0.0683 (7)
H40.13940.31780.49320.082*
C30.0782 (3)0.4351 (2)0.40766 (14)0.0652 (6)
C3010.2005 (3)0.5242 (3)0.39294 (17)0.0903 (9)
H3010.24370.54930.44000.135*
H3020.27670.48690.36200.135*
H3030.16030.59390.36730.135*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0488 (3)0.0632 (4)0.0562 (3)0.0053 (3)0.0112 (2)0.0005 (3)
O10.0612 (10)0.0891 (12)0.0522 (8)0.0130 (9)0.0063 (7)0.0060 (8)
O20.0639 (10)0.0600 (10)0.0819 (11)0.0046 (8)0.0184 (8)0.0008 (8)
O30.0548 (9)0.0644 (10)0.0642 (9)0.0043 (8)0.0192 (7)0.0081 (8)
C310.0522 (13)0.0656 (14)0.0489 (11)0.0024 (11)0.0057 (9)0.0044 (10)
C320.0534 (13)0.0699 (15)0.0633 (13)0.0003 (12)0.0039 (10)0.0075 (12)
C330.0733 (17)0.0647 (16)0.0700 (15)0.0001 (13)0.0001 (13)0.0057 (12)
C340.0760 (19)0.0784 (19)0.0748 (17)0.0189 (15)0.0056 (14)0.0014 (14)
C350.0564 (15)0.092 (2)0.0757 (16)0.0112 (15)0.0123 (12)0.0053 (15)
C360.0542 (14)0.0791 (17)0.0671 (14)0.0048 (13)0.0105 (11)0.0071 (13)
O40.0539 (9)0.0707 (11)0.0555 (8)0.0075 (8)0.0048 (7)0.0051 (7)
C410.0454 (12)0.0707 (15)0.0586 (12)0.0024 (12)0.0029 (10)0.0089 (12)
C420.0706 (17)0.0829 (19)0.0772 (17)0.0189 (15)0.0163 (14)0.0120 (14)
C430.0642 (18)0.123 (3)0.089 (2)0.0294 (18)0.0110 (15)0.040 (2)
C440.0622 (17)0.142 (3)0.0674 (16)0.007 (2)0.0042 (14)0.011 (2)
C450.103 (3)0.104 (3)0.0725 (18)0.012 (2)0.0144 (17)0.0045 (17)
C460.089 (2)0.0737 (17)0.0695 (16)0.0011 (15)0.0126 (14)0.0028 (13)
N20.0613 (13)0.0657 (13)0.0637 (12)0.0019 (11)0.0147 (10)0.0044 (10)
N10.0586 (12)0.0683 (13)0.0599 (11)0.0034 (10)0.0102 (9)0.0004 (10)
C50.0669 (15)0.0680 (16)0.0573 (13)0.0013 (13)0.0079 (11)0.0037 (11)
C5010.093 (2)0.094 (2)0.085 (2)0.0132 (18)0.0089 (16)0.0184 (17)
C40.0585 (14)0.0821 (18)0.0645 (14)0.0013 (13)0.0193 (11)0.0043 (13)
C30.0574 (14)0.0712 (16)0.0673 (14)0.0031 (12)0.0136 (11)0.0030 (12)
C3010.0763 (19)0.097 (2)0.098 (2)0.0194 (17)0.0211 (16)0.0135 (17)
Geometric parameters (Å, º) top
P1—O21.4717 (18)C43—H430.9300
P1—O11.4770 (16)C44—C451.345 (4)
P1—O31.6003 (15)C44—H440.9300
P1—O41.6025 (16)C45—C461.367 (4)
O3—C311.392 (3)C45—H450.9300
C31—C361.381 (3)C46—H460.9300
C31—C321.382 (3)N2—C31.340 (3)
C32—C331.385 (3)N2—N11.342 (3)
C32—H320.9300N2—H20.89 (3)
C33—C341.381 (4)N1—C51.335 (3)
C33—H330.9300N1—H11.06 (4)
C34—C351.379 (4)C5—C41.376 (4)
C34—H340.9300C5—C5011.495 (4)
C35—C361.373 (4)C501—H5010.9600
C35—H350.9300C501—H5020.9600
C36—H360.9300C501—H5030.9600
O4—C411.402 (3)C4—C31.372 (3)
C41—C421.363 (3)C4—H40.9300
C41—C461.372 (3)C3—C3011.484 (4)
C42—C431.415 (4)C301—H3010.9600
C42—H420.9300C301—H3020.9600
C43—C441.374 (4)C301—H3030.9600
O2—P1—O1120.33 (11)C45—C44—H44120.0
O2—P1—O3105.07 (9)C43—C44—H44120.0
O1—P1—O3111.02 (10)C44—C45—C46120.9 (3)
O2—P1—O4110.67 (10)C44—C45—H45119.5
O1—P1—O4104.25 (9)C46—C45—H45119.5
O3—P1—O4104.53 (9)C45—C46—C41119.6 (3)
C31—O3—P1126.53 (13)C45—C46—H46120.2
C36—C31—C32120.2 (2)C41—C46—H46120.2
C36—C31—O3116.6 (2)C3—N2—N1109.4 (2)
C32—C31—O3123.2 (2)C3—N2—H2123.9 (18)
C31—C32—C33119.2 (2)N1—N2—H2125.4 (18)
C31—C32—H32120.4C5—N1—N2108.7 (2)
C33—C32—H32120.4C5—N1—H1125.6 (17)
C34—C33—C32120.7 (3)N2—N1—H1124.4 (17)
C34—C33—H33119.7N1—C5—C4107.5 (2)
C32—C33—H33119.7N1—C5—C501121.5 (2)
C35—C34—C33119.3 (3)C4—C5—C501130.9 (2)
C35—C34—H34120.4C5—C501—H501109.5
C33—C34—H34120.4C5—C501—H502109.5
C36—C35—C34120.6 (2)H501—C501—H502109.5
C36—C35—H35119.7C5—C501—H503109.5
C34—C35—H35119.7H501—C501—H503109.5
C35—C36—C31120.0 (3)H502—C501—H503109.5
C35—C36—H36120.0C3—C4—C5107.4 (2)
C31—C36—H36120.0C3—C4—H4126.3
C41—O4—P1123.96 (14)C5—C4—H4126.3
C42—C41—C46121.8 (2)N2—C3—C4107.0 (2)
C42—C41—O4121.0 (2)N2—C3—C301121.6 (2)
C46—C41—O4117.1 (2)C4—C3—C301131.3 (2)
C41—C42—C43117.2 (3)C3—C301—H301109.5
C41—C42—H42121.4C3—C301—H302109.5
C43—C42—H42121.4H301—C301—H302109.5
C44—C43—C42120.5 (3)C3—C301—H303109.5
C44—C43—H43119.8H301—C301—H303109.5
C42—C43—H43119.8H302—C301—H303109.5
C45—C44—C43120.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i1.06 (3)1.56 (3)2.617 (3)178 (3)
N2—H2···O20.90 (3)1.75 (3)2.633 (3)170 (3)
Symmetry code: (i) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC5H9N2+·C12H10O2P
Mr346.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.890 (1), 10.970 (2), 17.714 (1)
β (°) 90.41 (1)
V3)1727.5 (4)
Z4
Radiation typeCu Kα
µ (mm1)1.62
Crystal size (mm)0.6 × 0.4 × 0.3
Data collection
DiffractometerAFC-5S Rigaku
diffractometer
Absorption correctionAnalytical
(De Meulenaer & Tompa, 1965)
Tmin, Tmax0.507, 0.667
No. of measured, independent and
observed [I > 2σ(I)] reflections
3507, 3283, 2118
Rint0.020
(sin θ/λ)max1)0.620
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.130, 0.87
No. of reflections3283
No. of parameters227
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.42

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1989), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation, 1989), SHELXS86 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1998), PARST97 (Nardelli, 1996).

Selected geometric parameters (Å, º) top
P1—O21.4717 (18)P1—O41.6025 (16)
P1—O11.4770 (16)O3—C311.392 (3)
P1—O31.6003 (15)O4—C411.402 (3)
O2—P1—O1120.33 (11)O1—P1—O4104.25 (9)
O2—P1—O3105.07 (9)O3—P1—O4104.53 (9)
O1—P1—O3111.02 (10)C31—O3—P1126.53 (13)
O2—P1—O4110.67 (10)C41—O4—P1123.96 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i1.06 (3)1.56 (3)2.617 (3)178 (3)
N2—H2···O20.90 (3)1.75 (3)2.633 (3)170 (3)
Symmetry code: (i) x+1/2, y1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds