Download citation
Download citation
link to html
The mol­ecule of the title compound, C21H22N2O2, is nearly planar, with the exception of the C(CH3)2 group; the disubstituted C atom is displaced by 0.602 (2) Å from the mean plane [maximum deviation from planarity 0.196 (2) Å] through the remaining non-H atoms of the mol­ecule.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802017622/fl6000sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802017622/fl6000Isup2.hkl
Contains datablock I

CCDC reference: 198983

Key indicators

  • Single-crystal X-ray study
  • T = 291 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.041
  • wR factor = 0.103
  • Data-to-parameter ratio = 18.0

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_371 Alert C Long C(sp2)-C(sp1) Bond C(17) - C(18) = 1.43 Ang. PLAT_371 Alert C Long C(sp2)-C(sp1) Bond C(17) - C(19) = 1.43 Ang.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
2 Alert Level C = Please check

Comment top

Due to their solvatochromic behaviour (Lemke,1970), derivatives of 2-(5,5-dimethyl-3-styrylcyclohexenylidene)malononitrile are good candidates for non-linear optical (NLO), electro-optical (EO) and photorefrative (PR) applications. Some molecules of this class have been investigated by means of electric field induced second harmonic generation (EFISH) in chloroform. The dipole moments and molecular hyperpolarizabilities of these compounds are large enough to be used as active components of electrooptic and photorefractive polymers (Ermer et al., 1997). The title compound, (I), crystallizes in a centrosymmetric space group and can be used only for third-order NLO applications.

Experimental top

The title compound was synthesized according to the general procedure of Lemke (1970). (0.93 g, 5 mmol) (3,5,5-Trimethylcyclohex-2-enylidene)malonodinitrile (0.93 g, 5 mmol; Kolev et al., 2001) was dissolved in 60 ml anhydrous ethanol by continous stirring for 3 h at moderate temperature. 2,4-Dimethoxybenzaldehyde (0.83 g, 5 mmol) was dissolved in 30 ml anhydrous ethanol and added dropwise to the solution. Nearly 2 ml of piperidine were used as a catalyst. The solution became red after a few minutes and the resulting compound precipitated. After a 3 h reaction time, the solution was cooled and the title compound, (I), isolated and recrystallized twice from ethanol. Purification was achieved via column chromatography on silica gel, using chloroform as eluent. Yield: 0.34 g (43%); m.p. 456–457 K. The purity of the compound was confirmed by elemental analysis, IR, UV-vis and mass spectrometry. Red transparent crystals were grown from a toluene solution by slow evaporation at room temperature over a period of one week.

Refinement top

H atoms were placed in calculated positions, with Uiso values constrained to be 1.5 times Ueq of the carrier atom for the methyl-H atoms and 1.2 times Ueq for the remaining H atoms. The methyl groups were allowed to rotate but not to tip.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97, PARST95 (Nardelli, 1995) and PLATON (Spek, 2001).

Figures top
[Figure 1] Fig. 1. View of the title compound (XP; Sheldrick, 1991) showing the labelling of all non-H atoms. Displacement ellipsoids are shown at 30% probability levels. H atoms are drawn as circles of arbitrary radii.
(I) top
Crystal data top
C21H22N2O2Z = 2
Mr = 334.41F(000) = 356
Triclinic, P1Dx = 1.198 Mg m3
a = 7.7607 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.9488 (2) ÅCell parameters from 12122 reflections
c = 14.7723 (4) Åθ = 3.0–27.5°
α = 75.4549 (10)°µ = 0.08 mm1
β = 79.0465 (11)°T = 291 K
γ = 69.9378 (11)°Plate, dark red
V = 926.68 (4) Å30.25 × 0.10 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
1951 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.044
Graphite monochromatorθmax = 27.5°, θmin = 3.0°
Detector resolution: 19 vertical, 18 horizontal pixels mm-1h = 1010
416 frames via ω–rotation (Δω=1°) and two times 20 s per frame (four sets at different κ–angles) scansk = 1011
12122 measured reflectionsl = 1819
4161 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0475P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.87(Δ/σ)max < 0.001
4161 reflectionsΔρmax = 0.14 e Å3
231 parametersΔρmin = 0.13 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.026 (3)
Crystal data top
C21H22N2O2γ = 69.9378 (11)°
Mr = 334.41V = 926.68 (4) Å3
Triclinic, P1Z = 2
a = 7.7607 (2) ÅMo Kα radiation
b = 8.9488 (2) ŵ = 0.08 mm1
c = 14.7723 (4) ÅT = 291 K
α = 75.4549 (10)°0.25 × 0.10 × 0.05 mm
β = 79.0465 (11)°
Data collection top
Nonius KappaCCD
diffractometer
1951 reflections with I > 2σ(I)
12122 measured reflectionsRint = 0.044
4161 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 0.87Δρmax = 0.14 e Å3
4161 reflectionsΔρmin = 0.13 e Å3
231 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.20071 (14)0.64486 (13)0.73248 (6)0.0619 (3)
O20.28400 (14)0.39387 (13)0.83401 (7)0.0674 (3)
N10.1188 (2)0.99993 (19)0.10798 (9)0.0791 (5)
N20.3092 (2)1.2365 (2)0.00162 (10)0.1018 (6)
C10.01281 (18)0.64767 (16)0.62518 (9)0.0440 (4)
C20.05801 (19)0.60132 (16)0.71813 (9)0.0454 (4)
C30.0387 (2)0.51655 (17)0.78950 (9)0.0501 (4)
H30.00690.48660.85060.060*
C40.1820 (2)0.47729 (17)0.76904 (9)0.0499 (4)
C50.2295 (2)0.52064 (17)0.67835 (10)0.0557 (4)
H50.32600.49370.66470.067*
C60.1326 (2)0.60402 (17)0.60846 (9)0.0523 (4)
H60.16530.63240.54760.063*
C70.2635 (2)0.5929 (2)0.82341 (10)0.0675 (5)
H7A0.16390.63400.86920.101*
H7B0.36340.63330.82290.101*
H7C0.30530.47630.83920.101*
C80.2593 (2)0.3637 (2)0.93116 (10)0.0777 (5)
H8A0.13460.29780.94030.117*
H8B0.34290.30810.96860.117*
H8C0.28390.46510.94980.117*
C90.11592 (19)0.73619 (16)0.55161 (9)0.0475 (4)
H90.20730.76390.57000.057*
C100.09223 (19)0.78168 (16)0.46012 (9)0.0477 (4)
H100.00170.75280.44180.057*
C110.19233 (18)0.87076 (16)0.38695 (9)0.0432 (4)
C120.14455 (19)0.91381 (16)0.29806 (9)0.0467 (4)
H120.05070.88130.28630.056*
C130.23123 (18)1.00639 (16)0.22194 (9)0.0438 (4)
C140.38527 (19)1.05579 (17)0.24014 (9)0.0488 (4)
H14A0.33541.16500.25240.059*
H14B0.47301.05820.18390.059*
C150.48763 (19)0.94304 (17)0.32315 (9)0.0465 (4)
C160.34494 (18)0.91893 (17)0.40789 (9)0.0487 (4)
H16A0.40740.83590.45760.058*
H16B0.29161.01920.43110.058*
C170.1690 (2)1.05623 (17)0.13516 (9)0.0496 (4)
C180.2488 (2)1.1540 (2)0.05832 (10)0.0637 (5)
C190.0104 (2)1.02362 (19)0.11904 (9)0.0566 (4)
C200.6034 (2)0.78051 (19)0.29722 (11)0.0703 (5)
H20A0.69250.79760.24420.105*
H20B0.52440.73090.28130.105*
H20C0.66610.71060.34980.105*
C210.6122 (2)1.0242 (2)0.34691 (10)0.0641 (5)
H21A0.67870.95430.39820.096*
H21B0.53821.12530.36460.096*
H21C0.69811.04430.29290.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0646 (7)0.0793 (8)0.0451 (6)0.0359 (6)0.0144 (5)0.0068 (5)
O20.0722 (7)0.0742 (7)0.0550 (7)0.0394 (6)0.0025 (6)0.0043 (6)
N10.0854 (11)0.1144 (13)0.0521 (8)0.0546 (10)0.0116 (8)0.0062 (8)
N20.1405 (15)0.1179 (14)0.0619 (10)0.0852 (13)0.0183 (10)0.0241 (10)
C10.0485 (9)0.0441 (8)0.0367 (8)0.0152 (7)0.0021 (7)0.0042 (6)
C20.0470 (9)0.0438 (8)0.0419 (8)0.0148 (7)0.0043 (7)0.0022 (7)
C30.0545 (10)0.0487 (9)0.0392 (8)0.0136 (8)0.0040 (7)0.0002 (7)
C40.0535 (9)0.0452 (9)0.0459 (9)0.0183 (8)0.0025 (7)0.0022 (7)
C50.0626 (10)0.0576 (10)0.0528 (10)0.0294 (8)0.0064 (8)0.0066 (8)
C60.0655 (10)0.0531 (9)0.0397 (8)0.0238 (8)0.0058 (7)0.0045 (7)
C70.0695 (11)0.0827 (12)0.0512 (10)0.0257 (10)0.0218 (8)0.0012 (9)
C80.0906 (13)0.0849 (13)0.0490 (10)0.0389 (11)0.0075 (9)0.0066 (9)
C90.0495 (9)0.0494 (9)0.0416 (9)0.0166 (7)0.0046 (7)0.0043 (7)
C100.0485 (9)0.0523 (9)0.0405 (8)0.0180 (7)0.0039 (7)0.0038 (7)
C110.0435 (9)0.0442 (8)0.0373 (8)0.0125 (7)0.0016 (7)0.0042 (7)
C120.0477 (9)0.0542 (9)0.0398 (8)0.0235 (7)0.0047 (7)0.0018 (7)
C130.0479 (9)0.0430 (8)0.0385 (8)0.0148 (7)0.0022 (7)0.0059 (7)
C140.0535 (9)0.0503 (9)0.0428 (8)0.0222 (7)0.0025 (7)0.0033 (7)
C150.0446 (9)0.0495 (9)0.0434 (8)0.0162 (7)0.0029 (7)0.0052 (7)
C160.0506 (9)0.0535 (9)0.0397 (8)0.0159 (7)0.0061 (7)0.0051 (7)
C170.0585 (10)0.0556 (10)0.0378 (8)0.0271 (8)0.0049 (7)0.0020 (7)
C180.0808 (12)0.0733 (11)0.0436 (9)0.0400 (10)0.0145 (8)0.0044 (8)
C190.0710 (12)0.0682 (11)0.0317 (8)0.0303 (9)0.0054 (8)0.0002 (7)
C200.0598 (11)0.0604 (11)0.0766 (11)0.0082 (9)0.0017 (9)0.0108 (9)
C210.0552 (10)0.0823 (12)0.0586 (10)0.0297 (9)0.0089 (8)0.0073 (9)
Geometric parameters (Å, º) top
O1—C21.3601 (15)C10—C111.4424 (16)
O1—C71.4273 (14)C10—H100.9300
O2—C41.3645 (15)C11—C121.3577 (16)
O2—C81.4295 (16)C11—C161.4968 (17)
N1—C191.1411 (18)C12—C131.4249 (17)
N2—C181.1405 (17)C12—H120.9300
C1—C61.3941 (18)C13—C171.3697 (17)
C1—C21.4062 (17)C13—C141.4971 (17)
C1—C91.4563 (17)C14—C151.5336 (16)
C2—C31.3924 (17)C14—H14A0.9700
C3—C41.3786 (18)C14—H14B0.9700
C3—H30.9300C15—C201.524 (2)
C4—C51.3818 (18)C15—C211.5247 (18)
C5—C61.3754 (17)C15—C161.5301 (18)
C5—H50.9300C16—H16A0.9700
C6—H60.9300C16—H16B0.9700
C7—H7A0.9600C17—C181.4295 (19)
C7—H7B0.9600C17—C191.431 (2)
C7—H7C0.9600C20—H20A0.9600
C8—H8A0.9600C20—H20B0.9600
C8—H8B0.9600C20—H20C0.9600
C8—H8C0.9600C21—H21A0.9600
C9—C101.3390 (16)C21—H21B0.9600
C9—H90.9300C21—H21C0.9600
C2—O1—C7118.97 (10)C11—C12—C13123.20 (12)
C4—O2—C8118.70 (11)C11—C12—H12118.4
C6—C1—C2116.64 (12)C13—C12—H12118.4
C6—C1—C9122.97 (12)C17—C13—C12120.76 (12)
C2—C1—C9120.39 (12)C17—C13—C14120.60 (12)
O1—C2—C3123.22 (12)C12—C13—C14118.56 (11)
O1—C2—C1115.47 (11)C13—C14—C15113.82 (11)
C3—C2—C1121.31 (13)C13—C14—H14A108.8
C4—C3—C2119.57 (12)C15—C14—H14A108.8
C4—C3—H3120.2C13—C14—H14B108.8
C2—C3—H3120.2C15—C14—H14B108.8
O2—C4—C3123.82 (12)H14A—C14—H14B107.7
O2—C4—C5115.63 (13)C20—C15—C21109.89 (12)
C3—C4—C5120.54 (12)C20—C15—C16110.50 (11)
C6—C5—C4119.30 (13)C21—C15—C16109.28 (11)
C6—C5—H5120.3C20—C15—C14110.14 (12)
C4—C5—H5120.3C21—C15—C14108.49 (11)
C5—C6—C1122.63 (13)C16—C15—C14108.50 (11)
C5—C6—H6118.7C11—C16—C15114.05 (11)
C1—C6—H6118.7C11—C16—H16A108.7
O1—C7—H7A109.5C15—C16—H16A108.7
O1—C7—H7B109.5C11—C16—H16B108.7
H7A—C7—H7B109.5C15—C16—H16B108.7
O1—C7—H7C109.5H16A—C16—H16B107.6
H7A—C7—H7C109.5C13—C17—C18122.08 (13)
H7B—C7—H7C109.5C13—C17—C19121.31 (12)
O2—C8—H8A109.5C18—C17—C19116.42 (12)
O2—C8—H8B109.5N2—C18—C17177.6 (2)
H8A—C8—H8B109.5N1—C19—C17178.16 (18)
O2—C8—H8C109.5C15—C20—H20A109.5
H8A—C8—H8C109.5C15—C20—H20B109.5
H8B—C8—H8C109.5H20A—C20—H20B109.5
C10—C9—C1126.44 (13)C15—C20—H20C109.5
C10—C9—H9116.8H20A—C20—H20C109.5
C1—C9—H9116.8H20B—C20—H20C109.5
C9—C10—C11126.84 (13)C15—C21—H21A109.5
C9—C10—H10116.6C15—C21—H21B109.5
C11—C10—H10116.6H21A—C21—H21B109.5
C12—C11—C10119.17 (12)C15—C21—H21C109.5
C12—C11—C16119.71 (11)H21A—C21—H21C109.5
C10—C11—C16121.11 (11)H21B—C21—H21C109.5
C7—O1—C2—C34.2 (2)C9—C10—C11—C12176.90 (14)
C7—O1—C2—C1175.79 (12)C9—C10—C11—C161.9 (2)
C6—C1—C2—O1179.78 (13)C10—C11—C12—C13177.86 (13)
C9—C1—C2—O10.02 (19)C16—C11—C12—C131.0 (2)
C6—C1—C2—C30.2 (2)C11—C12—C13—C17175.37 (13)
C9—C1—C2—C3179.96 (13)C11—C12—C13—C141.4 (2)
O1—C2—C3—C4179.89 (14)C17—C13—C14—C15157.60 (13)
C1—C2—C3—C40.1 (2)C12—C13—C14—C1525.68 (19)
C8—O2—C4—C38.8 (2)C13—C14—C15—C2071.19 (15)
C8—O2—C4—C5171.87 (13)C13—C14—C15—C21168.50 (12)
C2—C3—C4—O2179.63 (13)C13—C14—C15—C1649.88 (16)
C2—C3—C4—C50.3 (2)C12—C11—C16—C1526.52 (19)
O2—C4—C5—C6179.54 (13)C10—C11—C16—C15154.67 (12)
C3—C4—C5—C60.2 (2)C20—C15—C16—C1170.43 (15)
C4—C5—C6—C10.2 (2)C21—C15—C16—C11168.54 (12)
C2—C1—C6—C50.4 (2)C14—C15—C16—C1150.41 (16)
C9—C1—C6—C5179.89 (14)C12—C13—C17—C18177.78 (13)
C6—C1—C9—C102.6 (2)C14—C13—C17—C181.1 (2)
C2—C1—C9—C10177.15 (14)C12—C13—C17—C192.9 (2)
C1—C9—C10—C11179.32 (13)C14—C13—C17—C19173.80 (14)

Experimental details

Crystal data
Chemical formulaC21H22N2O2
Mr334.41
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)7.7607 (2), 8.9488 (2), 14.7723 (4)
α, β, γ (°)75.4549 (10), 79.0465 (11), 69.9378 (11)
V3)926.68 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.25 × 0.10 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12122, 4161, 1951
Rint0.044
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.103, 0.87
No. of reflections4161
No. of parameters231
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.13

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), DENZO and SCALEPACK, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus (Sheldrick, 1991), SHELXL97, PARST95 (Nardelli, 1995) and PLATON (Spek, 2001).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds