Download citation
Download citation
link to html
The structure of the title compound, [Ru3(CO)9(μ-H)(μ3-C2SiiPr3)], consists of an almost equilateral triangular Ru3 core, with the acetyl­ide ligand σ-bonded to one Ru atom and π-bonded to the other two Ru atoms. The hydride atom is located between the two Ru atoms that are π-bonded to the acetyl­ide. Three terminal carbonyls around each ruthenium atom complete the structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802016768/lh6000sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802016768/lh6000Isup2.hkl
Contains datablock I

CCDC reference: 198312

Key indicators

  • Single-crystal X-ray study
  • T = 160 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.020
  • wR factor = 0.054
  • Data-to-parameter ratio = 14.2

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Amber Alert Alert Level B:
REFLT_03 From the CIF: _diffrn_reflns_theta_max 26.04 From the CIF: _reflns_number_total 4546 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 5068 Completeness (_total/calc) 89.70% Alert B: < 90% complete (theta max?)
Author response: Data were measured on one circle IPDS STOE diffractometer using a phi rotation this geometry always gives a less good coverage of the unique set than a three or four circles goniometer

Yellow Alert Alert Level C:
PLAT_320 Alert C Check Hybridisation of C(1) in main residue ? General Notes
ABSTM_02 When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 1.497 Tmax scaled 0.693 Tmin scaled 0.512
0 Alert Level A = Potentially serious problem
1 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

Acetylide compounds are being widely studied because of the versatile coordination modes of the unsaturated fragments which act as metalloligands (Ara et al., 1995). Researchers are also interested in cluster chemistry containing C2R groups regarding their implications in the syntheses of organic molecules that take place on metal surfaces (Chi et al., 1997). More recently the acetylide derivatives have been used as precursors to synthesize polymetallic compounds bearing unsaturated polycarbon chains (Alcalde et al., 2001). Herein we report the structure of the new compound [Ru3(CO)9(µ-H)(µ3-C2SiiPr3)], (I). The ν(CO) pattern in the carbonyl region as well as the 1H NMR resonance for hydride observed in the spectra are in agreement with data reported on analogous compounds (Sappa et al., 1972; Edwards et al., 1995).

The title compound consists of a triangular ruthenium cluster (see Fig. 1). The Ru—Ru distances [Ru1—Ru3 2.8010 (9), Ru1—Ru2 2.7907 (13) and Ru2—Ru3 2.7957 (11) Å] are similar to those reported for other compounds of this type. [Ru3(CO)9(µ-H)(µ3-C2R)] [R= H [2.792 (1), 2.803 (1), 2.810 (1) Å (Bruce et al., 1999); tBu [2.790 (2), 2.795 (2), 2.796 (2) Å (Gervasio & Ferraris, 1973)]. The three ruthenium atoms in all of these compounds form an almost equilateral triangle. In (I) the acetylide ligand is σ-bonded to one Ru atom [Ru2—C1 1.958 (2) Å] and π-bonded to the other two Ru atoms [Ru3—C1 2.215 (2), Ru1—C1 2.206 (2), Ru3—C2 2.302 (3) and Ru1—C2 2.322 (2) Å]. The acetylide group is acting as 5 e- donor, the C1—C2 distance [1.299 (3) Å] being comparable to that in other acetylide clusters [Ru3(CO)9(µ-H)(µ3-C2R)][R= H [1.28 (1) Å (Bruce et al., 1999)]; t Bu [1.29 (3) Å (Gervasio & Ferraris, 1973)]. The hydride is unsymmetrically located between atoms Ru1 and Ru3 giving Ru—H distances of 1.81 (3) and 1.77 (3) Å (see Table 1.). Three terminal CO ligands around each metal atom complete the structure.

Experimental top

A mixture of Ru3(CO)12 (0.100 g, 0.156 mmol) and HCCSiiPr3 (0.056 g, 0.156 mmol) in toluene (15 cm3) was heated with stirring at 358 K for 2.5 h. After removing the solvent in vacuo, the residue was crystallized from hexane at 253 K giving yellow crystals of [Ru3(CO)9(µ-H)(µ3-C2SiiPr3)] (0.090 g, 78.2% yield). Anal. Calcd. for C20H22O9SiRu3 (Found) C, 32.56 (32.79); H, 3.01 (2.81) %. IR (toluene, cm-1) ν(CO): 2095 (m), 2067 (versus), 2050 (versus), 2018 (versus), 1984 (m). 1H NMR (CDCl3): δ= 1.17 [s, 21H, iPr], -20.83 [s, 1H, H]. FAB+ (m/z): 737 (M+), 711–485 (M+-nCO, n= 1–9).

Refinement top

All H atoms atoms were located in difference Fourier maps, and refined by using a riding-model approximation with an isotropic displacement parameter fixed at 20% higher than those of the carbons atoms to which they are connected. The hydride H was refined independently with an isotropic displacement parameter. Owing to the geometry of the Stoe IPDS diffractometer which has only one circle (φ rotation), the coverage of the data is usually not complete and only around 90%. To obtain a better coverage, we would need to recollect data with the crystal mounted in a different orientation.

Structure description top

Acetylide compounds are being widely studied because of the versatile coordination modes of the unsaturated fragments which act as metalloligands (Ara et al., 1995). Researchers are also interested in cluster chemistry containing C2R groups regarding their implications in the syntheses of organic molecules that take place on metal surfaces (Chi et al., 1997). More recently the acetylide derivatives have been used as precursors to synthesize polymetallic compounds bearing unsaturated polycarbon chains (Alcalde et al., 2001). Herein we report the structure of the new compound [Ru3(CO)9(µ-H)(µ3-C2SiiPr3)], (I). The ν(CO) pattern in the carbonyl region as well as the 1H NMR resonance for hydride observed in the spectra are in agreement with data reported on analogous compounds (Sappa et al., 1972; Edwards et al., 1995).

The title compound consists of a triangular ruthenium cluster (see Fig. 1). The Ru—Ru distances [Ru1—Ru3 2.8010 (9), Ru1—Ru2 2.7907 (13) and Ru2—Ru3 2.7957 (11) Å] are similar to those reported for other compounds of this type. [Ru3(CO)9(µ-H)(µ3-C2R)] [R= H [2.792 (1), 2.803 (1), 2.810 (1) Å (Bruce et al., 1999); tBu [2.790 (2), 2.795 (2), 2.796 (2) Å (Gervasio & Ferraris, 1973)]. The three ruthenium atoms in all of these compounds form an almost equilateral triangle. In (I) the acetylide ligand is σ-bonded to one Ru atom [Ru2—C1 1.958 (2) Å] and π-bonded to the other two Ru atoms [Ru3—C1 2.215 (2), Ru1—C1 2.206 (2), Ru3—C2 2.302 (3) and Ru1—C2 2.322 (2) Å]. The acetylide group is acting as 5 e- donor, the C1—C2 distance [1.299 (3) Å] being comparable to that in other acetylide clusters [Ru3(CO)9(µ-H)(µ3-C2R)][R= H [1.28 (1) Å (Bruce et al., 1999)]; t Bu [1.29 (3) Å (Gervasio & Ferraris, 1973)]. The hydride is unsymmetrically located between atoms Ru1 and Ru3 giving Ru—H distances of 1.81 (3) and 1.77 (3) Å (see Table 1.). Three terminal CO ligands around each metal atom complete the structure.

Computing details top

Data collection: IPDS Software (Stoe, 1996); cell refinement: IPDS Software; data reduction: X-RED (Stoe, 1996); program(s) used to solve structure: SIR92 (Altomare et al., 1994) in WjnGX (Farrugia, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997) in WinGX; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) in WinGX; software used to prepare material for publication: SHELXL97 in WinGX.

Figures top
[Figure 1] Fig. 1. View of (I) with probability displacement ellipsoids drawn at the 50% level.
(I) top
Crystal data top
[Ru3(C11H22Si)(CO)9]Z = 2
Mr = 737.68F(000) = 720
Triclinic, P1Dx = 1.91 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 9.3592 (13) ÅCell parameters from 5000 reflections
b = 11.8691 (18) Åθ = 1.5–26.0°
c = 12.6669 (17) ŵ = 1.83 mm1
α = 79.393 (17)°T = 160 K
β = 87.314 (17)°Parallelepiped, orange yellow
γ = 68.106 (16)°0.4 × 0.35 × 0.2 mm
V = 1282.9 (3) Å3
Data collection top
Stoe IPDS
diffractometer
4456 reflections with I > 2σ(I)
φ scansRint = 0.028
Absorption correction: multi-scan
(Blessing, 1995)
θmax = 26.0°, θmin = 3.5°
Tmin = 0.342, Tmax = 0.463h = 1111
12223 measured reflectionsk = 1414
4546 independent reflectionsl = 1515
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.020 w = 1/[σ2(Fo2) + (0.0241P)2 + 1.1678P]
where P = Fo2 + 2Fc2)/3
wR(F2) = 0.054(Δ/σ)max = 0.002
S = 1.13Δρmax = 0.37 e Å3
4546 reflectionsΔρmin = 0.40 e Å3
320 parameters
Crystal data top
[Ru3(C11H22Si)(CO)9]γ = 68.106 (16)°
Mr = 737.68V = 1282.9 (3) Å3
Triclinic, P1Z = 2
a = 9.3592 (13) ÅMo Kα radiation
b = 11.8691 (18) ŵ = 1.83 mm1
c = 12.6669 (17) ÅT = 160 K
α = 79.393 (17)°0.4 × 0.35 × 0.2 mm
β = 87.314 (17)°
Data collection top
Stoe IPDS
diffractometer
4546 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
4456 reflections with I > 2σ(I)
Tmin = 0.342, Tmax = 0.463Rint = 0.028
12223 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.054H atoms treated by a mixture of independent and constrained refinement
S = 1.13Δρmax = 0.37 e Å3
4546 reflectionsΔρmin = 0.40 e Å3
320 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. The structure has been refined by means of least-squares procedures on a F2 with the aid of the program SHELXL97 include in the softwares package WinGX version 1.63. The Atomic Scattering Factors were taken from International tables for X-Ray Crystallography. All non-H atoms atoms were anisotropically refined, and in the last cycles of refinement a weighting scheme was used, where weights are calculated from the following formula: w=1/[σ2(Fo2)+(aP)2+bP] where P=(Fo2+2Fc2)/3. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.01078 (2)0.413152 (16)0.768929 (14)0.01971 (6)
Ru20.28060 (2)0.398048 (17)0.862315 (15)0.02237 (7)
Ru30.21596 (2)0.359488 (17)0.651244 (14)0.02084 (6)
Si0.16340 (8)0.07630 (6)0.72245 (5)0.02073 (13)
O110.2856 (2)0.41617 (18)0.65700 (18)0.0401 (5)
O120.1373 (2)0.3607 (2)0.99054 (15)0.0382 (5)
O130.1529 (3)0.68922 (17)0.76664 (16)0.0380 (5)
O210.2070 (3)0.3935 (2)1.09514 (16)0.0452 (5)
O220.5022 (3)0.66766 (19)0.8205 (2)0.0540 (6)
O230.5285 (3)0.2895 (2)0.9097 (2)0.0521 (6)
O310.4866 (3)0.59904 (19)0.57837 (18)0.0452 (5)
O320.4142 (2)0.20480 (19)0.66898 (18)0.0411 (5)
O330.1131 (3)0.31402 (19)0.42391 (15)0.0427 (5)
C10.1073 (3)0.2676 (2)0.81170 (18)0.0208 (5)
C20.0007 (3)0.2202 (2)0.74666 (18)0.0213 (5)
C110.1760 (3)0.4113 (2)0.6951 (2)0.0263 (5)
C120.0838 (3)0.3788 (2)0.9076 (2)0.0272 (5)
C130.0983 (3)0.5855 (2)0.7707 (2)0.0276 (5)
C210.2354 (3)0.3958 (3)1.0083 (2)0.0319 (6)
C220.4205 (3)0.5675 (2)0.8384 (2)0.0328 (6)
C230.4381 (3)0.3318 (3)0.8918 (2)0.0316 (6)
C310.3876 (3)0.5089 (3)0.6066 (2)0.0316 (6)
C320.3404 (3)0.2627 (2)0.6612 (2)0.0281 (5)
C330.1444 (3)0.3286 (2)0.5091 (2)0.0289 (5)
C1110.0943 (3)0.0558 (2)0.7632 (2)0.0284 (5)
C1120.0271 (4)0.0500 (3)0.6838 (3)0.0409 (7)
H11A0.01480.04880.61140.061*
H11B0.11860.0250.68460.061*
H11C0.05540.12260.70440.061*
C1130.0315 (5)0.0669 (3)0.8769 (3)0.0521 (9)
H11D0.1140.08390.92940.078*
H11E0.00690.13450.88980.078*
H11F0.05270.01060.88430.078*
C1210.2029 (3)0.0890 (2)0.5744 (2)0.0276 (5)
C1220.3113 (4)0.0341 (3)0.5440 (2)0.0379 (6)
H12A0.27090.09880.57150.057*
H12B0.41410.05680.57540.057*
H12C0.31770.02490.46560.057*
C1230.2591 (3)0.1926 (3)0.5275 (2)0.0330 (6)
H12D0.18260.27180.53970.05*
H12E0.27350.19470.45010.05*
H12F0.35720.1780.56240.05*
C1310.3292 (3)0.0706 (2)0.8053 (2)0.0262 (5)
C1320.4866 (3)0.0285 (3)0.7879 (3)0.0386 (6)
H13A0.51240.0160.71190.058*
H13B0.48160.11060.80920.058*
H13C0.56580.02180.83160.058*
C1330.2958 (4)0.0618 (3)0.9252 (2)0.0382 (6)
H13D0.18890.11510.93490.057*
H13E0.36550.08860.96050.057*
H13F0.31160.02380.95720.057*
H10.191 (4)0.133 (3)0.763 (2)0.034 (8)*
H20.112 (4)0.101 (3)0.545 (2)0.023 (7)*
H30.333 (3)0.146 (3)0.781 (2)0.026 (7)*
H0.115 (4)0.461 (3)0.642 (2)0.039 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01952 (11)0.01985 (10)0.02139 (10)0.00883 (8)0.00124 (8)0.00463 (7)
Ru20.02044 (11)0.02240 (10)0.02557 (11)0.00843 (9)0.00541 (8)0.00762 (8)
Ru30.01886 (11)0.02105 (10)0.02192 (10)0.00610 (8)0.00201 (8)0.00433 (7)
Si0.0194 (3)0.0198 (3)0.0222 (3)0.0061 (3)0.0008 (3)0.0047 (2)
O110.0273 (11)0.0357 (10)0.0544 (12)0.0124 (9)0.0105 (10)0.0023 (9)
O120.0383 (12)0.0487 (12)0.0280 (10)0.0153 (10)0.0091 (9)0.0074 (8)
O130.0490 (13)0.0228 (9)0.0407 (11)0.0121 (9)0.0034 (10)0.0057 (8)
O210.0530 (14)0.0619 (14)0.0308 (11)0.0298 (12)0.0070 (10)0.0162 (10)
O220.0444 (14)0.0289 (11)0.0783 (17)0.0036 (10)0.0116 (13)0.0079 (11)
O230.0430 (13)0.0613 (14)0.0668 (15)0.0352 (13)0.0151 (12)0.0171 (12)
O310.0365 (13)0.0331 (11)0.0518 (12)0.0043 (10)0.0142 (11)0.0065 (9)
O320.0307 (11)0.0401 (11)0.0608 (13)0.0194 (10)0.0012 (10)0.0160 (10)
O330.0519 (14)0.0418 (11)0.0237 (10)0.0049 (10)0.0005 (9)0.0063 (8)
C10.0215 (12)0.0194 (10)0.0228 (11)0.0100 (10)0.0017 (10)0.0015 (9)
C20.0225 (12)0.0200 (11)0.0222 (11)0.0094 (10)0.0007 (10)0.0025 (9)
C110.0259 (14)0.0203 (11)0.0304 (12)0.0067 (10)0.0008 (11)0.0025 (9)
C120.0249 (13)0.0254 (12)0.0324 (13)0.0097 (11)0.0016 (11)0.0069 (10)
C130.0322 (14)0.0289 (13)0.0255 (12)0.0154 (12)0.0047 (11)0.0064 (10)
C210.0312 (15)0.0354 (14)0.0340 (14)0.0162 (12)0.0111 (12)0.0120 (11)
C220.0285 (15)0.0282 (13)0.0403 (14)0.0086 (12)0.0088 (12)0.0090 (11)
C230.0272 (14)0.0347 (14)0.0343 (13)0.0121 (12)0.0054 (12)0.0094 (11)
C310.0313 (15)0.0318 (14)0.0328 (13)0.0107 (13)0.0032 (12)0.0098 (11)
C320.0213 (13)0.0277 (12)0.0316 (13)0.0036 (11)0.0046 (11)0.0066 (10)
C330.0284 (14)0.0256 (12)0.0297 (13)0.0068 (11)0.0035 (11)0.0035 (10)
C1110.0290 (14)0.0209 (11)0.0338 (13)0.0087 (11)0.0013 (11)0.0028 (10)
C1120.0391 (17)0.0367 (15)0.0532 (17)0.0202 (14)0.0076 (14)0.0079 (13)
C1130.080 (3)0.0470 (18)0.0448 (17)0.0416 (19)0.0207 (17)0.0104 (14)
C1210.0243 (14)0.0346 (13)0.0262 (12)0.0107 (12)0.0038 (11)0.0123 (10)
C1220.0333 (16)0.0401 (15)0.0379 (15)0.0064 (13)0.0069 (13)0.0184 (12)
C1230.0327 (15)0.0424 (15)0.0231 (12)0.0146 (13)0.0036 (11)0.0031 (11)
C1310.0255 (14)0.0233 (12)0.0282 (12)0.0079 (11)0.0029 (11)0.0019 (10)
C1320.0257 (15)0.0396 (15)0.0474 (16)0.0071 (13)0.0025 (13)0.0102 (13)
C1330.0384 (17)0.0458 (16)0.0283 (13)0.0124 (14)0.0061 (12)0.0067 (12)
Geometric parameters (Å, º) top
Ru1—C131.903 (3)O32—C321.132 (3)
Ru1—C121.910 (3)O33—C331.132 (3)
Ru1—C111.938 (3)C1—C21.299 (3)
Ru1—C12.206 (2)C111—C1121.526 (4)
Ru1—C22.322 (2)C111—C1131.531 (4)
Ru1—Ru22.7907 (5)C111—H11.01 (3)
Ru1—Ru32.8010 (5)C112—H11A0.98
Ru1—H1.81 (3)C112—H11B0.98
Ru2—C231.907 (3)C112—H11C0.98
Ru2—C211.909 (3)C113—H11D0.98
Ru2—C221.924 (3)C113—H11E0.98
Ru2—C11.958 (2)C113—H11F0.98
Ru2—Ru32.7957 (5)C121—C1231.526 (4)
Ru3—C321.904 (3)C121—C1221.541 (4)
Ru3—C311.907 (3)C121—H20.89 (3)
Ru3—C331.942 (3)C122—H12A0.98
Ru3—C12.215 (2)C122—H12B0.98
Ru3—C22.302 (3)C122—H12C0.98
Ru3—H1.77 (3)C123—H12D0.98
Si—C21.881 (3)C123—H12E0.98
Si—C1211.884 (3)C123—H12F0.98
Si—C1311.887 (3)C131—C1331.529 (4)
Si—C1111.890 (3)C131—C1321.541 (4)
O11—C111.129 (3)C131—H30.91 (3)
O12—C121.135 (3)C132—H13A0.98
O13—C131.135 (3)C132—H13B0.98
O21—C211.137 (4)C132—H13C0.98
O22—C221.135 (4)C133—H13D0.98
O23—C231.130 (3)C133—H13E0.98
O31—C311.132 (3)C133—H13F0.98
C13—Ru1—C1291.98 (11)C131—Si—C111115.77 (12)
C13—Ru1—C1197.34 (10)C2—C1—Ru2156.06 (19)
C12—Ru1—C1192.96 (11)C2—C1—Ru178.27 (14)
C13—Ru1—C1131.25 (10)Ru2—C1—Ru183.93 (9)
C12—Ru1—C193.10 (9)C2—C1—Ru377.04 (15)
C11—Ru1—C1130.70 (9)Ru2—C1—Ru383.90 (9)
C13—Ru1—C2158.26 (10)Ru1—C1—Ru378.63 (8)
C12—Ru1—C2102.52 (9)C1—C2—Si145.28 (19)
C11—Ru1—C297.98 (9)C1—C2—Ru369.62 (15)
C1—Ru1—C233.21 (9)Si—C2—Ru3135.36 (12)
C13—Ru1—Ru287.27 (8)C1—C2—Ru168.52 (13)
C12—Ru1—Ru290.70 (8)Si—C2—Ru1133.19 (12)
C11—Ru1—Ru2174.00 (7)Ru3—C2—Ru174.57 (7)
C1—Ru1—Ru244.24 (6)O11—C11—Ru1174.7 (2)
C2—Ru1—Ru276.57 (6)O12—C12—Ru1178.4 (2)
C13—Ru1—Ru3106.84 (8)O13—C13—Ru1176.6 (2)
C12—Ru1—Ru3143.33 (7)O21—C21—Ru2179.3 (3)
C11—Ru1—Ru3114.73 (8)O22—C22—Ru2177.5 (3)
C1—Ru1—Ru350.82 (6)O23—C23—Ru2178.2 (3)
C2—Ru1—Ru352.40 (6)O31—C31—Ru3177.9 (3)
Ru2—Ru1—Ru360.00 (1)O32—C32—Ru3178.9 (2)
C13—Ru1—H82.3 (10)O33—C33—Ru3175.2 (2)
C12—Ru1—H173.8 (10)C112—C111—C113108.9 (3)
C11—Ru1—H90.2 (10)C112—C111—Si111.45 (19)
C1—Ru1—H88.8 (10)C113—C111—Si114.93 (18)
C2—Ru1—H82.3 (10)C112—C111—H1110.9 (17)
Ru2—Ru1—H86.6 (10)C113—C111—H1106.2 (17)
Ru3—Ru1—H38.0 (10)Si—C111—H1104.3 (17)
C23—Ru2—C2196.49 (11)C111—C112—H11A109.5
C23—Ru2—C2294.79 (12)C111—C112—H11B109.5
C21—Ru2—C2294.22 (12)H11A—C112—H11B109.5
C23—Ru2—C1105.17 (11)C111—C112—H11C109.5
C21—Ru2—C1107.35 (11)H11A—C112—H11C109.5
C22—Ru2—C1148.34 (10)H11B—C112—H11C109.5
C23—Ru2—Ru1155.30 (8)C111—C113—H11D109.5
C21—Ru2—Ru199.28 (8)C111—C113—H11E109.5
C22—Ru2—Ru1102.83 (8)H11D—C113—H11E109.5
C1—Ru2—Ru151.83 (7)C111—C113—H11F109.5
C23—Ru2—Ru399.77 (8)H11D—C113—H11F109.5
C21—Ru2—Ru3156.55 (9)H11E—C113—H11F109.5
C22—Ru2—Ru3101.10 (8)C123—C121—C122110.4 (2)
C1—Ru2—Ru351.97 (7)C123—C121—Si114.58 (17)
Ru1—Ru2—Ru360.184 (11)C122—C121—Si112.9 (2)
C32—Ru3—C3192.18 (12)C123—C121—H2111.4 (18)
C32—Ru3—C3393.73 (11)C122—C121—H2103.5 (18)
C31—Ru3—C3397.38 (11)Si—C121—H2103.3 (17)
C32—Ru3—C192.66 (10)C121—C122—H12A109.5
C31—Ru3—C1131.43 (10)C121—C122—H12B109.5
C33—Ru3—C1130.41 (10)H12A—C122—H12B109.5
C32—Ru3—C2100.62 (10)C121—C122—H12C109.5
C31—Ru3—C2159.80 (9)H12A—C122—H12C109.5
C33—Ru3—C297.31 (10)H12B—C122—H12C109.5
C1—Ru3—C233.35 (8)C121—C123—H12D109.5
C32—Ru3—Ru291.37 (8)C121—C123—H12E109.5
C31—Ru3—Ru287.46 (8)H12D—C123—H12E109.5
C33—Ru3—Ru2172.82 (8)C121—C123—H12F109.5
C1—Ru3—Ru244.13 (6)H12D—C123—H12F109.5
C2—Ru3—Ru276.76 (6)H12E—C123—H12F109.5
C32—Ru3—Ru1142.85 (8)C133—C131—C132110.1 (2)
C31—Ru3—Ru1108.03 (8)C133—C131—Si112.84 (19)
C33—Ru3—Ru1113.41 (8)C132—C131—Si115.44 (18)
C1—Ru3—Ru150.56 (6)C133—C131—H3107.0 (18)
C2—Ru3—Ru153.03 (6)C132—C131—H3108.8 (19)
Ru2—Ru3—Ru159.82 (2)Si—C131—H3102.0 (19)
C32—Ru3—H175.0 (11)C131—C132—H13A109.5
C31—Ru3—H83.0 (11)C131—C132—H13B109.5
C33—Ru3—H88.2 (10)H13A—C132—H13B109.5
C1—Ru3—H89.6 (10)C131—C132—H13C109.5
C2—Ru3—H83.7 (11)H13A—C132—H13C109.5
Ru1—H—Ru3102.2 (16)H13B—C132—H13C109.5
Ru2—Ru3—H87.2 (10)C131—C133—H13D109.5
Ru1—Ru3—H39.1 (10)C131—C133—H13E109.5
C2—Si—C121109.32 (11)H13D—C133—H13E109.5
C2—Si—C131103.97 (11)C131—C133—H13F109.5
C121—Si—C131113.07 (12)H13D—C133—H13F109.5
C2—Si—C111106.81 (11)H13E—C133—H13F109.5
C121—Si—C111107.56 (11)

Experimental details

Crystal data
Chemical formula[Ru3(C11H22Si)(CO)9]
Mr737.68
Crystal system, space groupTriclinic, P1
Temperature (K)160
a, b, c (Å)9.3592 (13), 11.8691 (18), 12.6669 (17)
α, β, γ (°)79.393 (17), 87.314 (17), 68.106 (16)
V3)1282.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.83
Crystal size (mm)0.4 × 0.35 × 0.2
Data collection
DiffractometerStoe IPDS
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.342, 0.463
No. of measured, independent and
observed [I > 2σ(I)] reflections
12223, 4546, 4456
Rint0.028
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.054, 1.13
No. of reflections4546
No. of parameters320
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.40

Computer programs: IPDS Software (Stoe, 1996), IPDS Software, X-RED (Stoe, 1996), SIR92 (Altomare et al., 1994) in WjnGX (Farrugia, 1999), SHELXL97 (Sheldrick, 1997) in WinGX, ORTEP-3 for Windows (Farrugia, 1997) in WinGX, SHELXL97 in WinGX.

Selected geometric parameters (Å, º) top
Ru1—C12.206 (2)Ru2—Ru32.7957 (5)
Ru1—C22.322 (2)Ru3—C12.215 (2)
Ru1—Ru22.7907 (5)Ru3—C22.302 (3)
Ru1—Ru32.8010 (5)Ru3—H1.77 (3)
Ru1—H1.81 (3)Si—C21.881 (3)
Ru2—C11.958 (2)C1—C21.299 (3)
Ru2—Ru1—Ru360.00 (1)C2—C1—Ru2156.06 (19)
Ru1—Ru2—Ru360.184 (11)Ru1—C1—Ru378.63 (8)
Ru2—Ru3—Ru159.82 (2)C1—C2—Si145.28 (19)
Ru1—H—Ru3102.2 (16)Ru3—C2—Ru174.57 (7)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds