Download citation
Download citation
link to html
The title compound, C18H21NO2, consists of two aromatic rings and a morpholine ring attached to an ethanol moiety. The mol­ecule is non-planar. There is an intramolecular O—H...N hydrogen bond.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802016252/ob6167sup1.cif
Contains datablocks nn6m, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802016252/ob6167Isup2.hkl
Contains datablock I

CCDC reference: 198976

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.054
  • wR factor = 0.132
  • Data-to-parameter ratio = 13.9

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
GOODF_01 Alert C The least squares goodness of fit parameter lies outside the range 0.80 <> 2.00 Goodness of fit given = 0.728
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

Photo-initiated free-radical polymerization is of great commercial importance (Davidson, 1999; Pappas, 1978). Techniques such as curing of the coating on various materials, adhesives, printing inks, and photoresists are based on photo-initiated free-radical polymerization. The title compound, (I), was synthesized and used for the polymerization of acrylates and methacrylates (Davidson & Steiner, 1971; Arsu & Aydın, 1999). In this paper we report the structure of (I).

The molecular structure of (I) is shown in Fig. 1. The C5—C12 distance of 1.563 (3) Å is nearly equal to the value of 1.520 (3) Å in (E,E)-4-[3-(dichloro-2-hydroxyphenyl-azo)-2-morpholino-2-butenoyl]morpholine (Ramm et al., 1995). The N1—C1 and N1—C4 bond lengths are 1.472 (3) and 1.475 (3) Å, respectively, and agree with the corresponding distances in 1,3-bis(2-methylphenyl)-2-(4-morpholino)-isothiourea [1.473 (3) and 1.470 (4) Å; Sudha et al.;1996]. The N1—C5 and C12—O2 bond lengths are 1.491 (2) and 1.441 (3) Å, respectively; these are similar to the corresponding bond lengths in the salt of diclofenac with N-(2-hydroxyethyl)morpholine [1.489 (4) and 1.403 (4) Å, respectively; Castellari & Sabatino, 1996]. There is an intramolecular O—H···N hydrogen bond (Table 2). The crystal structure is stabilized by van der Waals interactions.

The molecule (I) contains three ring systems; two phenyl rings and a morpholino ring. For the morpholino ring we calculated, following the method of Cremer & Pople (1975), a phase angle θ2 =0.030 (2)° and ϕ2 =320 (5)°, indicating a chair conformation, and a puckering amplitude Q = 0.580 (2) Å.

Experimental top

trans-Stilbene oxide (1 g) and 1 molar equivalent of distilled morpholine was refluxed for 12 h with vigorous stirring. The product was extracted with diethyl ether and excess of morpholine was separated by addition of 5 ml of distilled water. The combined organic layers were washed with distilled water several times. The solution was dried over anhydrous magnesium sulfate. The crude product of (I) was recrystallized from ethanol. Mp: 394 K. Analysis calculated for C18H21NO2: C, 76.30; H, 7.54; N, 5.01. Found, C, 76.43; H, 7.60; N, 4.93. 1H NMR (100 MHz) in CDCI3: δ 7.08–7.30 (m,10H), 4.89 (m,1H), 3.89 (m,1H), 3.43 (m, 4H), 3.35 (s, 1H), 2.61 (m, 4H).

Refinement top

The hydroxy H atom was located from difference Fourier maps and refined isotropically. The other H atoms were positioned geometrically and refined using a riding model.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1999), PARST (Nardelli, 1995) and PLATON (Spek, 1997).

Figures top
[Figure 1] Fig. 1. An ORTEPIII drawing (Burnett & Johnson, 1996) of (I), showing the atomic numbering scheme. Displacement ellipsoids of non-H atoms are shown at the 50% probability level.
Erythro-2-morpholino-1,2-diphenyl ethanol top
Crystal data top
C18H21NO2F(000) = 608
Mr = 283.36Dx = 1.192 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3846 reflections
a = 13.4628 (7) Åθ = 3.1–28.3°
b = 5.8074 (3) ŵ = 0.08 mm1
c = 20.3321 (11) ÅT = 293 K
β = 96.611 (10)°Slab, colourless
V = 1579.07 (14) Å30.36 × 0.30 × 0.16 mm
Z = 4
Data collection top
Siemens SMART CCD area-detector
diffractometer
1426 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.082
Graphite monochromatorθmax = 25.0°, θmin = 3.1°
Detector resolution: 8.33 pixels mm-1h = 1614
ω scansk = 66
6883 measured reflectionsl = 2224
2711 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.132 w = 1/[σ2(Fo2)]
S = 0.73(Δ/σ)max < 0.001
2711 reflectionsΔρmax = 0.17 e Å3
195 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL, Fc* = kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.044 (4)
Crystal data top
C18H21NO2V = 1579.07 (14) Å3
Mr = 283.36Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.4628 (7) ŵ = 0.08 mm1
b = 5.8074 (3) ÅT = 293 K
c = 20.3321 (11) Å0.36 × 0.30 × 0.16 mm
β = 96.611 (10)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
1426 reflections with I > 2σ(I)
6883 measured reflectionsRint = 0.082
2711 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 0.73Δρmax = 0.17 e Å3
2711 reflectionsΔρmin = 0.20 e Å3
195 parameters
Special details top

Experimental. The data collection covered over a hemisphere of reciprocal space by a combination of three sets of exposures; each set had a different ϕ angle (0,88 and 180°) for the crystal and each exposure of 30 s covered 0.3° in ω. The crystal-to-detector distance was 5 cm and the detector swing angle was −35°. Crystal decay was monitored by repeating fifty initial frames at the end of data collection and analysing the intensity of duplicate reflections, and was found to be negligible.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.14867 (12)0.0438 (3)0.11837 (8)0.0352 (5)
O10.27349 (12)0.1238 (4)0.00323 (8)0.0705 (6)
O20.15115 (13)0.3706 (3)0.22085 (9)0.0586 (6)
C10.10818 (17)0.0346 (4)0.05795 (11)0.0484 (7)
H1A0.09140.19690.06190.058*
H1B0.04760.05010.05250.058*
C20.18443 (18)0.0029 (5)0.00188 (11)0.0614 (8)
H2B0.20030.16560.00590.074*
H2C0.15600.04430.04150.074*
C30.31456 (17)0.0566 (5)0.06180 (12)0.0645 (8)
H3A0.37400.14740.06600.077*
H3B0.33440.10390.05810.077*
C40.24106 (16)0.0883 (5)0.12354 (11)0.0515 (7)
H4A0.27140.03680.16200.062*
H4B0.22490.25030.12940.062*
C50.07577 (14)0.0220 (4)0.17905 (9)0.0312 (5)
H5A0.06550.14190.18900.037*
C60.02507 (14)0.1294 (4)0.16976 (10)0.0332 (5)
C70.03364 (18)0.3404 (4)0.13865 (12)0.0505 (7)
H7A0.02380.41870.12150.061*
C80.1271 (2)0.4362 (5)0.13286 (14)0.0703 (9)
H8A0.13200.57760.11200.084*
C90.2132 (2)0.3186 (7)0.15853 (13)0.0748 (10)
H9A0.27580.38110.15450.090*
C100.20586 (18)0.1115 (6)0.18960 (12)0.0640 (8)
H10A0.26340.03450.20730.077*
C110.11286 (16)0.0165 (4)0.19477 (10)0.0431 (6)
H11A0.10880.12560.21540.052*
C120.12205 (15)0.1375 (4)0.23795 (10)0.0388 (6)
H12A0.18240.05150.24530.047*
C130.05216 (14)0.1354 (4)0.30190 (10)0.0344 (5)
C140.01204 (17)0.3162 (4)0.32144 (11)0.0466 (6)
H14A0.01240.44690.29500.056*
C150.07608 (17)0.3033 (5)0.38039 (12)0.0548 (7)
H15A0.11860.42560.39320.066*
C160.07650 (18)0.1101 (5)0.41962 (12)0.0561 (7)
H16A0.11940.10170.45880.067*
C170.01387 (18)0.0694 (5)0.40104 (11)0.0552 (7)
H17A0.01430.20000.42750.066*
C180.05057 (16)0.0569 (4)0.34249 (11)0.0451 (6)
H18A0.09330.17950.33040.054*
H2A0.174 (2)0.374 (5)0.1779 (16)0.103 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0245 (10)0.0550 (13)0.0276 (10)0.0036 (8)0.0087 (7)0.0038 (8)
O10.0471 (11)0.1236 (18)0.0401 (10)0.0111 (11)0.0014 (8)0.0095 (10)
O20.0610 (12)0.0709 (14)0.0465 (11)0.0325 (9)0.0167 (9)0.0035 (9)
C10.0396 (14)0.0729 (19)0.0341 (13)0.0090 (12)0.0099 (10)0.0063 (12)
C20.0448 (16)0.107 (2)0.0332 (14)0.0003 (15)0.0080 (11)0.0020 (14)
C30.0375 (15)0.113 (3)0.0431 (15)0.0098 (14)0.0044 (12)0.0068 (15)
C40.0358 (14)0.0769 (19)0.0413 (14)0.0091 (12)0.0029 (11)0.0083 (13)
C50.0276 (11)0.0361 (13)0.0311 (11)0.0004 (9)0.0078 (9)0.0053 (9)
C60.0301 (12)0.0404 (14)0.0317 (11)0.0012 (10)0.0146 (9)0.0061 (10)
C70.0542 (16)0.0419 (16)0.0612 (16)0.0012 (12)0.0319 (12)0.0024 (12)
C80.090 (2)0.0566 (19)0.0711 (19)0.0296 (17)0.0408 (18)0.0109 (15)
C90.0526 (19)0.125 (3)0.0514 (17)0.0414 (19)0.0261 (14)0.0298 (18)
C100.0310 (15)0.116 (3)0.0463 (16)0.0056 (15)0.0083 (12)0.0038 (16)
C110.0311 (13)0.0642 (17)0.0356 (12)0.0028 (11)0.0105 (10)0.0021 (11)
C120.0306 (12)0.0542 (16)0.0337 (12)0.0058 (11)0.0129 (10)0.0007 (11)
C130.0282 (12)0.0477 (15)0.0303 (11)0.0003 (10)0.0168 (9)0.0021 (10)
C140.0488 (15)0.0493 (16)0.0445 (14)0.0080 (12)0.0172 (12)0.0010 (12)
C150.0439 (15)0.0658 (19)0.0558 (16)0.0110 (13)0.0104 (12)0.0210 (14)
C160.0412 (15)0.086 (2)0.0402 (14)0.0059 (14)0.0023 (11)0.0084 (15)
C170.0597 (17)0.0640 (18)0.0415 (15)0.0018 (14)0.0038 (13)0.0096 (13)
C180.0461 (15)0.0508 (16)0.0398 (14)0.0078 (11)0.0104 (11)0.0022 (11)
Geometric parameters (Å, º) top
N1—C11.472 (3)C7—C81.393 (3)
N1—C41.475 (3)C7—H7A0.9300
N1—C51.491 (2)C8—C91.394 (4)
O1—C21.421 (3)C8—H8A0.9300
O1—C31.424 (3)C9—C101.367 (4)
O2—C121.441 (3)C9—H9A0.9300
O2—H2A0.89 (3)C10—C111.383 (3)
C1—C21.514 (3)C10—H10A0.9300
C1—H1A0.9700C11—H11A0.9300
C1—H1B0.9700C12—C131.515 (3)
C2—H2B0.9700C12—H12A0.9800
C2—H2C0.9700C13—C181.387 (3)
C3—C41.517 (3)C13—C141.389 (3)
C3—H3A0.9700C14—C151.396 (3)
C3—H3B0.9700C14—H14A0.9300
C4—H4A0.9700C15—C161.376 (3)
C4—H4B0.9700C15—H15A0.9300
C5—C61.525 (3)C16—C171.366 (3)
C5—C121.563 (3)C16—H16A0.9300
C5—H5A0.9800C17—C181.392 (3)
C6—C71.390 (3)C17—H17A0.9300
C6—C111.395 (3)C18—H18A0.9300
C1—N1—C4107.14 (18)C6—C7—H7A119.5
C1—N1—C5113.11 (15)C8—C7—H7A119.5
C4—N1—C5112.15 (16)C7—C8—C9119.5 (3)
C2—O1—C3109.36 (18)C7—C8—H8A120.2
C12—O2—H2A108 (2)C9—C8—H8A120.2
N1—C1—C2110.11 (18)C10—C9—C8120.2 (2)
N1—C1—H1A109.6C10—C9—H9A119.9
C2—C1—H1A109.6C8—C9—H9A119.9
N1—C1—H1B109.6C9—C10—C11120.0 (3)
C2—C1—H1B109.6C9—C10—H10A120.0
H1A—C1—H1B108.2C11—C10—H10A120.0
O1—C2—C1111.5 (2)C10—C11—C6121.4 (2)
O1—C2—H2B109.3C10—C11—H11A119.3
C1—C2—H2B109.3C6—C11—H11A119.3
O1—C2—H2C109.3O2—C12—C13109.86 (18)
C1—C2—H2C109.3O2—C12—C5109.85 (16)
H2B—C2—H2C108.0C13—C12—C5113.02 (16)
O1—C3—C4112.3 (2)O2—C12—H12A108.0
O1—C3—H3A109.1C13—C12—H12A108.0
C4—C3—H3A109.1C5—C12—H12A108.0
O1—C3—H3B109.1C18—C13—C14118.2 (2)
C4—C3—H3B109.1C18—C13—C12118.9 (2)
H3A—C3—H3B107.9C14—C13—C12123.0 (2)
N1—C4—C3110.67 (19)C13—C14—C15120.5 (2)
N1—C4—H4A109.5C13—C14—H14A119.7
C3—C4—H4A109.5C15—C14—H14A119.7
N1—C4—H4B109.5C16—C15—C14120.2 (2)
C3—C4—H4B109.5C16—C15—H15A119.9
H4A—C4—H4B108.1C14—C15—H15A119.9
N1—C5—C6111.92 (16)C17—C16—C15120.0 (2)
N1—C5—C12108.37 (15)C17—C16—H16A120.0
C6—C5—C12111.00 (17)C15—C16—H16A120.0
N1—C5—H5A108.5C16—C17—C18120.1 (2)
C6—C5—H5A108.5C16—C17—H17A120.0
C12—C5—H5A108.5C18—C17—H17A120.0
C7—C6—C11118.0 (2)C13—C18—C17121.1 (2)
C7—C6—C5122.58 (19)C13—C18—H18A119.5
C11—C6—C5119.4 (2)C17—C18—H18A119.5
C6—C7—C8120.9 (2)
C4—N1—C1—C258.5 (2)C8—C9—C10—C111.0 (4)
C5—N1—C1—C2177.36 (19)C9—C10—C11—C61.1 (4)
C3—O1—C2—C158.3 (3)C7—C6—C11—C100.7 (3)
N1—C1—C2—O161.0 (3)C5—C6—C11—C10177.6 (2)
C2—O1—C3—C456.8 (3)N1—C5—C12—O254.3 (2)
C1—N1—C4—C356.9 (2)C6—C5—C12—O269.0 (2)
C5—N1—C4—C3178.39 (19)N1—C5—C12—C13177.35 (17)
O1—C3—C4—N157.7 (3)C6—C5—C12—C1354.1 (2)
C1—N1—C5—C650.4 (2)O2—C12—C13—C18151.10 (19)
C4—N1—C5—C6171.73 (17)C5—C12—C13—C1885.8 (2)
C1—N1—C5—C12173.15 (18)O2—C12—C13—C1430.0 (3)
C4—N1—C5—C1265.5 (2)C5—C12—C13—C1493.0 (2)
N1—C5—C6—C743.0 (3)C18—C13—C14—C150.0 (3)
C12—C5—C6—C778.2 (2)C12—C13—C14—C15178.9 (2)
N1—C5—C6—C11138.73 (19)C13—C14—C15—C160.3 (4)
C12—C5—C6—C11100.0 (2)C14—C15—C16—C170.3 (4)
C11—C6—C7—C80.2 (3)C15—C16—C17—C180.1 (4)
C5—C6—C7—C8178.1 (2)C14—C13—C18—C170.3 (3)
C6—C7—C8—C90.1 (4)C12—C13—C18—C17178.6 (2)
C7—C8—C9—C100.5 (4)C16—C17—C18—C130.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N10.89 (3)2.31 (3)2.821 (2)116 (2)

Experimental details

Crystal data
Chemical formulaC18H21NO2
Mr283.36
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)13.4628 (7), 5.8074 (3), 20.3321 (11)
β (°) 96.611 (10)
V3)1579.07 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.36 × 0.30 × 0.16
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6883, 2711, 1426
Rint0.082
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.132, 0.73
No. of reflections2711
No. of parameters195
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.20

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996), WinGX (Farrugia, 1999), PARST (Nardelli, 1995) and PLATON (Spek, 1997).

Selected geometric parameters (Å, º) top
N1—C11.472 (3)C1—C21.514 (3)
N1—C41.475 (3)C3—C41.517 (3)
N1—C51.491 (2)C5—C61.525 (3)
O1—C21.421 (3)C5—C121.563 (3)
O1—C31.424 (3)C12—C131.515 (3)
O2—C121.441 (3)
C1—N1—C4107.14 (18)N1—C4—C3110.67 (19)
C1—N1—C5113.11 (15)N1—C5—C6111.92 (16)
C4—N1—C5112.15 (16)N1—C5—C12108.37 (15)
C2—O1—C3109.36 (18)C6—C5—C12111.00 (17)
N1—C1—C2110.11 (18)C7—C6—C5122.58 (19)
O1—C2—C1111.5 (2)O2—C12—C5109.85 (16)
O1—C3—C4112.3 (2)C13—C12—C5113.02 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N10.89 (3)2.31 (3)2.821 (2)116 (2)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds